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ABSTRACT
Rapeseed mapping is important for national food security and government regulation of land use. 
Various methods, including empirical index-based and machine learning-based methods, have 
been developed to identify rapeseed using remote sensing. Empirical index-based methods 
commonly employed empirically designed indices to enhance rapeseed’s bright yellow spectral 
feature during the !owering period, which is straightforward to implement. Unfortunately, the 
heavy cloud cover in the !owering period of China would lead to serious omission errors; and the 
required !owering period varies spatially and yearly, which often cannot be acquired accurately. 
Machine learning-based methods mitigate the reliance on clear observations during the !owering 
period by inputting all-season imagery to adaptively learn features. However, it is di"cult to collect 
su"cient samples across all of China considering the large intraclass variation in both land cover 
types of rapeseed and non-rapeseed. This study proposed an automated rapeseed mapping 
approach integrating rule-based sample generation and a one-class classi#er (RSG-OC) to over-
come the shortcomings of the two types of methods. First, a set of sample selection rules based on 
empirical indices of rapeseed were developed to automatically generate samples in cloud-free 
pixels during the predicted !owering period throughout China. Second, all available features 
composited based on the rapeseed phenological calendar were used for classi#cation to eliminate 
the phenology di$erences in di$erent regions. Third, a speci#c sample augmentation that removes 
the observation in the !owering period was employed to improve the generalization to the pixels 
without cloud-free observation in the !owering period. Finally, to avoid the need for diverse 
samples of nonrapeseed classes, a typical one-class classi#er, positive unlabeled learning imple-
mented by random forest (PUL-RF) trained by the generated samples, was applied to map rape-
seed. With the proposed method, China rapeseed was mapped at 20 m resolution during 2017– 
2021 based on the Google Earth Engine (GEE). Validation on six typical rapeseed planting areas 
demonstrates that RSG-OC achieves an average accuracy of 94.90%. In comparison, the average 
accuracy of the other methods ranged from 83.33% to 88.25%, all of which were poorer than the 
proposed method. Additional experiments show that the performance of RSG-OC was not sensitive 
to cloud contamination, inaccurate predicted !owering time and the threshold of sample selection 
rule. These results indicate that the rapeseed maps produced in China are overall reliable and that 
the proposed method is an e$ective and robust method for annual rapeseed mapping across 
China.
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1. Introduction

Rapeseed (Brassica napus, Brassica campestris L) is one 
of the most widely planted oil crops, serving as an 
important source of edible oil, animal feed, and green 
biofuel (Raboanatahiry et al. 2021; Firrisa, van Duren, 
and Voinov 2013; van Duren et al. 2015; Zhang and He  
2013). Global rapeseed production has undergone 

sustained growth over the past 20 years, becoming 
the second-most produced oilseed behind soybeans 
(FAO 2021, 2022; Carré and Pouzet 2014). And China is 
one of the largest producers and consumers of rape-
seed in the world. (FAO 2022; USDA 2022; Hu et al.  
2017; Tian et al. 2018). With the development of 
China’s livestock industry and renewable energy 
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sector, the demand for rapeseed has increased in 
recent years (Tian et al. 2021; Yin and Wang 2012). 
However, rapeseed production in China is constrained 
by limited cultivated land resources (Bonjean, 
Dequidt, and Sang 2016; Fu et al. 2016) Therefore, 
monitoring the extent of rapeseed in China is impor-
tant for macro policy regulation of land use and 
national food security (Tao et al. 2019; Zang et al.  
2020).

Remote sensing is an e$ective tool for large-extent 
crop mapping (Dong et al. 2016; Weiss, Jacob, and 
Duveiller 2020; Gumma et al. 2018; Huang et al. 2022; 
Mansaray et al. 2019; Zhou et al. 2019). Several meth-
ods have been proposed to identify rapeseed using 
remote sensing, which can be grouped into empirical 
index-based and machine learning-based methods 
(Ashourloo et al. 2019; Han et al. 2021; Tao et al.  
2019; Zang et al. 2020; Sulik and Long 2020; Zhang, 
Liu, and Zhang 2022). Empirical index-based methods 
commonly utilize the spectral features of !owering, 
i.e. the distinctive bright yellow color of rapeseed 
!owers (Fang et al. 2016; Sulik and Long 2015). Thus, 
several yellowness indices, which enhance the spec-
tral feature of increasing re!ectance of red and green 
bands for the rapeseed !ower, were developed to 
identify rapeseed (Ashourloo et al. 2019; Sulik and 
Long 2016, 2020; Zang et al. 2020). For example, 
Ashourloo utilized a Canola Index time-series, com-
puted as (Green+Red)×Nir, to classify rapeseed in 4 
Iran and America test areas (Ashourloo et al. 2019). 
Han et al. developed an empirical index-based 
method to map rapeseed in 33 countries by combin-
ing the high normalized di$erence yellow index 
(NDYI) values on Sentinel-2 images during the !ower-
ing period and the high VH values on Sentinel-1 
images during the podding period (Han et al. 2021). 
Sulik & Long combined NDYI and visible atmospheri-
cally resistant index (VARI) to identify !owering transi-
tion date of rapeseed (Sulik and Long 2020). Zang 
et al. developed an enhanced area yellow index 
(EAYI) by combining the features of the di$erent yel-
low index (DYI) and NDVI during !owering period and 
mapped rapeseed !ower coverage in #ve typical 
rapeseed planting areas in China (Zang et al. 2020). 
However, these methods heavily rely on cloud-free 
images acquired during the !owering period. 
Unfortunately, cloud-free observations during the 
!owering period in China are often lacking because 
rapeseed often !owers in the rainy season (Zang et al.  

2020). This issue would lead to serious omission errors 
for empirical index-based methods. Furthermore, the 
!owering period is needed to obtain !owering 
images, which is di"cult to be predicted accurately 
because rapeseed phenology varies spatially and 
yearly. Machine learning-based methods can address 
this issue because both !owering and non!owering 
features can be learned from the training samples 
(Meng et al. 2020; Tao et al. 2019). For example, Tao 
et al. utilized an arti#cial neuron network to classify 
rapeseed on the Jianghan Plain in China (Tao et al.  
2019). Meng et al. used random forest to classify 
winter wheat and rapeseed, which showed that post-
!owering features are also important for classi#cation 
(Meng et al. 2020). However, collecting su"cient 
training samples required in machine learning-based 
methods is laborious and expensive (Ashourloo et al.  
2019; Zhong, Gong, and Biging 2014). To overcome 
the above shortcomings, a hybrid method combining 
the advantages of empirical index-based and 
machine learning-based methods named seamless 
automated rapeseed mapping (SARM) was proposed 
very recently (Zhang, Liu, and Zhang 2022). First, 
a temporal di$erence in the winter rapeseed index 
(WRI) during the !owering season and before- 
!owering season, which empirically captures the 
unique phenological feature of rapeseed, was 
employed to automatically select rapeseed samples 
from cloud-free pixels. Then, based on these samples, 
multiple random forest classi#ers were trained to 
classify each temporal image of the time series, and 
the classi#ed results were integrated by voting on the 
classi#cation probabilities of all single temporal 
images. This method works e$ectively in mapping 
rapeseed in the Yangtze River Basin. However, it still 
cannot meet the needs of large-scale and long-term 
rapeseed mapping in China for the following reasons. 
First, rapeseed is widely planted with a large pheno-
logical and spectral variation in China (Hu et al. 2017; 
Zang et al. 2020), and the non-rapeseed classes are 
more diverse than in the Yangtze River Basin. The WRI 
di$erence was designed for distinguishing winter 
rapeseed and winter wheat, which is inapplicable for 
other regions with more complicated rapeseed and 
non-rapeseed land cover types. Second, the SARM 
classi#ed each temporal image independently to 
avoid the classi#er learning the WRI di$erence itself 
as determining features; however, it would neglect 
the relationship among multitemporal features.
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To address the above issue, a method integrating 
rule-based automatic sample generation and one- 
class classi#cation (RSG-OC) was proposed to map 
rapeseed in China. A set of rules was developed 
based on empirical indices of !owering features to 
automatically select rapeseed samples from cloud- 
free pixels during the predicted !owering period. 
The samples were then augmented to improve the 
generalization to the pixels without cloud-free !ower-
ing features. Finally, a typical one-class classi#er, posi-
tive unlabeled learning (PUL) implemented by 
random forest (PUL-RF), which only requires rapeseed 
samples and unlabeled samples randomly generated 
from all pixels, was applied to avoid the need for 
samples of diverse non-rapeseed classes (Chen et al.  
2016; Lu and Wang 2021).

With the proposed method, rapeseed was mapped 
in China at 20 m resolution for 2017–2021 based on 
the Google Earth Engine (GEE) (Gorelick et al. 2017). 
Quantitative accuracy evaluation was conducted in 6 
typical rapeseed planting areas, and 3 methods of 
rapeseed mapping were compared with the proposed 
method.

The rest of the paper is organized as follows. The 
materials and methodology are described in 
Sections 2 and 3, respectively. The results and discus-
sion are presented in Section 4 and Section 5. 
Section 6 concludes the study.

2. Data and study area

2.1. Study area

The study aims to map rapeseed across China (73.5° 
E-135°E, 4°N-53.5°N) (Figure 1(a)). The main planting 
area of rapeseed is distributed widely in China, span-
ning from most southern in Yunnan (24.5°N, 101.5°E) 
to most northern in Hulun Buir (119.77°E, 49.21°N) 
and from most eastern in Jiangsu (119.8°N, 32.9°E) to 
most western in Yili (84.99°E, 44.45°N) (Wang, Guan, 
and Zhang 2007; Zang et al. 2020), with various cli-
mate types, including subtropical monsoon, tempe-
rate monsoon, and temperate continental climates. 
As a result, rapeseed shows a large di$erence in phe-
nology and cultivar (Qian et al. 2006). Based on the 
#eld phenological observation records (Zhang, Liu, 
and Zhang 2022; Zhang et al. 2022; Li et al. 2021), 
the rapeseed phenological calendar in four typical 
rapeseed planting sites, Qujing (site 1), Jingzhou 

(site 2), Haibei (site 3), and Hulun Buir (site 4), is 
presented in Figure 1(b). The phenological stages of 
rapeseed include seeding, emergence, budding, !ow-
ering, podding, mature, and harvest. All of these phe-
nological stages are delayed from warm areas to cold 
areas. For example, the !owering dates ranged from 
February in the southernmost region (site 1) to 
August in the northmost region (site 4). Moreover, 
the length of phenological stages could di$er 
among di$erent cultivars. Especially, the winter rape-
seed sowed from October to November in the south-
ern region has a much longer emergence stage than 
spring rapeseed sowed from April to July in the north-
ern region.

2.2. Data

2.2.1. Satellite data
Based on the growth calendar of rapeseed, Sentinel-1 
and Sentinel-2 imagery during October 2016-October 
2021 accessed on the GEE platform were used in this 
study.

Sentinel-1 is a C-band Synthetic Aperture Radar 
(SAR) satellite with dual polarization (VV and VH). To 
match Sentinel-2, we used the ground-ranging detec-
tion (GRD) product in IW mode, of which the spatial 
resolution is 10 m and the temporal resolution is 12  
days (Torres et al. 2012). Previous studies have shown 
that the Sentinel-1 data has speci#c responses to the 
canopy structure of rapeseed, which helps to distin-
guish rapeseed from other crops (D’Andrimont et al.  
2020; Veloso et al. 2017; Han, Zhang, and Cao 2021). 
Speci#cally, the VV scattered signal drops in the !ow-
ering season, and the VH scattered signal increases in 
the podding stage. Therefore, Sentinel-1 data plays an 
important role in identifying rapeseed in the case of 
cloudy weather.

Sentinel-2 is a multispectral optical imaging satel-
lite with 10–60 m spatial resolution, 5–10 days tem-
poral resolution, and 12 bands (Drusch et al. 2012). 
Both the top-of-atmosphere re!ectance products at 
the L1C level (hereafter referred to as L1C data) and 
ground re!ectance products at the L2A level (here-
after referred to as L2A data) were used in this study. 
The L2A data are used for sample generation with 
empirically designed rules because the thresholds in 
the rules could be more stable if the atmospheric 
e$ects are corrected (Zang et al. 2020). However, the 
availability of L2A data on GEE for most areas of China 

GISCIENCE & REMOTE SENSING 3



(December 2018-present) was shorter than the avail-
ability of L1C data (August 2015-present). Therefore, 
L1C data-derived features were used for the classi#ca-
tion of rapeseed considering that machine-learning 
techniques are not that sensitive to atmospheric 
e$ects (Jin et al. 2019; Pott et al. 2021). Moreover, 
the Sentinel-2 Cloud Probability product was used to 
remove clouds (ESA 2020).

2.2.2. Land cover data
We focused our study on cultivated land considering 
that most rapeseed is planted in cultivated land 
except for a negligibly small amount of rapeseed 
planted in urban green spaces. Such exclusion of non- 
cultivated land helps to save computational resources 
and avoid the interference of the non-cultivated land 

in rapeseed mapping (Konduri et al. 2020; Zhang et al.  
2017). To avoid the omission error of available culti-
vated land cover datasets, we integrated three widely 
used global land cover products, GlobeLand30–2020 
(Chen et al. 2015), ESA World Cover V100 (Zanaga 
et al. 2021), and ESRI 2020 Global Land Use Land 
Cover (Karra et al. 2021), to take the union of their 
cropland layers to derive the regions to map.

2.2.3. Reference data
Ground truth data for evaluating the mapping 
results were obtained in six typical rapeseed plant-
ing regions by #eld survey or interpretation from 
very high-resolution images. As shown in 
Figures 2, 3 #eld surveys were conducted in 
Qujing city (Figure 2(d)), Sichuan Province 

Figure 1. (a) Study area and distribution of rapeseed phenological calendar. (b) Phenological calendar of rapeseed in four typical sites. 
“E, “M,” and “L” represent the early, middle, and late periods of the month, respectively.
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(Figure 2(c)), and Qinghai Province (Figure 2(b)) 
during the !owering season (i.e. February, March, 
and July, respectively) of 2021. The GPS coordinates 
of crop parcels were recorded using mobile GPS 
devices. A total of 576 rapeseed and 494 non- 
rapeseed parcels were collected. These parcels 
were converted to binary images with 20 m resolu-
tion, and 105,179 rapeseed samples and 28,663 
non-rapeseed samples were obtained. Two high- 
resolution Google Earth images in Taizhou 
(Figure 2(e)) and Lincang (Figure 2(g)) at a 0.5 m 
resolution and an unmanned aerial vehicle (UAV) 
image in Jingzhou (Figure 2(F)) at a 0.07 m resolu-
tion were collected during the rapeseed !owering 
period in 2020. All the high-resolution images were 
manually interpreted as rapeseed and non- 
rapeseed, resampled to 20 m resolution, and ran-
domly selected as validation samples. A total of 
13,744 rapeseed samples and 14,979 non-rapeseed 
samples were selected from the images as ground 
truth data for accuracy evaluation.

Census data of rapeseed area of 32 provinces in 
2017–2020 were acquired from the China statistical 

yearbooks released by the National Bureau of Statistics 
of China (http://www.stats.gov.cn/tjsj./ndsj/) to compare 
with the mapped rapeseed area at the provincial level.

3. Methodology

The proposed method includes #ve main stages: data 
preprocessing, sample generation, feature composi-
tion, sample augmentation, and PUL-RF classi#cation 
(Figure 3).

3.1. Data preprocessing

As mentioned above, the input data for classi#cation 
consist of Sentinel-1, Sentinel-2, and cropland data. 
The preprocessing of the Sentinel-1 data includes 
thermal noise removal, radiometric calibration, and 
topographic correction, implemented by a GEE tool-
box (Thorp and Drajat 2021). The preprocessing of the 
Sentinel-2 data includes cloud #ltering, band selec-
tion, index calculation, compositing, and interpola-
tion. First, the Sentinel-2 images with cloud cover 
below 95% were selected, and the pixels with cloud 

Figure 2. The locations of ground truth data. (b) to (d) are the distributions of validated parcels obtained by field campaigns in 
Qinghai, Sichuan, and Qujing. (e) to (g) are rapeseed maps interpreted from very high-resolution images acquired during the flowering 
period in Taizhou, Jingzhou, and Lincang.
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probability above 50% were masked out using the 
ESA Sentinel-2 cloud probability product (ESA 2020). 
Second, the blue (B2), green (B3), red (B4), and near- 
infrared (B8) bands with a 10-m spatial resolution and 
the four red edge (B5 to B7, and B8A) and two short-
wave infrared (B11 and B12) bands with a 20-m reso-
lution were used. Third, the commonly used NDVI, DYI 
(Zang et al. 2020), NDYI (Sulik and Long 2016), and 
LSWI (Chandrasekar et al. 2010) were calculated for 
each pixel according to Eq. (1) to (4), 

NDVI à B8� B4
B8á B4

(1) 

DYI à B3� B2 (2) 

NDYI à B3� B2
B3á B2

(3) 

LSWI à B8� B11
B8á B11

(4) 

The Sentinel-2 time series of each band and index 
were then composited by the 10-day median synth-
esis. Finally, the null values in the time series are 
linearly interpolated using the valid values from the 
adjacent times.

3.2. Generation of rapeseed samples

Su"cient samples are the basis for machine learning- 
based methods to perform large-area mapping 
(Foody and Mathur 2004; Maxwell, Warner, and Fang  
2018). However, sample acquisition usually requires 
costly manual selection or #eld investigation (Friedl 
et al. 2002; Tian et al. 2020; Xiong et al. 2017). 
Considering that the yellow rapeseed !ower is 
a distinctive feature compared to other crops (Fang 
et al. 2016; Sulik and Long 2020), a series of rules can 
be developed to select rapeseed samples automati-
cally from cloud-free pixels, which only requires at 
least one clear observation during the !owering per-
iod (Zhang, Liu, and Zhang 2022).

The !owering period of each area was #rst deter-
mined by geolocation using a multilinear regression 
model according to (Zang et al. 2020). The model 
(Equation 5) was established between the multiyear 
average !owering date (T) recorded by agrometeor-
ological stations and longitude (Lon), latitude (Lat), 
and altitude (Alt) (R2 close to 0.9). 

T à 7:07⇥ Latá 1:508⇥ Loná 0:03⇥ Alt� 318:11
(5) 

Previous studies have examined several temporal 
features of rapeseed (Ashourloo et al. 2019; Han et al.  
2021; Zang et al. 2020). Rapeseed !owers can increase 

Figure 3. Flowchart of the proposed method. (a) Data preprocessing, (b) sample generation, (c) feature composition, (d) sample 
augmentation, and (e) PUL-RF classification.
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the DYI and decrease the NDVI (Shen et al. 2014, 2010; 
Zang et al. 2020). Thus, we analyzed the DYI and NDVI 
of rapeseed on the Sentinel-2 time series. In addition, 
we also analyzed the LSWI, which can re!ect the 
water content of rapeseed due to the high water 
content of rapeseed (Chandrasekar et al. 2010; 
Mandal et al. 2020). Comparing the time series of 
DYI, NDVI, and LSWI of rapeseed and other crops in 
two typical rapeseed growing areas, Jingzhou and 
Qinghai, we found several temporal features that 
can be used to develop the rules for sample selection 
(Figure 4). During the predicted !owering period, the 
DYI of rapeseed peaked, while the NDVI decreased to 
a local minimum because of the yellow !owers (Zang 
et al. 2020). In contrast, the DYI values of other crops 
remained low, and there was no such NDVI valley for 
them during the period. The LSWI of rapeseed is high 
during the !owering period, which will be used to 
remove interference pixels.

The DYI peak in the Moderate Resolution Imaging 
Spectroradiometer (MODIS) time series has been 
demonstrated to be a consistent feature of rapeseed 
in di$erent regions of China by subtracting the base 
DYI at non!owering periods from the peak DYI (Zang 
et al. 2020). We adapted the idea for the Sentinel-2 
time series and derived the di$erential-DYI (DDYI) 
with a modi#ed base DYI (Eq. (7)) due to the poorer 
data availability of Sentinel-2 compared with MODIS. 

DDYI, calculated by Eqs. 6 to 8, is a global adaptable 
!owering index across China and is used as a main 
feature for selecting rapeseed samples. 

DDYI à DYImax
T�30;Tá30â ä � DYImean

base (6) 

DYImean
base à

DYImean
Tpeak�60;Tpeak�15â äáDYImean

Tpeaká15;Tpeaká60â ä
2

(7) 

Tpeak à argmaxDYI T�30;Tá30â ä (8) 

where Tpeak is the time when DYI achieves the max-
imum during the period T � 30; T á 30â ä, and DYImean

base 
is the basic DYI during the non!owering period 

Tpeak � 60; Tpeak � 15
⇥ ⇤

and Tpeak á 15; Tpeak á 60
⇥ ⇤

. 
Note that a time window of [T-30, T + 30], which was 
longer than the !owering period (20–40 days in usual), 
was applied here to ensure that the !owering image 
can be found within the period. A pixel with a higher 
DDYI indicates that the pixel is more likely to be !ower-
ing rapeseed. To select rapeseed samples as accurately 
as possible, an empirically strict threshold is applied to 
DDYI: 

DDYI> 0:04 (9) 

Some non-rapeseed crops could also have a high 
DDYI if their greening-up stage overlaps with the 
!owering period of rapeseed. In this case, the re!ec-
tance in the green band increases dramatically, 

Figure 4. Temporal features of rapeseed and other crops. One parcel of each crop was selected for analysis. (a) Winter rapeseed, (b) 
winter wheat, and (c) water field in Jingzhou; (d) spring rapeseed, (e) barley, and (f) corn in Qinghai. The red dashed line indicates that 
the time when the DYI reaches a maximum is equal to the time when the NDVI reaches a minimum; the black dashed line is the 
threshold of the NDVI and LSWI.
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leading to a high DYI value. Fortunately, the NDVI 
valley induced by yellow !owers could be used for 
distinguishing rapeseed from such crop types (Zang 
et al. 2020). Therefore, these nonrapeseed crop pixels 
can be excluded by equation (10): 

argmaxDYI T�30;Tá30â ä à argminNDVI T�30;Tá30â ä (10) 

Which means that the observed DYI peak should 
correspond to an NDVI valley for the rapeseed pixels 
(Zang et al. 2020). Equation 9 and are the main rules 
for selecting rapeseed samples across all of China.

However, some occasional non-rapeseed pixels 
with undesired high DDYI values remain, including 
rainbowlike clouds (Frantz et al. 2018; Han et al.  
2021) and blue impervious surfaces (Figure S1). 
Therefore, two additional criteria Equation (11) and 
Equation (12) were used to remove such pixels from 
the samples selected by the main rules of Eq. (9) 
and (10): 

LSWITpeak > 0:4 (11) 

NDVITpeak > 0:4 (12) 

As such types of nonrapeseed pixels have much 
lower LSWI or NDVI values than rapeseed pixels, the 
thresholds are relatively easy to determine. A more 
detailed description of these two additional criteria is 
included in the supplementary materials.

Finally, with the proposed rules (Equation 
9-Equation 12), su"cient rapeseed samples from 2019 
to 2021 were generated across China based on the 
Sentinel-2 L2A data (Figure 6). Meanwhile, the same 
number of unlabeled samples were also randomly gen-
erated from all cultivated land pixels, which is also an 
essential input of the one-class PUL classi#er that will be 
introduced in Section 3.5. Then, the spatial locations of 
these generated samples across di$erent years were 
merged to generate a training sample set based on 
Sentinel-2 L1C data.

3.3. Feature composition based on phenology 
calendar

Variation in rapeseed phenology in di$erent regions 
of China and availability of cloud-free satellite data 
challenges classi#cation. To alleviate their negative 
e$ects, the phenology of rapeseed was #rst divided 
into three periods according to the !owering date (T): 
pre!owering ([T-45, T-15)), !owering ([T-15, T + 15)) 
and post!owering ([T + 15, T + 45]). The three periods 
could roughly correspond to the budding, !owering, 
and podding stages, which all last approximately 30  
days in di$erent geographic locations (Figure 1). 
Then, the median composition was employed for 
each time series at each stage (Phan, Kuch, and 
Lehnert 2020), and a total of 48 composited feature 

Figure 5. Schematic diagram of (a) feature composition and (b) sample augmentation.
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images were generated (three stacks of 16 features 
from Sentinel-1 and −2) (Figure 5(a)) for the conse-
quent classi#er training and classi#cation.

3.4. Sample augmentation

Note that the above generation of samples and the 
corresponding composited features were mainly based 
on the !owering signal. These samples thus would fail 
to represent the rapeseed pixels without adequately 
clear observation of !owering due to cloud blocking, 
because the interpolation step in Section 3.1 could 
produce distorted values in case of continuous cloudy 
weather. To improve the representativeness of the 
rapeseed samples, the samples were augmented by 
purposefully replacing the original cloud-free observa-
tions in the !owering period ([T-15, T + 15)) with the 
linearly interpolated values from the valid observations 
in the pre and post!owering periods (i.e. [T-45, T-15) 
and, [T + 15, T + 45]) (Figure 5), thus simulating the 
poor observation condition. Note that the simulation 
was employed for all the features except VV and VH 
because Sentinel-1 is also e$ective under cloudy 
weather (D’Andrimont et al. 2020; Mercier et al.  
2020). Sample augmentation was applied to both the 
rapeseed samples and the unlabeled samples. The 
expanded sample set merged the original and 

augmented sample sets in equal proportions. With 
the expanded sample set including adequate clear 
and unclear samples, machine-learning method is 
expected to learn and adaptively use both !owering 
and non-!owering features for rapeseed classi#cation.

3.5. Application of PUL-RF

Considering the diversity of the nonrapeseed classes, 
the one-class random forest classi#er implemented by 
the PUL strategy (PUL-RF), which only needs the posi-
tive samples of the target land cover type and the 
unlabeled samples randomly generated from all pix-
els in cultivated land layers (Chen et al. 2016; Elkan 
and Noto 2008; Li, Guo, and Elkan 2010), was 
employed to map rapeseed. Here, the unlabeled sam-
ples include both the positive and negative samples, 
thus, were generated automatically without laborious 
labeling e$orts.

PUL is designed to transform the traditional binary 
classi#er into a one-class classi#er based on the 
Bayesian rule and has been proven e$ective for map-
ping other land cover types (Lei et al. 2021; Lu and 
Wang 2021). It includes two steps. First, a binary ran-
dom forest classi#er is trained to calculate the prob-
ability that a pixel is labeled. Then, the probability that 
a pixel belongs to rapeseed is adjusted by a factor (c) 

Figure 6. (A) Spatial distribution of generated rapeseed samples; (b) Number of generated rapeseed samples for 2019–2021.
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that represents the labeling probability of positive 
pixels 

f y à 1jxÖ Ü à p sà1jxÖ Ü
c (13) 

where f y à 1jxÖ Ü represents the probability that 
a pixel is rapeseed, x is the feature of the pixel and 
y∈{−1,1} represents the land cover types (non- 
rapeseed and rapeseed). p s à 1jxÖ Ü is the probability 
that a pixel is labeled, and s∈{0,1} represents whether 
it is labeled or not. The adjusting factor (c) was esti-
mated through an independent validation set (V). 

c à 1
n
P
x2V

p s à 1jxÖ Ü (14) 

Here, the independent validation set (V) with 
n pixels was divided from the expanded rapeseed 
samples. This validation set (V) is excluded in the 
training phase but used for estimating the adjusting 
factor (c) and determining the hyperparameter of the 
random forest. Finally, a single PUL-RF classi#er 
trained with the expanded sample set was used to 
map rapeseed during 2017–2021.

3.6. Accuracy assessment

To evaluate the mapping accuracy, the overall accu-
racy (OA), F1-score, producer accuracy (PA), and user 
accuracy (UA) were calculated using the ground truth 
data in the six experimental regions (Section 2.2.3). 
The mapping accuracy and spatial details of RSG-OC 
were also compared with those of the NDYI-based 
method (Han et al. 2021), the CI-based method 
(Ashourloo et al. 2019), and SARM (Zhang, Liu, and 
Zhang 2022).

4. Results

4.1. Spatial distribution of rule-based generated 
samples

Based on the sample generation rules and sample 
augmentation, a total of 61,464 samples were gener-
ated, including 32,090 rapeseed samples and 29,374 
unlabeled samples. The number of rapeseed samples 
for 2019, 2020, and 2021 was 7944, 12164, and 12,000, 
respectively. Generally, the spatial distribution of the 
generated rapeseed samples is consistent with the 
main rapeseed production regions, and it varies 
slightly from year to year due to the cloud cover 
variation during the !owering period (Figure 6).

4.2. Map of rapeseed in China

The generated expanded sample set is divided into 
a training set and a validation set (V) by a ratio of 7:3 
to train the PUL-RF. The tree number of the RF was set 
as 225 based on the highest OA on the validation set. 
The parameter c in PUL was derived from Eq.14, 
equaling to 0.87 in this study. The other parameters 
of the PUL-RF, such as the number of variables per 
split, were set to the default values in the GEE function 
of smileRandomForest. Using the trained PUL-RF, 20 m 
rapeseed maps of China for 2017–2021 were pro-
duced. The data link is provided in the data availabil-
ity section. Consistent with prior knowledge (Wang, 
Guan, and Zhang 2007; Bonjean, Dequidt, and Sang  
2016), rapeseed was widely cultivated in China in 
several regions, including the middle-lower Yangtze 
Plain, Sichuan Basin, Yunnan-Guizhou Plateau, north-
eastern Qinghai Tibet Plateau, and northeastern and 
northwestern North arid and semiarid regions 
(Figure 7(a)). The mapped area of rapeseed in China 
during 2017–2021 is 2.46, 2.34, 2.35, 2.81, and 
2.75 million hectares respectively (Figure 7(b)). 
Although the mapped area seems to have a similar 
temporal !uctuation with the census data, there is 
a large underestimation of the mapped area com-
pared to the census data, indicating a nonnegligible 
di$erence between the two data sources.

To further illustrate the reasonability of rapeseed 
change in the produced annual maps, Figure 8 com-
pared the temporal change in the rapeseed map over 
2017–2021 in detail in four rapeseed planting sites. 
The Sentinel-2 images at the !owering period are also 
presented for visual comparison if they are cloud-free. 
Otherwise, the most cloud-free and temporally close 
images were used, and fortunately, rapeseed can still 
be identi#ed on most of these images because the 
green color of rapeseed is subtly di$erent from that of 
other vegetation. Visually, the maps match the rape-
seed parcels every year and present clear details.

4.3. Visual comparison with other methods

Figure 9 compares the Sentinel-2 images during the 
!owering period, the ground truth (ground truth 
rapeseed maps interpreted from very high- 
resolution images in Jingzhou, Taizhou, and Lincang 
and crop parcels acquired from #eld surveys in 
Sichuan, Qujing, and Qinghai from Section 2.2.1), 
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and the mapping results of the NDYI-based method, 
the CI-based method, SARM, and the proposed RSG- 
OC at six validation areas. It should be noted that 
owing to constant cloud cover, the compared 
Sentinel-2 images in Sichuan and Qujing are not 
appropriate (and the one is at the non!owering per-
iod and the other is partly covered by clouds) but are 
already the best we could #nd. In general, the map-
ping results of RSG-OC were in good agreement with 
the spatial distribution at all six validation areas, 
whereas the other methods produced large classi#ca-
tion errors in some areas. Speci#cally, the NDYI-based 
and CI-based methods have a large omission error in 
the Qujing and Sichuan because they rely heavily on 
cloud-free observations during the !owering period. 
The results of SARM are poorly consistent with the 
actual rapeseed distribution at the Qinghai and 
Sichuan areas because their sample selection rule is 
inapplicable at these two areas.

4.4. Quantitative evaluation

The quantitative assessment is summarized here using 
the ground truth dataset (Table 1) and the agricultural 

census area data (Figure 10). Among all of the compared 
methods, the proposed RSG-OC has the best perfor-
mance with an average OA of 94.90% and an average 
F1-score of 93.50%. RSG-OC outperformed the other 
three methods in Taizhou, Sichuan, and Qinghai and 
achieved the second-highest OA in Jingzhou, Lincang, 
and Qujing. Although RSG-OC achieved stable perfor-
mance in di$erent areas, the PA in Sichuan was relatively 
low, indicating a large omission in this region. It is 
probably induced by very high cloud coverage (>54%) 
in Sichuan areas. SARM performed more poorly in 
Sichuan and Qinghai, with OAs of 81.58% and 56.59% 
and F1-scores of 61.75% and 67.70%, respectively, 
because the sample generation rules of SARM do not 
apply to some land cover in these two regions. The CI- 
based method has large omission errors in Sichuan and 
Qujing, with PAs of 42.69% and 43.69%, respectively, in 
these two regions. Similarly, the NDYI-based method has 
a poorer performance, with PAs of 0.35% in Sichuan and 
22.13% in Qujing.

The RSG-OC mapped rapeseed area in each pro-
vince was further compared with the o"cial census 
area for 2017–2020. As shown in Figure 10, the 
mapped area is signi#cantly correlated with the 

Figure 7. (a) Chinese rapeseed coverage map at 500 m resolution in 2020 (the original 20 m resolution was resampled to 
500 m resolution for a better illustration in the thumbnail figure); (b) China rapeseed mapping area and census area, 2017–2021 
(Note: census area in 2021 is unavailable).
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census area. However, the mapped areas are much 
lower than the census areas for most provinces; and 
the coe"cients of determination (R2) are generally 

low, with some outliers like Jiangsu Province. The 
low consistency between the mapped area and cen-
sus data might be induced by the uncertainties in 

Figure 8. Detailed comparison of multiyear mapping results in 4 typical rapeseed planting areas. (a) Jingzhou, (b) Qujing, (c) Hulun 
Buir, (d) Qinghai. The first line in each region is the Sentinel-2 true color images, and the second line of each area is the mapped 
rapeseed. Images with ‘*’ after the annotated date were acquired in the nonflowering period.
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both the remotely sensed maps and the census data 
(Liu et al. 2020), which should be further explored in 
the future.

5. Discussion

5.1. Dependence on clear observation in the 
!owering period

As aforementioned, both the index-based (CI and 
NDYI) and the machine learning-based methods 
(SARM and RSG-OC) require clear !owering observa-
tions but to di$erent extents. The key di$erence here 

is the method’s sensitivity to the availability of clear 
observations in !owering season and should be 
investigated. Considering that RSG-OC employed 
sample augmentation and Sentinel-1 SAR data to 
address the issue of cloud contamination, two 
incomplete RSG-OC methods without sample aug-
mentation and Sentinel-1 data were also compared 
to illustrate the importance of these two steps. To 
simulate the time-series data with weakening !ower-
ing signals induced by cloud contamination, we 
sequentially removed the observations during the 
!owering period with the top 33%, 66%, and 100% 
(namely, all removed) DYI values and checked how 

Figure 9. Comparison of the mapping details of the four methods in the validation areas (a) Jingzhou, (b) Taizhou, (c) Lincang, (d) 
Sichuan, (e) Qujing, and (f) Qinghai. The first column shows the RGB images of Sentinel-2 during the flowering periods in the 
validation areas except for Sichuan area, where the flowering images were totally cloud contaminated and the image acquired after 
flowering was shown instead. The second column shows the ground truth maps, which were interpreted from very high-resolution 
images for (a-c) and obtained from field-survey for (d-f). Columns 3 to 6 show the mapping details of CI, NDYI, SARM, and proposed 
RSG-OC respectively.
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the performances of the compared methods wor-
sened. As shown in Figure 11, both RSG-OC and 
SARM were stable against the decreasing !owering 
observations, whereas the average OA and F1-score 
of the CI-based and NDYI-based methods dropped 
largely as the clear !owering observations 
decreased, and they completely failed when there 
were no clear !owering observations. The perfor-
mance of two incomplete RSG-OC methods without 
samples augmentation and Sentinel-1 data also 
decreased with decreasing clear observation in the 
!owering season. Especially, when none of the clear 
observations was available during the !owering sea-
son, two incomplete RSG-OC methods performed 
much poorer than standard RSG-OC. These results 
con#rmed the contribution of both the Sentinel-1 
SAR data and sample augmentation on resisting 
the issue of cloud contamination.

The role of sample augmentation could be further 
explained by the di$erences between the feature impor-
tance of RFs in standard RSG-OC and the incomplete 
RSG-OC without sample augmentation. As Figure 12 
shows, the optical !owering features, e.g. LSWI!ower, 
NDYI!ower, and B11!ower, exhibited great importance for 
RSG-OC without sample augmentation. These optical 
features unfortunately would be largely weakened by 
cloud contamination, and thus is highly dependent on 
adequate clear observation. For standard RSG-OC, the 
importance of optical !owering features decreased, 
whereas SAR features and post!owering optical features 
became more important. Speci#cally, the VHpost, 
VH!ower, and VVpre ranked 1st,3rd, and 5th respectively, 
and B11post, B5post, and LSWIpost ranked 2nd, 4th and 6th 

respectively. Therefore, the RSG-OC method is not that 
dependent on cloud-free observations during the !ow-
ering period.

Table 1. Comparison of the accuracy of the four methods.
Region Metrics NDYI CI SARM RSG-OC
Jingzhou OA 91.52% 95.39% 88.76% 92.64%

UA 96.58% 91.97% 87.19% 87.58%
PA 86.05% 99.46% 90.85% 99.53%
F1-score 91.01% 95.57% 88.98% 93.17%

Taizhou OA 91.17% 93.72% 93.89% 94.43%
UA 98.51% 94.30% 92.62% 93.37%
PA 80.69% 90.88% 93.21% 93.71%
F1-score 88.71% 92.56% 92.91% 93.54%

Lincang OA 90.87% 86.44% 94.41% 93.47%
UA 98.09% 97.77% 96.33% 97.86%
PA 83.36% 74.58% 92.34% 88.89%
F1-score 90.13% 84.62% 94.29% 93.16%

Sichuan OA 83.24% 86.47% 81.58% 95.49%
UA 57.14% 64.64% 47.38% 90.66%
PA 0.35% 42.69% 88.63% 81.53%
F1-score 0.70% 51.42% 61.75% 85.85%

Qujing OA 64.79% 74.53% 98.91% 98.78%
UA 100.00% 100.00% 100.00% 100.00%
PA 22.13% 43.69% 97.59% 97.30%
F1-score 36.24% 60.81% 98.78% 98.63%

Qinghai OA 78.52% 92.93% 56.59% 94.58%
UA 97.66% 99.17% 87.44% 99.69%
PA 75.74% 92.19% 55.23% 93.72%
F1-score 85.31% 95.55% 67.70% 96.61%

Average OA* 83.35% 88.25% 85.69% 94.90%
Average F1-Score* 65.35% 80.09% 84.07% 93.50%

*Average OA and average F1-score denote the averaged values of OA and F1-score of the six areas.

Figure 10. Comparison mapped rapeseed area with census area at the provincial level for (a)2017, (b)2018, (c)2019, (d)2020.
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5.2. Comparison with SARM

RSG-OC adapted the strategy of SARM that combines 
empirical index-based sample generation and 
machine-learning methods to map rapeseed in 
China. Compared with SARM, there are three main 
improvements of RSG-OC. First, an empirical rule set 
with a stricter “yellowness” feature compared with the 
WRI index was employed to automatically select rape-
seed samples from cloud-free pixels during the !ow-
ering period. The stricter “yellowness” rule helps to 
better select correct rapeseed samples across the 
whole of China; however, the representativeness of 
the generated samples could be biased. Therefore, 

the second improvement compared to SARM is 
a specially designed sample augmentation that 
removes the !owering features of the generated 
rapeseed samples. Such sample augmentation helps 
to avoid the classi#er learning the strict yellowness 
rule as a classi#cation feature and improves the gen-
eralization to the pixels without cloud-free !owering 
features. Finally, a typical one-class classi#er, positive 
unlabeled learning (PUL) implemented by random 
forest (PUL-RF), which only requires rapeseed sam-
ples, was applied to avoid the need for samples of 
diverse nonrapeseed classes (Chen et al. 2016; Lu and 
Wang 2021).

Figure 12. Ranking of the feature importance in (a) RSG-OC without sample augmentation and (b) standard RSG-OC. The subscripts 
after the features indicate the period of feature composition. “pre” represents the “preflowering” period, “flower” represents the 
“flowering” period, and “post” represents the “postflowering” period.

Figure 11. The sensitivity of the different methods to clear observation in the flowering period.
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Especially, the rules employed in SARM method 
was designed for rapeseed in Yangtze River Basin 
(Zhang, Liu, and Zhang 2022), which was not applic-
able for other areas and lead to poor performance in 
Qinghai area (Table 1). The SARM selects rapeseed 
samples with following rules, 

NDVImax > 0:5 (15) 

WRIbf �WRIf > 0 (16) 

WRI à B8� B3
B8á B3

⇥ B2
B3á B4

(17) 

where NDVImax is the maximum NDVI during the 
growing season, WRIbf is the WRI before !owering and 
WRIf is the WRI at !owering. In the Yangtze River 
Basin, the above rules are adequate to distinguish 
the winter rapeseed from other winter crops. 
However, such rules failed to accurately select rape-
seed samples when they were applied to a larger 
extent. Some other usual vegetation types outside 
the Yangtze River Basin were likely selected by the 
SARM rules. In Qinghai, for example, the barley and 
natural grasslands also satisfy the rules of Equation 16 
(Figure 13(a,b)). In Sichuan, the evergreen forest also 
satis#es the rules of Equation 16 (Figure 13(c)). In 
summary, the sample selection rule of SARM is too 
relaxed to be extended to a larger extent. In contrast, 
the strict sample selection rules of RSG-OC are more 
universal to generating accurate rapeseed samples, 
and these types of vegetation will not be selected 
by the rules of RSG-OC due to the low DDYI. 
However, a strict rule of !owering features could 
generate a biased sample set that cannot represent 
the rapeseed pixels without clear !owering features. 
Therefore, another improvement of RSG-OC com-
pared to SARM is the employment of a speci#cally 

designed sample augmentation that removes the 
observations during the !owering period. Such aug-
mentation avoids the classi#er from learning the 
biased selecting rule itself, thus enhancing the gen-
eralization performance of the trained classi#er.

5.3. Sensitivity of sample selection rule

In this study, the sample generation rules can gener-
ate accurate rapeseed samples with easy-determining 
thresholds. To illustrate the robustness to the varying 
threshold, the number of pixels satisfying the sample 
selection rules, the total area of mapped rapeseed 
(denoted as Arapeseed), and the classi#cation accuracy 
at di$erent thresholds of the main rules (Eq. (9)). 
Considering that the OA and F1-score do not re!ect 
the error in the mapped area due to the inconsistency 
between the proportion of rapeseed in the ground 
truth data and the proportion of the actual area, the 
proportion correct (PC) was also used as an indicator 
of accuracy (Pontius and Millones 2011), which was 
calculated using Equation 18 to Equation 19: 

PC à
PJ

ià1
pii (18) 

pij à nijPJ

jà1
nij
⇥ NiPJ

ià1
Ni

(19) 

where J is the number of classes, which is two here; 
nij is the number of samples attributed to class i that 
are classi#ed as class j; and Ni is the total number of 
pixels classi#ed as category i.

As shown in Figure 14, as the DDYI threshold 
becomes strict, the number of pixels satisfying the 
sample selection rules always decreases steadily. 
However, Arapeseed decreases at di$erent rates at di$er-
ent thresholds. When the threshold is relaxed, the 

Figure 13. The WRI and DYI time series of (a) barley, (b) grass in Qinghai and (c) evergreen forest in Sichuan. The time series was 
selected from one typical parcel for each crop type.
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Arapeseed drops largely. As the threshold tends to be 
strict, the Arapeseed gradually stabilizes. Similarly, as the 
threshold becomes stricter, the OA, F1-score, and PC 
generally become stable, although the PC is much 
lower when the threshold is relaxed. The cause can 
be explained as follows. When the threshold is relaxed, 
the selected samples are mixed with many inaccurate 
samples. Thus, more nonrapeseed was misclassi#ed as 
rapeseed, leading to large classi#cation error. As the 
threshold becomes stricter, the !owering features of 
selecting samples could be more biased for represent-
ing ordinary rapeseed pixels. Fortunately, the sample 
augmentation that removes the !owering features 
allows the classi#er to focus more on non!owering 
features. Therefore, bias in !owering features does 
not lead to large changes in Arapeseed and accuracy. 
Therefore, it is easier to select a strict global threshold 
for large-extent rapeseed mapping.

5.4. Cross-year generalization ability of RSG-OC

In this study, the PUL-RF trained by the samples gen-
erated from 2019–2021 was also used for mapping 

rapeseed in 2017–2018 (Figure 8). Unfortunately, 
there was a lack of ground truth samples in 2017– 
2018 for evaluation. Thus, to con#rm the reliability of 
such a cross-year mapping strategy, we regenerate two 
subsample sets by excluding the generated samples in 
2020 and 2021 and retrain two PUL-RF classi#ers by 
these two regenerated sample sets (abbreviated as the 
non2020-model and non2021-model, hereafter). Then, 
the ground truth samples in 2020 and 2021 were used 
to evaluate the non2020-model and non2021-model, 
respectively. The performance was also compared with 
the standard PUL-RF classi#er trained by all samples 
(abbreviated as all-model hereafter).

As shown in Figure 15, the average OA of the 
non2020-model and non2021-model only decreased 
by 0.14% and 0.32% compared to the all-model, 
respectively. Similarly, the average F1-score of the 
two models only decreased 0.08% and 0.28% com-
pared to the all-model. Thus, classi#ers trained by the 
generated samples from other years are able to map 
rapeseed in the years without generated samples, 
suggesting that the 2017–2018 rapeseed delineated 
by the classi#er for 2019–2021 is also reliable.

Figure 14. The variation of (a) number of pixels satisfying the sample selection rules, (b) Arapeseed, and (c) accuracy with DDYI 
threshold.

Figure 15. Comparison of (a) average OA and (b) average F1-score before and after excluding the 2020 and 2021 training samples.
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5.5. In!uence of the predicting error of !owering 
date

In this study, the !owering features used for PUL-RF 
were extracted from the !owering period of [T-15, 
T + 15], where the !owering date T is predicted at 
each location by our previously proposed model (Zang 
et al. 2020). However, the predicted !owering date 
may be biased because the actual !owering date varies 
from year to year due to climate interannual variability. 
Therefore, we examined how the predicting error of 
!owering date could in!uence the classi#cation accu-
racy. Firstly, we compared the 734 !owering dates 
recorded at the agrometeorological stations from 
2003–2017 and their corresponding predicted !ower-
ing dates. The predicted RMSE of !owering date was 
13.09 days (Figure 16(a)), and the predicting error of 
!owering date obeyed a normal distribution with 
a mean of 0.23 and a standard deviation of 13.09 
(Figure 16(b)). It means that the predicting error is 
less than 13 days with a probability of 68.2% and is 
less than 26 days with a probability of 95.5%. Thus, we 
manually added −30 to 30-day o$sets (one o$set every 
5 days) to the predicted !owering dates to simulate the 
possible errors of the predicted !owering date; and 
then evaluated the classi#cation performance under 
each o$set (Figure 16(c)). It is found that average OA 
and average F1-score stabilized above 94% and 93% 
respectively if the predicting error of !owering date is 
less than 15 days. If the predicted !owering date 
deviated 25 days, the average OA and average F1- 
score could slightly drop to 89% and 87% respectively. 
Thus, the proposed RSG-OC could tolerate the predict-
ing error of !owering date to a large degree, which 
helps to relieve the in!uence of interannual !uctua-
tions in the !owering time of rapeseed. However, if 
more accurate !owering dates were predicted by some 
advanced phenological models (Chuine and Régnière  

2017) in the future, the mapping accuracy could be 
further stabilized.

5.6. Implications for future research

This study #rstly produced the annual rapeseed maps 
at 20-m resolution for the whole of China, which 
exhibited detailed spatial patterns and temporal var-
iation of rapeseed cultivation in China. This data could 
provide an important basis for agricultural subsidies, 
land use planning, and other policy formulation or 
evaluation (Zhang, Liu, and Zhang 2022; Zang et al.  
2020). For example, a jump in rapeseed areas from 
2019 to 2020 could re!ect the e$ect of the policy 
reform in agriculture. In 2015, the Chinese govern-
ment abolished the national rapeseed storage policy 
(Han 2015), resulting in a relatively low rapeseed price 
and less motivation for rapeseed planting for farmers 
in 2017–2019. Since 2019, several provinces with lead-
ing rapeseed productions started introducing subsi-
dizing policies to promote rapeseed cultivation (e.g. 
General O"ce of Zhejiang Provincial Government  
2020; Jiangsu Rural Statistics Division 2019; Anhui 
Provincial Department of Agriculture 2019), stimulat-
ing a rapid increase of rapeseed area from 2019 to 
2020. The produced rapeseed maps provide evidence 
independent from census data for evaluating the pol-
icy e$ect. With much more spatial details than census 
data, the annual rapeseed maps derived from remote 
sensing could further support #ne-grain analysis of 
the spatial pattern and the driving forces of the rape-
seed area change. Moreover, the rapeseed maps are 
also the basic data layer for rapeseed growth moni-
toring with remote sensing. It thus provides opportu-
nities for revealing more detailed spatial patterns of 
the rapeseed phenology, yield, and other agricultural 
information derived from remote sensing, compared 

Figure 16. (a) Relationship between predicted flowering date and actual flowering date. (b) Distribution of errors in predicting 
flowering date. (c) Effect of bias in predicted flowering date on classification accuracy.
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to traditional plot-scale studies (D’Andrimont et al.  
2020; Sulik and Long 2020; Mercier et al. 2020).

The proposed RSG-OC employed a promising strat-
egy for e$ectively combining expert (or domain) 
knowledge and machine-learning techniques. 
Recently, deep learning has shown great superiority 
in improving crop classi#cation accuracy (Xu et al.  
2021; Yang et al. 2022; Ge et al. 2021). However, deep 
learning techniques often rely on a large number of 
training samples, which is challenging for large-scale 
crop mapping. On the other hand, expert knowledge 
for crop classi#cation has been intensively explored for 
a long time in remote sensing community, especially 
for the widely-cultivated crop types like wheat, corn, 
peanut and rice (Dong et al. 2016; Qiu et al. 2017, 2018,  
2021; Zhan, Zhu, and Li 2021). E$ectively integrating 
the domain knowledge might help to reduce the rely-
ing on the large training samples for deep (Dash et al.  
2022; Xie et al. 2021). RSG-OC converts the expert 
knowledge into automatically generated samples, 
which provides a straightforward strategy to integrate 
expert knowledge into machine learning techniques. 
Such a strategy does not need to modify the available 
machine learning techniques, and thus should not be 
di"cult to be applied for deep learning and also for the 
other crop classi#cation.

5.7. Remaining issues

There remain several issues in this study. Firstly, the 
ground truth data for accuracy evaluation were only 
obtained in the major rapeseed planting regions, 
thus is not adequate to represent the whole of 
China. Especially, the commission error in non- 

major rapeseed planting regions might be under-
estimated. For example, we found that some classi-
#ed rapeseed areas (35.04N, 116.37E) in Shandong 
province might be actually garlic (Figure 17) based 
on our recent communication with local farmers. 
Therefore, more validations in more areas should 
be further conducted to better evaluate the accuracy 
of the produced maps. Secondly, the rapeseed area 
derived from the produced map is much less than 
the census data. Such inconsistency could be 
induced by the asymmetric commission/omission 
classi#cation error, the e$ect of mixing pixels, and 
the uncertainty of census data (Boschetti, Flasse, and 
Brivio 2004; Czaplewski and Catts 1992; Gallego  
2004; Waldner and Defourny 2017; Ozdogan and 
Woodcock 2006; Liu et al. 2020). Even with accurate 
land cover maps, there is still a possible area for the 
data with mixed pixels, especially in the case of 
fragmented landscape (Ozdogan and Woodcock  
2006). The exact reasons for the inconsistency 
between mapped area and census data would be 
further explored in future research. Finally, the RSG- 
OC generated samples from the whole of China and 
trained only one national-wide classi#er for rapeseed 
mapping, which might lead to under#tting for the 
regions where the generated samples are inade-
quate. Introducing a zoning strategy on sample gen-
eration and classi#er training might further improve 
the performance of RSG-OC.

6. Conclusion

Chinese rapeseed for 2017–2021 was mapped using 
the RSG-OC method in this paper. With speci#cally 

Figure 17. Example of misclassified rapeseed fields (35.04N, 116.37E) without yellowness in flowering season. (a) classification map, 
(b) true color image in flowering season.
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designed selection rules and augmentation methods 
for generating rapeseed samples, RSG-OC trained 
a classi#er with less dependence on optical !ower-
ing features and is thus generalizable to pixels with 
serious cloud contamination during the !owering 
period. With the implementation of the PUL one- 
class classi#cation strategy, the RSG-OC method 
avoids the di"culty of collecting diverse nonrape-
seed samples across all of China. Evaluating the 
ground truth samples con#rms that RSG-OC per-
forms better in rapeseed mapping than the other 
methods. The rapeseed map produced for 2017– 
2021 #lled the gap in long-term-span and large- 
extent rapeseed maps in China, which is of impor-
tance to national food security and land use 
regulation.
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