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• Wind farms lead to warming and cool
ing effects on grassland and cropland, 
separately. 

• Irrigation results in more obvious cool
ing effects on cropland wind farms. 

• Climate and terrain factors can explain 
the surface temperature changes of wind 
farms.  
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A B S T R A C T   

To mitigate climate change, the utilization of wind energy has rapidly expanded over the last two decades. 
However, when producing clean electricity, wind farms (WFs) may in turn alter the local climate by interfering in 
land surface-atmosphere interactions. Currently, China and the United States have the highest wind energy 
capacities globally. Thus, quantitatively analyzing the impacts of WFs on land surface temperature (LST) be
tween the two countries is valuable to deeply understand the climate impact of WF. In this study, we use the 
moderate-resolution imaging spectroradiometer (MODIS) time series from 2001 to 2018 to reveal the impacts of 
186 WFs (76 in China and 110 in the US) on local LSTs. The remote sensing observations reveal that WFs 
generally lead to warming impacts in both countries, with stronger effects in the US compared to China. During 
the daytime, WFs in the US exhibit a significant warming effect of 0.08 ◦C (p < 0.05), while the impact in China is 
nonsignificant (0.06 ◦C, p = 0.15). At night, the warming impacts in the US are approximately 1.7 times greater 
than in China (0.19 ◦C vs. 0.11 ◦C). Differences in the LST impacts between the two countries are primarily 
driven by cropland WFs, which cause more significant cooling effects in China (− 0.34 ◦C in the daytime and −
0.19 ◦C at night, p < 0.01) compared to the US. However, these differences are not significant for grassland WFs. 
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Moreover, the impacts of WFs on croplands’ LSTs are strongly correlated with their evapotranspiration impacts, 
likely influenced by irrigation practices. In addition to evapotranspiration, a machine learning model suggests 
that background climate and terrain factors can alter the LST impacts. Our observations in the two largest WF- 
deployment countries provide a new understanding of the climate impacts of WFs, which should be considered in 
the fields of wind and renewable energy deployment.   

1. Introduction 

In attempts to confront the global warming induced by fossil fuel 
consumption, the world wind energy capacity has been exploding since 
the beginning of the 21st century (Veers et al., 2019). According to the 
World Wind Energy Association, global wind energy production could 
support 6 % of the total electricity consumption with a capacity of 597 
gigawatts by the end of 2018 (World Wind Energy Association, 2019). 
From a prospective view, the wind energy capacity must keep growing 
by 18 % per year between 2020 and 2030 due to the increasing total 
electricity demand and the goal of net-zero emissions (International 
Energy Agency, 2021). 

However, when producing clean electricity, wind farms (WFs) 
impact the local climate (Dai et al., 2015; Tabassum-Abbasi et al., 2014; 
Wang and Wang, 2015). The rotation blades of turbines generate wake 
turbulence, which can interfere with the vertical heat flux of the at
mospheric boundary layer (ABL) and, further, the land surface temper
ature (LST) (Armstrong et al., 2014; Roy and Traiteur, 2010). Based on 
remotely sensed observations, WFs lead to significant warming effects 
on local LSTs in the nighttime (Liu et al., 2022; Slawsky et al., 2015; 
Tang et al., 2017; Wu et al., 2019; Zhou et al., 2013; Zhou et al., 2012) 
and have divergent LST impacts in the daytime (Slawsky et al., 2015; 
Tang et al., 2017; Wu et al., 2019; Zhou et al., 2013; Zhou et al., 2012; 
Qin et al., 2022). Model simulations performed in various regions have 
also shown warming effects of WFs with magnitudes of 0.2–2.16 ◦C at 
different scales (Keith et al., 2004; Li et al., 2018; Miller and Keith, 2018; 
Pryor et al., 2018; Vautard et al., 2014; Xia et al., 2017). 

In China and the United States, the accumulated wind energy ca
pacities ranked first and second worldwide in 2018, at 217 and 96 
Gigawatts, respectively, providing 36.3 % and 16.1 % of the world’s 
total capacity (World Wind Energy Association, 2019). The distribution 
of wind energy in China and the United States is spread over typical 
climate and land cover types in the northern hemisphere (Ljungqvist 
et al., 2012; Sun et al., 2018), thus, quantitative analysis of the differ
ences and similarities WF impacts on LSTs on surface temperature (LST) 
in the two countries is of great significance to understand the impact of 
WF in the northern hemisphere. Besides, the WFs in the two countries 
are located mainly in grassland and cropland regions (Rand et al., 2020; 
Zhang et al., 2020), and the differences in WF LST impacts should be 
analyzed separately for these two land cover types. For example, 
although both land types are covered by annual plants, croplands 
experience much higher human management levels than grasslands, 
which might lead to high uncertainties when performing driving factor 
analyses of mixed land-cover types. In addition, the heterogeneities 
introduced by the climate background and other factors should be 
further discussed in both China and the US. 

Thus, in this study, we use 186 large cropland and grassland WFs in 
China and in the US to reveal the similarities and differences between 
these countries as well as the possible driving mechanisms of the impacts 
of WFs on LSTs in these two countries. By using remote sensing time 
series, we calculate the WF impacts on daytime and nighttime LSTs 
during the growing season (April to October) in China and the US. Then, 
these impacts are evaluated separately for cropland and grassland WFs. 
Finally, we explore the possible driving mechanisms of the LST impacts 
and the corresponding driving factors using linear regression and ma
chine learning modeling. 

2. Materials and methods 

2.1. Study area 

In this study, we extract 25,139 wind turbines in 76 WFs in China in 
2018 by using the deep learning algorithm You Only Look Once (YOLO); 
these WFs are located mainly in Inner Mongolia and on the Loess 
Plateau, Northeast Plain, and Shandong Peninsula (Zhang et al., 2020). 
YOLO is an effective and precise object-detection approach based on a 
single neural network (Redmon et al., 2016). We also withdraw 24,513 
wind turbines in 110 WFs from the US Wind Turbines Dataset; these WFs 
are located mainly on the Great and Central Plains (Rand et al., 2020). 
To facilitate a comparison with the WFs extracted in China in 2018, 
wind turbines constructed before 2019 in the US are selected. Among 
these WFs, 16 cropland WFs contain 4252 turbines in China, while 
11,701 turbines are present in 54 cropland WFs in the US. For grass
lands, 60 WFs contain 20,887 turbines in China, and 56 WFs have 
12,812 turbines in the US. 

Comparing WF pixels with their surrounding control region (buffer) 
is a widely used strategy for detecting WF impacts (Slawsky et al., 2015; 
Zhou et al., 2012; Qin et al., 2022). To ensure that every wind turbine is 
included, in this study, the WF areas are extracted as 1-km × 1-km pixels 
that contain at least one turbine. To ensure that the buffer areas share a 
similar climate background with the WF areas and prevent wind turbine 
ABL turbulence, the buffer is built in 1-km × 1-km pixels 5 to 10 km 
outside the WF (Tang et al., 2017; Zhou et al., 2020). The distance be
tween adjacent wind turbines within the same WF should not be longer 
than 5 km. In cropland or grassland WFs, the cropland or grassland 
pixels are finally filtered by Moderate Resolution Imaging Spectroradi
ometer (MODIS) MCD12Q1 International Geosphere-Biosphere Pro
gramme (IGBP) land cover data in the WF and buffer areas, and the 
filtered pixels are defined as wind farm pixels (WFPs) and buffer pixels 
(BUPs) in the following text. To better illustrate the build processes of 
WFPs and BUPs, the steps are shown in Fig. S1. 

2.2. Datasets 

To reveal the cropland and grassland WF impacts on the local LSTs, 
we use the MODIS MOD11A2 land surface temperature (LST) time series 
recorded between 2001 and 2018. The MODIS LST product contains 
both daytime (10:30 AM) and nighttime (10:30 PM) bands with tem
poral and spatial resolutions of 8 days and 1 km (Wan et al., 2015). 

To understand the possible mechanisms between the LST impacts 
and related environmental factors while considering heat transfer pro
cesses such as convection and phase transitions, we use five types of 
factors in this study, including climate, terrain, size, vegetation, and 
shape factors. For climate factors, we use European Centre for Medium- 
Range Weather Forecasts Reanalysis v5 (ERA5) precipitation, air tem
perature at 2-m aboveground, wind speed at 100-m aboveground 
(Muñoz-Sabater et al., 2021), and drought index data. This product is an 
hourly dataset with a spatial resolution of 0.25◦. The wind speed at 100 
m is selected because this layer is close to the height of wind turbines. 
We calculate the drought index by obtaining the ratio of ERA5 precip
itation and MOD16A2 potential evapotranspiration (Running et al., 
2017). We use the Köppen-Geiger climate classification to identify the 
climate zone of the WFs. The data has a spatial resolution of 0.0083◦

(Beck et al., 2018). 
The terrain factors include the elevation and surface roughness. The 
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elevation data are obtained from the Shuttle Radar Topography Mission 
(SRTM) DEM dataset, with a spatial resolution of 90 m (Jarvis et al., 
2008). We select the Sentinel-1 Synthetic Aperture Radar (SAR) Ground 
Range Detected (GRD) dataset as the surface roughness indicator; it is a 
daily dataset with a spatial resolution of 10 m (Torres et al., 2012). The 
size factors are derived from wind turbines and pixels within WFPs, 
including the number, area, and density of turbines as well as the base of 
the natural logarithm of wind turbines (ln(WTs)). The area is the number 
of 1-km × 1-km WF pixels, and the density is the ratio of the turbines and 
area. The vegetation factors include the MODIS evapotranspiration, 
normalized difference vegetation index (NDVI), and the Global Food 
Security-support Analysis Data (GFSAD) irrigation dataset. The 
MOD16A2 evapotranspiration is an accumulated 8-day product with a 
spatial resolution of 500 m (Running et al., 2017; Running et al., 2015), 
while MOD13A1 NDVI is composited for 16 days at the same spatial 
resolution (Didan, 2015; Running and Zhao, 2019). The GFSAD dataset 
is used to indicate irrigation areas within the cropland WFs; the spatial 
resolution of this dataset is 1 km, and it represents the irrigation strength 
in 2010 (Teluguntla et al., 2015). Accumulative factors such as precip
itation and evapotranspiration are accumulated in each growing-season 
period to match the growing-season ΔLST. Factors representing surface 
properties such as surface roughness are calculated by the mean 
growing-season value. Moreover, instantaneous factors such as the air 
temperature and wind speed are calculated separately for daytime and 
nighttime. 

The shape factors describe the distribution of wind turbines within 
the WFs in different dimensions, including the patch density, Euclid
ean’s nearest-neighbor distance, and shape index; these factors are 
calculated via the Fragstates platform (version 4.2.1) (McGarigal, 1995) 
as follows: 

PDi =
Ni

ai
*100*10000 (1)  

ENNi =

∑n

j=1
hij

n
(2)  

SIi =
0.25*pi

̅̅̅̅ai
√ (3)  

where PDi, ENNi, and SIi are the patch density, mean Euclidean nearest- 
neighbor distance, and shape index of WF i, respectively; Ni is the 
number of patches in the WF; n is the number of patch pairs of WFs; hij is 
the distance to the nearest neighboring patch (m); pi is the perimeter of 
the WF (m); and ai is the area of the WF (m2). The patch of patch density 
is determined from an independent group of WF pixels using the 8- 
neighbor rule in our study. This term indicates the number of patches 
within 100 ha and increases when more fragments are present in a WF. 
The mean Euclidean nearest-neighbor distance increases when the 
adjacent fragments become farther apart. In addition, the shape index 
usually increases as the fragments become more irregular and split. 

2.3. Assessment of wind farm impacts 

The LST difference between the WFPs and BUPs could be regarded as 
the impact of WFs because these two regions are distributed 5 km from 
each other and share similar background climate conditions. The major 
difference between these two areas is the presence or absence of a WF. 
The ΔLST value is calculated by obtaining the slope of the LST difference 
time series in each WF, and the time series is built as follows (Qin et al., 
2022; Zhou et al., 2020): 

ΔLSTi•j = LSTWFPs•i•j − LSTBUPs•i•j (4)  

where LSTWFPs•i•j and LSTBUPs•i•j are the mean growing-season LSTs in 
the WFPs and the BUPs in year j, respectively; i is the serial number of 

the WF; and ΔLSTi•j is the LST difference between the WFPs and BUPs. 
The time series of the ΔLSTi•j values are set up in the growing season 
(April to October) between 2001 and 2018 through the Google Earth 
Engine platform (Gorelick et al., 2017). The slope of the time series is 
calculated by the ordinary least squares method, and the significance of 
the slope is tested at the 0.05 significance level. The WF impacts on LST 
(ΔLST) between 2001 and 2018 are calculated by multiplying the slope 
by the period length of 18 years. Similar to ΔLST, the differences in 
MODIS vegetation driving factors between the WFPs and BUPs are also 
calculated and expressed in uppercase Δ (e.g., Δevapotranspiration). 
The differences in terrain factors are calculated directly by subtracting 
the BUP average from the WFP average and expressed in lowercase δ (e. 
g., δDEM). 

After configuring the growing-season daytime and nighttime ΔLSTs 
corresponding to each WF in this study, we also calculate the cropland 
and grassland WF ΔLSTs in China and the US separately. The growing 
season is divided into three segments: April and May, June to August, 
and September and October. 

The ΔLSTs of concentrated and scattered WFs are also calculated to 
figure out the sensitivity of ΔLST on WF spatial distribution. The 
concentrated WFs are centralized distributed WFs located on the Great 
and Central Plains in the US and the southwest-northeast direction 
farming-pastoral ecotone in China, while the scattered WFs are the 
individually distributed WFs in the two countries. To explore WF- 
induced ΔLST in different climate zones, we divide the WFs into 
groups based on Köppen-Geiger climate classification. The groups with 
sufficient grassland and cropland WF samples are calculated. To explore 
the relationship between turbine density and ΔLST, we separate WFPs of 
each WF into pixel groups with various turbine densities, and subse
quently computed their corresponding ΔLST. 

2.4. Driving factor analysis 

Based on a priori knowledge, to explore the main factors driving the 
heterogeneities in the daytime and nighttime ΔLSTs in cropland and 
grassland WFs in China and the US, we build linear relationships be
tween the ΔLST values and potential continuous driving factors, 
including the climate, terrain, size, vegetation, and shape factors 
(described in 2.2). After these correlations are calculated, the signifi
cances are tested at the 0.05 significance level. To explore how wind 
turbine properties affect ΔLST of WFs, we analyze the linear relation
ships between the properties (hub height, rotor diameter, and rated 
power) and ΔLST based on US Wind Turbines Dataset (Rand et al., 2020; 
Fitch et al., 2013). The hub height, rotor diameter, and rated power of 
each WF is the average value of all wind turbines within the WF. 
However, the turbines in Northern China are extracted by deep learning 
algorithm (Zhang et al., 2020), there are no manufacturer information 
or open-access datasets of turbine properties. Thus, the related analysis 
are only conducted in the US. Then, to determine the main driving 
mechanisms of the ΔLSTs in China and the US, we build an optimal 
boosted regression tree model and calculate the relative importance and 
partial dependences of the five types of continuous factors and two 
categorical factors (land cover type and country) using R programming 
(Freund and Schapire, 1997). 

3. Results 

3.1. Wind farm impacts on the land surface temperature 

Based on the MODIS LST time series from 2001 to 2018 character
izing the 186 WFs in China and the US, the results suggest that the 
average growing-season ΔLST between the WFPs and BUPs increased 
significantly at night for both China and the US at the p < 0.05 level 
(Fig. 1(f)). However, this magnitude is approximately 1.7 times stronger 
in the US than in China (0.191 ◦C to 0.111 ◦C). The average ΔLSTs in the 
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daytime non-significantly and significantly increased in China and the 
US (0.060 ◦C and 0.080 ◦C), respectively, as shown in Fig. 1(e). These 
results suggest that there are spatial and temporal differences in the 
impacts of WFs on local LSTs. The WF ΔLST is higher in the nighttime 
than in the daytime in both countries and is higher in the US than in 
China both in the daytime and nighttime (by 0.020 ◦C and 0.080 ◦C (33 
% and 72 %), respectively) at the significance levels of p = 0.39 and p <
0.05, respectively. 

In the daytime, 64.55 % of the WFs show warming impacts in the US, 
and 10.00 % are significant (p < 0.05), while 35.45 % of the WFs show 
cooling effects (5.45 % of which are significant). The ΔLST resulting 

from WFs ranges between − 1.043 ◦C and 3.222 ◦C. However, in China, 
51.32 % of the WFs suggest warming impacts on the LST, while the 
remaining WFs show cooling effects (11.84 % and 13.16 % correspond 
to significant warming and cooling, respectively). The ΔLST ranges from 
− 1.125 ◦C to 1.915 ◦C. Fig. 1 (a) shows that the cropland WFs on the 
Northeast Plains and Shandong Peninsula of China show cooling impacts 
on ΔLST. At night, more WFs show warming effects in both the US and 
China. Specifically, in the US, 90.91 % of WFs show warming effects 
(40.00 % of which are significant). The nighttime ΔLST range is between 
− 0.123 ◦C and 0.574 ◦C. Moreover, in China, 72.37 % of WFs suggest 
warming impacts, 38.16 % of which are significant. The nighttime ΔLST 

a) Daytime (China) b) Nighttime (China)
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Fig. 1. MODIS growing-season daytime and nighttime time-series ΔLSTs between WFPs and BUPs at 186 WFs in China and the US from 2001 to 2018. (a), (c) Spatial 
distributions of daytime ΔLSTs resulting from WFs in China and the US. (b), (d) Spatial distributions of nighttime ΔLSTs resulting from WFs in China and the US. The 
ΔLSTs and significance of the ΔLST trends are given by symbol colors and textures. The circle and rectangle symbols represent grassland and cropland WFs, 
respectively. The cross symbols within the circles and rectangles indicate significant ΔLSTs at p < 0.05. The base maps are the MODIS MCD12Q1 International 
Geosphere-Biosphere Programme (IGBP) land cover classifications in 2018 with the standard colormap (green for grasslands and brown for croplands). (e), (f) 
Distributions of daytime and nighttime ΔLSTs resulting from WFs in China and the US. The averaged ΔLST values and the significance levels of the one-sample t-tests 
are given. 
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range in China is between − 0.901 ◦C and 0.754 ◦C. 

3.2. Divergent impacts of cropland and grassland wind farms 

To determine the reason for ΔLST differences between China and the 
US, we also analyzed the WF-induced ΔLSTs in cropland and grassland 
regions separately. In the daytime, significant (− 0.311 ◦C) cooling ef
fects are observed to result from cropland WFs in China at p < 0.05, 
while the warming effects are nonsignificant, at 0.026 ◦C, in the US 
(Fig. 2(a)). In addition, at night, the averaged ΔLST is also higher for the 
US cropland WFs (0.186 ◦C, p < 0.05) than in China (− 0.004 ◦C, p =
0.47) (Fig. 2(b)). 

For grassland WFs, the ΔLST values are similar between China and 
the US. The daytime ΔLSTs increase significantly in both countries by 
0.158 ◦C to 0.131 ◦C at p < 0.05, with values of 0.141 ◦C and 0.195 ◦C in 
the nighttime (Fig. 2(c), 2(d)). In summary, the ΔLST differences in 
cropland WFs are − 0.337 ◦C and − 0.190 ◦C between the two countries 
in the daytime and nighttime, while the differences are 0.027 ◦C and 
-0.054 ◦C in grassland WFs (China minus the US). Thus, the contribution 
of cropland WFs to the growing-season ΔLST differences between the 
two countries is much higher than that of grassland WFs. 

3.3. Attributions on wind farm impacts 

To determine the reason for the ΔLST heterogeneities observed in the 

cropland WFs between the two countries, we perform linear regression 
between multiple driving factors and the cropland WF-induced ΔLSTs in 
China and the US. The daytime ΔLSTs are more strongly related to the 
Δevapotranspiration values in China (r = − 0.58) than in the US (r =
− 0.31) (Fig. 3(a)). The average Δevapotranspiration value is 13.46 mm 
higher in China than in the US, while the daytime and nighttime ΔLSTs 
are 0.34 ◦C and 0.19 ◦C lower in cropland WFs in China than in the US. 
These ΔLST heterogeneities in the cropland WFs in the two countries 
might be driven by the cooling effects of evapotranspiration. Moreover, 
the proportion of irrigated croplands within China’s (72 %) cropland 
WFs is much higher than that in the US (15 %) (Fig. 3(b)). Significantly 
higher and lower Δevapotranspiration and ΔLST values are observed in 
irrigated WFs than in rainfed WFs (p < 0.05) (Fig. 3(c), (d)). These 
evapotranspiration differences in cropland WFs between the two coun
tries may be caused by agricultural human management. 

To explore the relative importance levels and partial effects of the 
Δevapotranspiration and other related driving factors on the growing- 
season daytime ΔLSTs, we build a boosted regression tree model. The 
model can explain the ΔLST with a cross-validation correlation coeffi
cient of 0.51. ΔEvapotranspiration is the most important driving factor 
affecting ΔLST, with a relative contribution of 35.7 %, while drought 
index, wind speed, and δsurface roughness contribute approximately 20 
%, separately (Fig. 4(b-d)). The land cover factor could explain 4.6 % of 
ΔLST. Among these factors, the Δevapotranspiration, drought index, 
and δsurface roughness negatively affect ΔLST, while the wind speed 
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the US from 2001 to 2018. Boxplots and time series of cropland WFs in a) daytime and b) nighttime are shown. Boxplots and time series of grassland WFs in c) 
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makes a positive contribution to ΔLST. The negative contribution of 
croplands suggests that irrigation may play an important role in 
decreasing ΔLST by enhancing evapotranspiration (Fig. 4e). 

4. Discussion 

4.1. Similar effects of grassland wind farms 

In the 116 grassland WFs in both China and the US, the effect of WFs 
on temperature is similar, and the daytime and nighttime ΔLSTs are 
0.145 ◦C and 0.167 ◦C, respectively (the standard deviations are 
0.534 ◦C and 0.244 ◦C, respectively). The averaged ΔLSTs are higher in 
the nighttime than in the daytime; nevertheless, the standard deviations 
are lower in the nighttime than in the daytime. These phenomena might 
be explained by the ABL stability of stable, neutral, and unstable. When 
the ABL is stable, it is likely to be a nighttime circumstance. The tur
bulence produced by wind turbines mixes the warmer upper air layer 
and the cooler layer near the surface, causing the land surface to be 
heated (Wu and Archer, 2021). However, in the daytime, the ABL sta
bility can be more complicated, with stable, unstable, or neutral situa
tions. When the ABL is unstable, the land surface can be cooled by the 
mixing of the cooler upper air and the warmer near-surface air. More
over, when the ABL is neutral, the impact on the LST is near zero because 
of the weak heat convection between the upper and lower air layers with 
the approximate temperature (Qin et al., 2022; Miller and Keith, 2018; 
Zhou et al., 2020). Thus, the average ΔLST and standard deviation could 
be lower and higher, respectively, in the daytime than in the nighttime. 

Considering China’s desert WFs, which share the similar low human 
management levels to the grassland WFs in this study, the warming ef
fects of the desert WFs are much higher than the grassland WF effects 
determined in this study. The desert WF-induced ΔLSTs from 2001 to 
2018 are 0.250 ◦C and 0.237 ◦C in the daytime and nighttime, respec
tively, (Liu et al., 2022), while those of grassland WFs are 0.060 ◦C and 
0.111 ◦C, respectively. The daytime and nighttime ΔLST differences 

between desert and grassland WFs are obvious, which might be the 
result of the cooling effects of plant and soil evapotranspiration (Pallas 
Jr et al., 1967; Seneviratne et al., 2010). However, the ΔLST ranges are 
higher in grassland WFs than in desert WFs. In the daytime, the grass
land WF-induced ΔLSTs range from − 1.125 ◦C to 1.915 ◦C, while this 
range is − 0.729 ◦C to 1.456 ◦C for desert WFs. In addition, the ΔLST 
ranges are − 0.901 ◦C to 0.754 ◦C and -0.033 ◦C to 0.543 ◦C for vegetated 
and desert WFs at night, respectively. These differences might be due to 
the more divergent underlying conditions in grassland areas than in 
desert areas. For example, the standard deviations of evapotranspiration 
and vegetation cover are much higher in grasslands than in deserts (De 
Keersmaecker et al., 2015; Jung et al., 2010), and the human activity 
strength variations are higher in areas covered by vegetation than in 
barren areas. 

4.2. Divergent impacts of cropland wind farms 

For the cropland WFs in China, the average ΔLST values are 
− 0.311 ◦C and -0.004 ◦C with standard deviations of 0.210 ◦C and 
0.167 ◦C in the daytime and nighttime, respectively. In comparison, the 
daytime and nighttime ΔLST of cropland WFs in the US are 0.026 ◦C and 
0.186 ◦C in the daytime and nighttime (with standard deviations of 
0.385 ◦C and 0.128 ◦C), respectively. The average daytime ΔLST in 
China is lower than that in the US. This might be the result of the 
relatively high irrigation percentage in China’s cropland WFs compared 
to those in the US (72 % in China to 15 % in the US, Fig. 3(b)) (Kimm 
et al., 2020; Yin et al., 2020) of stronger irrigation activities leading to 
higher evapotranspiration cooling effects. Moreover, the standard de
viation of the daytime ΔLST in China is also lower than that in the US, 
which might suggest that a high irrigation percentage leads to relatively 
steady cooling effects in cropland WFs (Lobell et al., 2008). 

In the 70 cropland WFs in both China and the US, the averaged ΔLST 
values are − 0.050 ◦C and 0.143 ◦C, with standard deviations of 0.380 ◦C 
and 0.159 ◦C, in the daytime and nighttime, respectively. Similar to 

Fig. 3. Correlations between growing-season Δevapotranspiration and daytime ΔLST, the irrigation percentages, and the difference in Δevapotranspiration and 
ΔLST of irrigation groups on cropland WFs in China and the US. a) Correlation between Δevapotranspiration and ΔLST in China and the US. The distributions of 
Δevapotranspiration and ΔLST in the two countries are shown in the top and right subfigures, respectively. The correlation coefficients and the significance levels are 
given in the text. b) Barplot of the irrigation percentage of the cropland WFs in China and the US. c) and d) The Δevapotranspiration and ΔLST values in the irrigation 
and rainfed WF groups in both China and the US. The significances of the WF-induced Δevapotranspiration and ΔLST confirmed in the two-sample t-tests between 
irrigated and rainfed WFs in both China and the US are given in asterisks with different levels (* for p < 0.05, ** for p < 0.01, and *** for p < 0.001). 

N. Liu et al.                                                                                                                                                                                                                                      



Science of the Total Environment 905 (2023) 167203

7

grassland WFs, the ΔLSTs are higher in the nighttime than in the day
time, while the standard deviations are lower. These differences might 
be explained by the ABL stability. A more stable ABL leads to higher 
nighttime ΔLSTs, while a more divergent daytime ABL stability brings 
higher standard deviations (Wu and Archer, 2021). Furthermore, 
although the average ΔLST is only 0.024 ◦C lower at night than during 
the daytime, the average daytime ΔLST is 0.195 ◦C lower in the cropland 
WFs than in the grassland WFs. This difference is likely caused by the 
relatively high evapotranspiration in cropland WFs compared to grass
land WFs (Purdy et al., 2018) leading to stronger cooling effects of 
cropland WFs than grassland WFs. In previous studies, cropland WFs led 
to nighttime warming effects with magnitudes ranging from 0.26 ◦C to 
0.31 ◦C, while the impacts were not obvious in the daytime (Slawsky 
et al., 2015; Xia et al., 2016). The impacts are similar to those found in 
our study. 

4.3. Driving factors affecting wind farm impacts 

The primary climate driving factors in affecting WF-induced LST 
changes are the ABL stability and the wind speed. The two factors decide 
the temperature gradient and the turbulence strength created by wind 
turbine, which further affect the local LST through heat transfer (Zhou 
et al., 2020; Fitch et al., 2013). Beside of that, some other factors might 
else have influence on the ΔLST. Fig. 4 shows that evapotranspiration is 
the most important driving factor during the growing season affecting 
the WF-induced ΔLST in both China and the US. In the daytime, the 
water turns from liquid to vapor through plant leaf stomata and the soil 
surface. During this phase change, heat is absorbed from the leaf and soil 
surfaces (Pallas Jr et al., 1967; Seneviratne et al., 2010). This might lead 
to cooling effects in high-evapotranspiration WF regions. At night, plant 

transpiration is lower than in the daytime. When the rotation of a tur
bine causes the warmer upper layer and cooler surface layer to mix, soil 
evaporation can suppress the warming trends of the land surface (Malek, 
1992). WFs in different absolute LST zones might have various rela
tionship between Δevapotranspiration and ΔLST, thus we calculate the 
linear relationship the two variables in LST groups of <27 ◦C and >
27 ◦C of cropland WFs in both China and the US (Fig. S2). The results 
show that there are obvious negative correlation in LST group of <27 ◦C 
in the two countries (p < 0.1), while the negative relationship is weaker 
in the group of >27 ◦C in both countries. This could be attributed to the 
base evapotranspiration is higher in groups of >27 ◦C, and the increase 
of evapotranspiration lead to weaker LST effects in those WFs (He et al., 
2020; Yao et al., 2017). 

Apart from evapotranspiration, relatively fast wind speeds lead to 
increased rotation speeds of turbines until the rated power is reached 
(Ragheb and Ragheb, 2011); thus, the mixing effect of the ABL and land 
surface warming may be enhanced. The δsurface roughness values are 
negatively related to ΔLSTs. This might be because when the WFPs and 
rougher than the BUPs, the vertical and horizontal heat fluxes are 
increased, further strengthening surface dissipation (Oke, 1973). The 
higher ΔLSTs observed in drier WFs are likely related to the relatively 
high water stress and low water contents of these WFs. In such areas, soil 
evaporation is limited by the moisture content, and plants tend to close 
their stomata to conserve water and suppress transpiration (Osakabe 
et al., 2014). In relatively moist WFs, the high water contents of the 
leaves and soil can keep these surfaces cool (Ceccato et al., 2001). 

The increase of turbine density within WFs might enhance turbu
lence strength and the resulting changes of ΔLST (Fitch et al., 2013). To 
make a quantitative analysis of this effect, we calculated the ΔLST 
values for pixel groups within each WF that varied in turbine density. 
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The results depicted in Fig. S3 indicate that there are no significant ΔLST 
differences among the various density groups during both daytime and 
nighttime. Interestingly, the ΔLST values for pixels with only one tur
bine are similar to those with multiple turbines. This observation may be 
attributed to the wake effect of turbulence generated by wind turbines, 
which can spread several kilometers in the downwind direction (Lund
quist et al., 2019). As a result, the mixing effect created by turbines could 
cover several pixels in the downwind direction and obscure the ΔLST 
brought by turbines in those pixels. 

Local heat, moisture, and human activities differ among climate 
zones, which might interfere with WF-induced ΔLST. We analyzed the 
ΔLST on cropland and grassland WFs in both countries in different 
climate zones based on the Köppen-Geiger classification. It is shown that 
the ΔLST of cropland WFs are considerably lower than grassland ones in 
the Dwa climate zone, while the difference is not obvious between 
cropland and grassland WFs in the Dfa zone (Fig. S4). This difference can 
be attributed to the irrigation on most cropland WFs in the Dwa zone 
(the irrigation proportion is 69 % in the Dwa zone while it is 5 % in the 
Dfa zone). The same results could be drawn as it is in Section 3.3 that 
irrigation leads to cooling effects on the cropland WFs in the growing 
season. Meanwhile, the daytime ΔLST on grassland WFs is higher in Dwa 
than in Dfa climate zones (Fig. S4 (a), (c)). This might be due to more 
water resources in the Dfa zone than in the Dwa zone, there are higher 
ΔLST on drier WFs, while the warming effects of WFs are lower in 
relatively moist areas (Fig. 4). 

The wind turbine properties like hub height, rotor diameter, and 
rated power are key determinants that will decide the turbulence 
strength it creates and wind energy it removes, which in turn may affect 
the magnitude of ΔLST on WFs combined with the status of ABL stability 
(Fitch et al., 2013). To figure out the ΔLST magnitude affected by tur
bine properties, we analyze the linear relationships between the prop
erties and ΔLST based on US Wind Turbines Dataset. The results show 
that there are no obvious dependencies of ΔLSTs on hub height, rotor 
diameter, and rated power (Fig. S5), this might be because ΔLST is also 
affected by the ABL stabilities and wind turbine operation periods in the 
consideration of turbulence strength. To achieve a more precise under
standing of the impact of wind turbine properties on ΔLST, it may be 
necessary to integrate more accurate datasets on ABL stability and wind 
turbine operation. 

4.4. Uncertainty and future work 

In a previous study, the impacts of 319 WFs on local LSTs in the US 
indicated that the average daytime ΔLST is 0.01 ◦C, while the average 
nighttime ΔLST is 0.10 ◦C. The proportions of WFs with warming trends 
are 49.84 % and 61.13 % in the daytime and nighttime, respectively 
(Qin et al., 2022). However, in this study, the warming impacts in the 
daytime and nighttime are more obvious, at 0.080 ◦C and 0.191 ◦C, 
respectively, with proportions of 64.55 % and 90.91 %, in the US. Three 
major reasons might explain this phenomenon. First, the WFs considered 
by Qin et al. contained >25 turbines, while the number of turbines in the 
considered WFs exceeded 100 in this study. The large WFs on the Great 
Plains and Central Plains considered in the study of Qin et al. showed 
warming patterns similar to our results. However, the small WFs (with 
turbine numbers 〈100) in other regions (e.g., the east coast or the Rocky 
Mountains) that were not picked in our study mostly showed cooling 
effects. Second, there was a difference in the study periods considered 
between the studies. The study period considered by Qin et al. for each 
WF was set up by defining the installation year and building a five-year 
window comprising two years before and after that specific year. The 
effect of the WFs was then calculated using those windows. However, 
the installation of a WF is a continuous process that can last for several 
years. For example, the installation period of a large WF with 304 tur
bines in Texas lasted from 2007 to 2015. Thus, the use of a five-year 
window might weaken the effect. By using the comparison strategy 
between the WFPs and the BUPs to calculate the LST impacts of the WFs 

(ΔLST), we can describe the relationship between ΔLST and the growing 
process of WFs (Fig. S6). Notably, in both the case of the grassland WF in 
Texas and the cropland WF in Indiana, we observe a transition in the 
ΔLST from a descending trend to an ascending trend along with the 
construction of the respective WFs. Third, regarding the WF area dif
ferences, Qin et al. defined turbine points as the WF area and calculated 
the mean LST of the WF via the mean value of the points. In comparison, 
the WF area considered in this study is established using the WFPs. 
Turbines are always distributed unevenly in a WF, and the influences of 
the turbines are not only concentrated on the bottom points of the tur
bines. Thus, the use of different WF area definitions might bring dif
ferences in the results. 

DEM gaps between WFPs and BUPs might lead to ABL stability and 
plant species difference (Cuxart et al., 2000; Jones et al., 2003), and 
further interfere ΔLST in this study. To figure out whether WFs lead to 
obvious ΔLST in the absence of huge DEM gaps, we applied filters of WFs 
with δDEM of ±30 m, ±20 m, and ±10 m. It is shown in Fig. S7 that WF- 
induced ΔLST is significant in both daytime and nighttime where there 
are minor DEM gaps between WFPs and BUPs. It is obvious that most 
WFs are concentrated in both China and the US, while some others are 
located in faraway areas, which might lead to climate and terrain dif
ferences between the two groups. Thus, we made a comparison of WF- 
induced ΔLST between the concentrated and scattered WFs. Results 
indicate a lack of significant ΔLST differences between the concentrated 
and scattered WFs during the daytime and nighttime, with p-values of 
0.39 and 0.78, respectively (Fig. S8). The influences of location on WF- 
induced ΔLST are probably not apparent based on remote sensing ob
servations. To assess the potential impact of land cover changes on our 
study period from 2001 to 2018, we analyzed the distribution of 
grassland, cropland, and other land cover types within the WFPs and 
BUPs of all 186 WFs, and for China and the US, separately (Fig. S9). The 
results indicate that there have been minimal changes in cropland pixels, 
with a slight increase of 0.2 % from 2001 to 2018. The percentage of 
grassland pixels has also seen a modest increase of <1 %. Since there 
have been no significant land cover changes observed within the 186 
WFs analyzed in this study, it is unlikely that land cover changes have a 
substantial impact on the ΔLST calculation. 

In addition, when calculating the impacts of WFs on LSTs, more 
uncertainties could be brought by turbines and observations. First, the 
operation times of the studied turbines are unknown to us. The turbines 
start working when the wind speed reaches its cut-in speed and stop 
when the wind speed exceeds the cut-out speed to avoid mechanical 
damage (Fan and Zhu, 2019). With precise operation profile, we will be 
able to make obtain more accurate results of ΔLSTs. Second, the types 
and sizes of wind turbines differ among installation times and countries, 
causing differences in the turbulent kinetic energy sink and turbulence 
strength to arise (Chinese Wind Energy Association, 2019). Third, 
although studying WF impacts on LSTs using long-time-series remote 
sensing products is a suitable method, in situ measurements are still 
necessary because of the uncertainties inherent in remote sensing 
products. Fourth, the phenology and evapotranspiration strength vary 
among vegetation species (Béziat et al., 2013; Pauliukonis and 
Schneider, 2001), and the WF impacts on LSTs in vegetated areas could 
be better revealed when these species are confined. The boosted 
regression tree model utilized in this study explains the ΔLST at a cross- 
validation correlation level of 0.51. In the future, the model could be 
improved by considering additional variables and physical processes. 

The Weather Research and Forecasting (WRF) model has been 
widely used to simulate the impacts of WFs (Miller and Keith, 2018; 
Vautard et al., 2014; Xia et al., 2017; Xia et al., 2019). With abundant 
observation evidence, the WRF parameterization and WF modeling 
process could be improved. The purpose of WF installation is to reduce 
greenhouse gas (GHG) emissions and mitigate global climate change; 
however, WFs also create local side effects (Zhou et al., 2012; Keith 
et al., 2004; Li et al., 2018). According to previous studies, apart from 
changing the local climate conditions, WFs further affect ecosystem 
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dynamics and animal diversity (Dai et al., 2015; Marques et al., 2014; 
Smallwood and Thelander, 2008), which might undermine their sus
tainability in vulnerable ecosystems such as grasslands and plateaus. 
However, based on our analysis, when installed on well-managed 
croplands, WFs can even promote local evapotranspiration and have 
cooling effects on local LSTs during the growing season. Thus, installing 
wind turbines in such areas might provide clean energy and mitigate 
global GHG emissions while having minor local side effects. 

5. Conclusion 

In this study, we detected the impacts of WFs on local daytime and 
nighttime LSTs by considering 186 large grassland and cropland WFs in 
China and the US. We found that the warming impacts of WFs in the US 
are more pronounced than those in China, especially for cropland WFs. 
These divergences are probably controlled by the cooling effects of 
cropland WFs with irrigation. By using a boosted regression tree model, 
the heterogeneities in the impacts of WFs on LSTs are found to be 
contributed mainly by climate and terrain factors. The results suggest 
that when producing clean electricity and altering the large-scale land 
surface and ABL conditions during the rapid development of wind en
ergy, the locations of future WFs could be optimized to minimize local 
side effects. 
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