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A B S T R A C T   

The measurement of tree diameter at breast height (DBH) is the basis for estimating forest timber volume, 
biomass, and carbon fluxes. The traditional contact methods of measuring DBH are time-consuming and labor- 
intensive. Thus, it is important to realize a low-cost and rapid method for measuring DBH. In this paper, a non- 
contact method was proposed by integrating passive (a smartphone) and active optical sensors (a laser ranger). 
With this device, the horizontal distance from the sensor to the tree trunk acquired by the laser ranger and the 
image of the target tree acquired by the smartphone were collected simultaneously. An autodetection algorithm 
was employed to identify the tree trunk within the image, and the diameter of the tree was then measured in 
combination with the horizontal distance based on the photogrammetry principle. The performance of the 
proposed method was validated using measuring tapes across 371 trees, the main species of which were Italian 
Poplar (Populus euramevicana) and Pine (Pinus tabuliformis) with diameters ranging from 6 to 51 cm. To inves
tigate the factors that might affect the method, the results were further analyzed under four different conditions, 
i.e., varied illumination conditions, urban and natural forest conditions and different tree species with varied 
surface texture features. The results suggested that the measurements using the proposed device were in good 
agreement with those of the traditional contact method, with an absolute mean error (MAE) of 1.12 cm and 
RMSE of 1.55 cm. The attraction of the proposed method is that it is low-cost, portable, easy to use and suffi
ciently accurate. It is also expected that the proposed method can facilitate the measurement of DBH-related 
canopy structure parameters, such as tree volume, and other parameters, such as tree height, with little adap
tation to the current version.   

1. Introduction 

The tree diameter at breast height (DBH) is defined as the diameter of 
the cross-section perpendicular to the axis of a tree trunk at 1.3 m above 
ground (West, 2009). The accurate measurement of DBH is critical for 
the estimation of tree volume and biomass (Lutz et al., 2018; Yoon et al., 
2013). The established methods for measuring DBH can be divided into 
two types: contacting methods and non-contacting methods (Clark et al., 
2000a). Traditional contact tools, such as calipers and tree girders, have 
been used for a long time (West, 2009). Although recognized as the most 
accurate method, such a contacting method is time-consuming, labor- 

intensive and limited by the case that is inaccessible to the target area. 
New contact methods have been proposed by replacing traditional tapes 
with electronic sensors that operated by recording the inflection of an 
elastic wire (Binot et al., 1995; Sun et al., 2019). Although automatic 
measurement is fulfilled once the contacting sensors are set up on the 
trees, difficulties with the inaccessibility of the target area still constrain 
this method’s application. 

Non-contacting methods have emerged in recent decades and were 
characterized by improved field work efficiency in forest inventory 
surveys. In contrast to contact methods, the non-contacting measure
ment methods can remotely measure the DBH at distances ranging from 
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several to tens of meters (Heinzel and Huber, 2017). From the applica
tion of the earliest film camera to charge-coupled devices (CCDs), 
photographic methods for measuring DBH have been widely explored 
(Grosenbaugh, 1963; Juujarvi et al., 1998). The basic principles for 
measuring DBH from either digital or analog images are similar, i.e., 
identifying the tree trunk in the image and constructing the ratio rela
tionship between image and object space. A straightforward method is 
to set up a physical scaler (Juujarvi et al., 1998) or optical virtual scaler 
(such as a fixed-size laser transmitter) (Fan et al., 2020; Melkas et al., 
2008; Zhang and Grift, 2012) as reference object with known size in the 
field of view (FOV) before photographing the tree. However, this 
method may be constrained by the unidentifiability of the reference 
object in partial scenarios (Melkas et al., 2008) and rigorous validation 
is required for calibrator design. 

To overcome the limits of reference object-based methods, non
reference object strategies have been extensively studied in recent years. 
Clark et al. (2000b) empirically determined the size of the resultant 
image pixels by a series of images taken at varying distances. Wu et al. 
(2019) proposed an adaptive feature coordinate method to map the 
proportional relationship between the image and object space. The non- 
calibrator method, through the extraction of multiple features (such as 
coordinate and distance features) to determine the proportional rela
tionship, is a promising method for DBH measurement, but more 
attention is needed to improve its automaticity and feature extraction 
algorithm. 

Unlike the 2D image-based method of measuring DBH, the 3D profile 
of tree trunks reconstructed by high-density point cloud data provides 
the opportunity to accurately characterize the tree’s structural proper
ties and can be collected by either passive sensors, such as mono- 
(Marzulli et al., 2020; Mokro et al., 2018; Piermattei et al., 2019) or 
binocular cameras (Liu et al., 2018; Roberts et al., 2018), or active 
sensors, such as light detection and ranging (LiDAR). 

For passive sensors, point clouds are generally fulfilled with image 
matching and tree trunk modeling with the help of structure-from- 
motion (SfM) technology (Iglhaut et al., 2019; Liu et al., 2018). The 
performance of this passive sensor-based method lies in the point cloud 
quality given the complex natural environment (Liang et al., 2014). In 
addition, the passive camera-based method contains a time-consuming 
process for data collection and processing. Marzulli et al. (2020) indi
cated the data quality at the plot level was determined by camera 
orientation, shooting mode, and photographic path. Surový et al. (2016) 
experimentally demonstrated that detailed modeling at the tree level 
required at least five cameras or viewpoints, which was time-consuming 
and could be aggravated by intensive postprocessing (Liang et al., 2015). 

In comparison to the camera-based method, LiDAR-derived methods 
such as terrestrial laser scanning (TLS) (Astrup et al., 2014; Liang et al., 
2018) and mobile laser scanning (MSS) (Cabo et al., 2018; Oveland 
et al., 2018) can directly provide point clouds from which canopy 
structure parameters, such as DBH, tree height and biomass (Calders 
et al., 2015; Maas et al., 2008). Nevertheless, the limitations of LiDAR- 
derived approaches remain in terms of data processing, portability and 
hardware costs. Specifically, Hyyppä et al. (2020) compared and dis
cussed multiple LiDAR-driven approaches that produced acceptable 
accuracy, but sophisticated data processing algorithms produced higher 
hidden costs. Although Liang et al. (2016) indicated that the hardware 
costs for LiDAR have fallen, they remained a burden for forestry in
vestigators (up to 30,000 to 80,000 euros (Liang et al., 2016)). 

As the foundation for measuring DBH using 2D image-based method, 
reliable identification of tree trunk is essential. Fan et al. (2020) 
manually designated the tree trunk in field measurements; Wu et al. 
(2019) implemented the automatic extraction of the tree trunk utilizing 
a frequency-tuned algorithm; Ren et al. (2016) extracted the tree trunk 
boundary using an enhanced Otsu algorithm. However, the application 
of traditional threshold-based classification algorithms in natural envi
ronments is suffered from constraints, such as varying illumination and 
ambient backgrounds. Recent advancements in artificial intelligence 

have resulted in the application of machine learning (ML) in the iden
tification of forest stand components. Liu et al. (2019) applied the U-net 
network to classify tree species in terrestrial RGB images, and the clas
sification accuracy achieved 96.03%. Chen et al. (2018) implemented 
the identification of dwarf orange tree trunks based on a support vector 
machine to support the localization of mobile robots. However, the 
practical challenges associated with employing machine learning to 
measure basic tree properties in RGB images have yet to be addressed. 

In this paper, we explore the possibility of non-contact measurement 
of DBH using low-cost sensors. The primary objective is to integrate a 
smartphone and a laser ranger to perform non-contact measurement of 
DBH. The secondary objective is to improve the generalizability of the 
proposed device by taking into account relevant impact factors. Finally, 
the feasibility of the DBH measurement theory is verified by accuracy 
evaluation and analysis with the traditional DBH contact measurement 
method. 

2. Materials and methods 

2.1. Instrument description 

The developed device is designed for the non-contact measurement 
of standing trees in the field and consists of a smartphone (passive 
sensor) and a laser ranger (active sensor) that are both fixed on the 
tripod with a rotatable platform to ensure the level of the integrated 
device (Fig. 1). The smartphone is used to take a photo of the target tree, 
and simultaneously, the laser ranger measures the horizontal distance to 
the target tree. Then, the photo and horizontal distance are transmitted 
to the calculation module to calculate the DBH. Table 1 lists the pa
rameters of the smartphone and laser ranger used in this paper. 

2.2. Methodology 

2.2.1. Overview 
The focus of this study is to develop and validate a low-cost device for 

measuring DBH that integrates active (laser ranger) and passive 
(smartphone camera) optical sensors. The logical structure of the 
workflow consists of three parts (Fig. 2), i.e., the calibration module, the 
image processing module, and the calculation module. The calibration 

Fig. 1. Structure of the developed device in this study.  
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module is served as providing basic attribute information for the DBH 
calculation module and is divided into the camera and device calibration 
(Appendix A). The image processing module is used to identify the target 
tree through an open-source deep learning framework. Finally, the 
calculation module is developed by the combination of the camera im
aging model and the identified tree trunk region. The basic principle of 
each stage is described in detail in the following sections. 

2.2.2. Image processing and accuracy evaluation 
The image processing module is designed to extract the tree trunk 

from RGB images and obtain the DBH in a unit of pixel, and it mainly 
contains two sub-processes, i.e., the determination of the target tree that 
multiple trees exist in the image and the identification of the tree trunk 
region. 

In the image of a trunk, the laser spot generated by the laser ranger 
and the bounding rectangle of the identified region provides the op
portunity to locate the target tree. To identify the spot position in the 
image, we firstly transform original image from RGB space into HSV 
(Hue, Saturation, Value) space, then empirically set global thresholds in 
the HSV image to extract all potential pixels (Parker, 2010), and 
calculate the corresponding center of gravity (Sonka et al., 2014). The 
extraction of the laser spot followed two assumptions:(1) the true laser 
spot should be near the image center; (2) the potential pixels around the 
true laser spot should be sparser than other pixels. The above two as
sumptions can be quantitatively indicated by following equation: 

Qa =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k(
na

Npoint
)

2
+ (

da

Dmax
)

2

√

(1)  

where Npoint is the total potential spot pixels; na is the number of po
tential pixels for the a th center of gravity; k is the global weighting 
factor; Dmax is the furthest distance from the image center; da is the 
distance between the a th potential pixel and the image center; and Qa is 
the probability that the extracted ath center of gravity is the laser spot 
and the laser spot is identified as the smallest Qa. 

For the identification of the tree trunk region, a machine learning 
technique based on Baidu’s open-source deep learning framework 
PaddlePaddle and EasyDL tool (http://ai.baidu.com/easydl) is per
formed to automatically identify the tree trunk. The dataset consisting of 
572 images was created to train the identification model where 10% of 
the samples were randomly selected as the validation set. To ensure the 
robustness of the model, the dataset was constructed with images 
collected under different conditions, including illumination, measure
ment scenarios, tree species and image capture distances ranging from 1 
to 8 m. EasyDL built a deep neural network and obtained the tree trunk 
classification model by combining the training set and its internal 
transfer learning model. 

Table 1 
The main parameters of the smartphone and laser ranger*.  

Type of 
apparatus 

Model Main parameters Parameter 
Value 

Smartphone Huawei 
Honor 4T Pro 

Photo size 3000 × 4000 
pixels 

Type of Camera imaging CMOS 
Actual focal length 5 mm 
Actual physical size of pixels 
a 

0.00165 mm/ 
pixel 

The displacement between 
camera and laser ranger b 

22 cm 

Price $ 220 
Laser Ranger Deli DL4170 Ranging pattern 

Ranging range 
Ranging accuracy 

Laser Ranging 
0.05–80 m 
±3 mm 

Price $ 35 

* a, b: The calibration results were based on experimental calculations and are 
presented in Appendix A. 

Fig. 2. Workflow of the methodology. This work is organized into three subprocesses: the calibration module, the image processing module, and the calcula
tion module. 
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To assess the performance of the machine model, the precision, 
recall, and F-measure values were used, which were defined as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

precision =
TP

TP + FP

recall =
TP

TP + FN

F − measure =
2 × precision × recall

precision + recall

(2)  

where TP (true positive) represents the number of samples correctly 
classified as trunks; FP (false-positive) represents the number of samples 
incorrectly classified as trunks; and FN (false negative) represents the 
number of trunks incorrectly classified as background. The recall and 
precision values can characterize the classification accuracy of tree 
trunks, and the F-measure value is a synthetic measurement of recall and 
precision assessment. 

2.2.3. The DBH calculation model 
The DBH can be calculated by a simple ratio equation with the help 

of horizontal distance and DBH in pixels (Fig. 3), and can be written as: 

f
d
=

N × dx

Dori
=

Lpixel

Dori
(3)  

where Dori is the DBH, d is the horizontal distance between the device 
and the surface of the tree trunk, which is an initial parameter obtained 
by the laser ranger, f is the focal length, N is the DBH in pixels and can be 
estimated by a linear fitting algorithm (Appendix B) given the inclined 
growth of the tree in the natural environment, dx is the calibrated pixel 
pitch in the image space determined by the camera calibration (Zhang, 
2000), and Lpixel is the physical dimension of the DBH in the image. 

Eq. (3) assumes that the tree trunk is rectangular and the DBH can be 
expressed as Dori (Fig. 4). However, a better alternative is to assume the 
tree trunk to be cylindrical to characterize the actual situation consid
ering the tree trunk shape characteristics (Huang et al., 2015). In this 
case, the actual DBH is denoted as Dtrue (Fig. 4). In addition, the distance 
d obtained by the laser ranger is different from the real distance dtrue, 
which is defined as the distance of the device to the tree trunk center, 
and thus a correction method is needed. In light of this, d should be 
replaced by dw, and Dori should be replaced by Dw. Then, Eq. (3) can be 
rewritten as: 

f
dw

=
Lpixel

Dw
(4) 

The geometric relation shown in Fig. 4 can be further represented as 
Eq. (5): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sinα =
Dtrue

2
(
d +

Dtrue

2

)

cosα =
Dw

Dtrue

dw = d +
Dtrue

2
(1 − sinα)

dtrue = d +
Dtrue

2

(5)  

where dw is the distance from the device to line AB and α is the angle 
between line SO and SA. Eq. (5) can be simplified and represented as Eq. 
(6) and the detailed DBH calculation process can be found in Appendix 
C. 

D3
true +

(

d − d
L2

pixel

f 2

)

D2
true − 2d2L2

pixel

f 2 Dtrue −
L2

pixel

f 2 d3 = 0 (6)  

2.3. Experimental data 

Field data were mainly collected from two regions in China (Fig. 5a), 
i.e., an artificial forest (Figs. 5-b1) and an urban park (Figs. 5-b2) in 
Xiantao city (XT), Hubei Province, and a natural montane forest reserve 
(Figs. 5-b3) in Huairou District (HR), Beijing city. The montane forest 
(Figs. 5-c1) (about 1000 stems/ha) in HR (40◦25′00′′N, 116◦39′37′′E) 
was dominated by Pine (Pinus tabuliformis) forests, accompanied by tree 
species such as Arborvitae (Platycladus orientalis) and Populus Canadensis 
(Populus × canadensis Moench) with some shrubs in the forest, the terrain 
was generally undulating and uneven and finally 210 trees were 
measured. The artificial forest (Figs. 5-c2) (about 700 stems/ha) in XT 
(30◦09′33′′N, 113◦17′38′′E) was dominated by Italian poplar (Populus 
euramevicana) with small shrubs, the overall topography was flat with 
some areas of undulation, and finally 128 standing trees were measured 
in this area. The urban park (Figs. 5-c3) (about 600 stems/ha) in XT 
(30◦14′14′′N, 113◦17′42′′E) was mainly populated with Camphor tree 
(Cinnamomum camphora (L.) Presl), Goldenrain tree (Koelreuteria pan
iculata) and Michelia chapensis (Michelia chapensis Dandy), the terrain 
was relatively flat with no significant undulations and 37 trees were 
measured. In the field measurement, the tree girder and developed de
vice were utilized synchronously to ensure the dependability of the ac
curacy analysis. In the case of trees in the artificial forest and urban park, 
the breast height was determined as the height of the tripod, which was 
adjusted to 1.3 m given the relatively flat terrain of the study area. For 
montane forests, the breast height was determined by combining the 
angle change of the built-in gyroscope of the smartphone. The detailed 
calculation procedure can be found in Appendix D. 

These field measurements were conducted under four different 

Fig. 3. The simple calculation model in top view. The DBH can be calculated by the transformation from image space (left) to object space (right) with the help of the 
camera focal length and range value. 
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conditions to assess the performance of the developed device across 
different environments or observation configurations (E1–E4). Specif
ically, E1, including 21 images, represents the experiments carried out in 

an environment with direct light that incurs intense or nonuniform light 
illumination on the tree trunk surface of the target tree. E2 (containing 
349 images) and E3 (49) represent the device’s practicality in urban 

Fig. 4. The DBH calculation model. S is the device position, O is the tree trunk center, and A,B is the tangent points between the camera’s optical line and the tree 
trunk edge. 

Fig. 5. The location of the study area. (a) Two regions located in China (blue polygon indicates the two provinces where the experiment was conducted). (b) The 
distribution of field plots in the Google Earth image. (c) Field images of different plots. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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(park and roadside) and forest (simple and complex forest) scenario, 
respectively. An extra 26 roadside trees (E3) were measured considering 
the complex composition of urban areas. E4 represents the effectiveness 
of the device to measure tree trunks with different texture characteris
tics. Note that the tree numbers in E1–E4 can overlap with each other; 
for example, trees in urban could also be examples illuminated by direct 
light. 

2.4. Accuracy evaluation 

The reference DBH obtained by the tree girder is used to evaluate our 
device. We calculate the absolute mean bias (MAE), relative mean bias 
(reBias), root mean square error (RMSE), relative RMSE (reRMSE), and 
standard deviation (SD) with Eq. (7). 

Fig. 6. Instances of tree trunks being obviously misidentified. a-b shows misidentification examples from the accuracy evaluation results of the tree trunk identi
fication model, and c-e shows examples of DBH measurement experiments that produced significant under- or over-segmentation of trunks. 

Fig. 7. The boxplot of DBH in pixels between that obtained by manual measurement from the image and that from the ML-based method.  

Fig. 8. The deviation between the measured DBH to the reference collected by the tree girder.  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MAE =

∑n

i=1
|di − dir|

n

reBias =

∑n

i=1

(
di − dir

dir

)

n
× 100%

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(di − dir)

2

n

√

reRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
di − dir

dir

)2

n

√
√
√
√
√

× 100%

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(|di − dir| − MAE)2

n

√

(7)  

where n is the number of measured trees,di is the i th measurement, and 
dir is the reference value corresponding to di. 

To compare the discrepancy between the reference DBH and 
measured DBH results (by our device), we used a regression-based 
equivalence test (Robinson et al., 2005). The test begins with the null 
hypothesis (H0) of significant differences between the measured and 
reference value, and rejecting H0 indicates the acceptance of the de
vice’s measurement of the DBH of the target tree. Following Robinson 
et al. (2005), the slope and intercept equality of the regression fitted line 
were tested to determine whether their two joint one-sided confidence 
intervals were included in the equivalence interval to decide to accept or 
reject the null hypothesis. In the regression-based equivalence test, the 
intercept component determines the difference between the measured 
and reference mean and represents a measure of bias; the slope 
component determines whether the slope of the fitted line between the 
measured and reference values is equal to one and represents a measure 
of the proportionality (de Lima et al., 2021; Yan et al., 2020). The 
equivalence test was conducted in R script language using the “equiv
alence” package (Robinson, 2016). 

3. Results 

3.1. Accuracy of tree trunk identification 

The dataset for training the tree trunk identification model has 

Fig. 9. Regression-based equivalence test for DBH measurements. The grey 
polygon and grey dashed line show the ±10% equivalence interval for the 
intercept and slope, respectively; the blue polygon and blue dashed line 
represent the 95% confidence interval for the intercept and slope, respectively. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 10. The performance of the improved calculation model (ICM). (a) Comparison with simple calculation model (SCM) and ICM. (b) illustrates the grouping 
statistics under different calculation models. 
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diameters ranging from 5 to 43 cm. In the precision evaluation results 
for the identification model, the precision is 92.7%, recall is 100%, and 
F-measure is 0.96. The majority of images in the evaluation of the 
identification model were successfully identified, with only two excep
tions of Fig. 6a and b, in which the target tree was correctly identified 
but the other trees were also identified as target trees. 

Among the 375 samples obtained from the field work, the target trees 
of 4 samples were not effectively identified and further contributed to 
the failure of DBH measurement. To further evaluate the performance of 
the ML-based tree trunk identification model, we manually measured 
the DBH in pixels from remaining 371 images acquired in the field work 
as a reference. The difference between the reference and ML-based re
sults is illustrated in Fig. 7 for different plots. There is a mean deviation 
of 2 pixels and an RMSE of 12 pixels for all plots. Specifically, the 25th 
and 75th percentiles are − 3 and 7 pixels, respectively (Fig. 7), with the 
largest deviation of − 115 pixels in Plot 1. Overall, the tree trunk is 
effectively-identified in most cases, while three samples produced sig
nificant deviations from the reference of + 102, − 115 and + 41 pixels, 
respectively (Fig. 6c-e). 

3.2. Statistical features of field measurement 

The deviation of the measured DBH relative to the reference is shown 
in Fig. 8. The mean deviation for all stems from the reference amounted 
to − 0.11 cm, with DBHs ranging from 6.1 to 50.9 cm. Only four of 371 
trees had a DBH with larger bias, with the largest and smallest bias being 
8.2 and − 4.5 cm, respectively. There were three samples with under
estimation or overestimation of DBH because of mis-segmentation of the 
tree trunk region, and one sample with underestimation of DBH because 
of incorrect operation of the device. 

The accuracy indices of the measured DBH are listed in Table 2. The 
statistical results show that the MAE is 1.12 cm (reBias = -0.23%) and 
the RMSE is 1.55 cm (reRMSE = 6.64%). Fig. 9 shows the regression- 
based equivalence test results. The 95% confidence interval of the 
intercept (blue polygon) is included in the y ± 10% (y of the mean) 
equivalent interval (grey polygon), indicating the null hypothesis of 
dissimilarity can be rejected and measured means are equivalent to 
reference means. Furthermore, the 95% confidence interval for the slope 
(blue dashed line) lies within the 1 ± 10% equivalence interval (grey 
dashed line) indicating the null hypothesis of proportionality is 
accepted. 

3.3. Performance of the developed device under different experimental 
conditions (E1–E4) 

The error statistics between the measured DBH and reference values 
under different experimental conditions are presented in Table 3. Spe
cifically, the results of dataset E1 show the measurement accuracy of the 
device under various lighting conditions, with MAE = 0.95 cm and 
RMSE = 1.30 cm. In the overall error statistics for artificial forest of 
simple stands and montane forest of complex stands included in dataset 
E2, no significant differences were observed between the measured 
values and the reference (MAE = 1.12 cm, RMSE = 1.57 cm). For E3, all 
trees could be measured effectively in 49 trees in both experimental 
conditions of urban park and street trees. Among the experiments 

involved six tree species with different texture features (E4), the device 
can effectively identify and measure the majority of the trunks, while 
one sample resulted in significant under-segmentation of the target tree 
due to the high similarity of the texture features to the background. 

3.4. Performance of the DBH calculation model 

An improved DBH calculation model in this paper was applied to 
correct the misestimation of DBH in Eq. (3). The performances of using 
the improved calculation model and the simple calculation model are 
shown in Fig. 10. For comparison, 4 samples with larger bias in the 
dataset were excluded (Fig. 8). The statistical results show a consider
able reduction of bias (Fig. 10a), from − 1.61 to − 0.08 cm (RMSE from 
2.36 to 1.40 cm). Specifically, the calculation model allows for the 
systematic improvement of DBH measuring accuracy for different stem 
diameters (Fig. 10b), especially for large-diameter trees with DBH>35 
cm. 

4. Discussion 

4.1. DBH measurement performance 

Overall, the integrated active and passive optical sensors in this study 
were able to provide the result of small error statistics (e.g., MAE = 1.12 
cm, RMSE = 1.55 cm). For comparison purposes, we collected previous 
papers using SfM, LiDAR, and other similar methods and compared the 
statistical results with each other (Table 4). Although it is difficult to 
make a direct comparison with previous studies because of incompatible 
elements that may impact the statistical results, the comparisons in 
Table 4 offer an overview of their performance. 

Apparently, among all the methods, the cost of our device is mini
mum. The measurement accuracy in this study is maintained at roughly 
the same level as previous approaches, although there are differences in 
forest stand conditions. Specifically, our method is comparable to the 
measurement accuracy of HMLS and TOF camera, while TLS provides 
the smallest bias (Table 4). 

4.2. Impact of experimental background and measurement mode 

The effect of the experimental background on the DBH measurement 
is shown in the estimation of DBH in pixels. This parameter directly 
determines the transformation of image space to object space and 
further influences DBH. For simple and fixed experimental backgrounds, 
traditional image processing algorithms have a robust performance 
(Huang et al., 2015; Juujarvi et al., 1998; Melkas et al., 2008; Wu et al., 
2019) attributed to the distinguishability of tree trunks. 

For tree trunk identification in natural scenes, the variable experi
mental backgrounds may constrain the generalization of the identifi
cation model. However, in combination with the extracted laser spot and 
the bounding rectangle as a priori knowledge to locate the target tree, 
the robustness of the identification model can be further improved. The 
statistical results (Fig. 7) support their validity that DBH in pixels is not 
significantly biased by model misclassification (i.e., other trees are 
identified as the target tree). Nevertheless, there are still cases that the 
target tree is not correctly segmented because of the overlapping of trees 

Table 2 
The accuracy indices of DBH measured by the developed device*.   

N MAE (cm) reBias (%) RMSE (cm) reRMSE (%) Min/max error (cm) SD (cm) 

Plot 1 206  1.04  0.84  1.52  7.37 0.0/8.2  1.12 
Plot 2 128  1.28  − 1.17  1.70  5.71 0/-5.7  1.10 
Plot 3 37  1.06  − 2.34  1.29  4.99 0.0/±2.5  0.74 
All stems 371  1.12  − 0.23  1.55  6.64 0.0/8.2  1.07 

* MAE: absolute mean error; reBias: relative mean error; RMSE: root mean square error; reRMSE: relative RMSE. Min/max: minimum error/ maximum error; SD: 
standard deviation. 
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with similar texture features (Fig. 6c) and the existence of interferences 
(Fig. 6d), which puts forward higher requirements for the image seg
mentation algorithm since manual segmentation is also difficult in this 
case. 

Apart from the performance of the identification model, factors 
related to the data collection approach also play an important role in the 
DBH measurement. The premise for applying an image-based method is 
the acquisition of complete tree trunk (Fan et al., 2020, 2018) because of 
its lack of the ability to penetrate the gaps in leaves or fine branches as 
LiDAR (Liang et al., 2014). In this study, the optimal observation 
orientation was determined by the operator based on practical site-level 
conditions, which was similar to the TLS to improve the detection rates 
by multistand scanning (Liang et al., 2016). Fortunately, this yielded 
positive results that there was no application failure attributed to 
interference occlusion, although the performance might vary from case 
to case for different forest stands. 

The systematic error of DBH calculation can be mainly attributed to 
the tree inclination angle and ranging error on the transformation be
tween object and image space. In the 2D image-based mode, the ranging 
error is equal to half of the DBH so that the ranging error increases as the 
stem diameter becomes larger. The deviation of the intersection line Dw 
(Fig. 4) formed by the camera’s divergence view and tree trunk from the 
true DBH (Dtrue) is greater as stem diameter increases. Overall, the re
sults (Fig. 10) show the necessity of taking camera imaging patterns and 
ranging errors into account when measuring DBH from a 2D perspective. 

4.3. Further research 

This paper developed a DBH measurement device by integrating 
active and passive optical sensors in field data collection. Nevertheless, 
it should be noted that some aspects have been simplified or not 
considered while more research work is still required to improve the 

operability and applicability of the device. 
In this study, a manual leveling procedure was used to obtain the 

horizontal distance and vertical projection geometry, which might 
introduce random errors of manual operation. From the view of 
combining multi-source data, quantitative estimation of the device pose 
may provide a reasonable solution to minimize random errors, such as 
integrating additional sensors of inertial measurement unit (Pierzchała 
et al., 2018) and combining simultaneous localization and mapping for 
optimization (Fan et al., 2018; Hyyppä et al., 2017). All the above multi- 
source data can be applied to broaden the usability of the device in terms 
of applicable scenarios and device operability. 

Although the inclination angle of the target tree in the two- 
dimensional view is quantitatively estimated in this paper (Appendix 
B), the projection results may vary significantly with the change of 
observation view. In addition, the tree trunk shape is always irregular 
from the cross-sectional perspective (Clark et al., 2000a), resulting in 
discrepancies in DBH measurements from various viewpoints. The po
tential options in further field measurements are the 3D reconstruction 
of significantly inclined trees from multiple viewpoints (Hapca et al., 
2007) for significantly inclined trees and to develop high-precision so
lution models accounting for multiple factors. 

5. Conclusions 

This paper developed a non-contact device to measure DBH by 
integrating active (laser ranger) and passive (smartphone) optical sen
sors. With such a device, automatic measurement of DBH can be con
ducted with less subjective manual intervention compared to traditional 
methods using tree girders. In our method, the laser ranger was adjusted 
to the horizontal to determine the ratio relationship between the image 
and object space, and the image was employed to determine the DBH in 
pixels based on an ML-based identification algorithm. The results 

Table 3 
Accuracy of DBH measured under different measurement conditions.   

Dominant Species Range N MAE  
(cm) 

reBias (%) RMSE  
(cm) 

reRMSE (%) SD  
(cm) 

E1 Italian Poplar, Goldenrain tree, Camphor tree, Cypress (14, 42) 21  0.95  − 0.63  1.30  4.52  0.91 
E2 Italian Poplar, Cypress, Arborvitae, Populus Canadensis, Pine (6, 51) 349  1.12  0.05  1.57  6.73  1.10 
E3 Italian Poplar, Pine, Goldenrain tree (14, 41) 49  0.95  − 1.51  1.18  4.65  0.57 
E4 Italian Poplar (13, 51) 128  1.27  − 1.37  1.66  5.79  1.10 

Camphor tree (21, 41) 21  1.15  − 1.06  1.33  4.65  0.68 
Goldenrain tree (19, 36) 16  0.89  − 3.74  1.57  6.31  0.66 
Arborvitae (6, 38) 18  0.78  3.51  1.02  7.95  0.67 
Populus Canadensis (18, 41) 13  1.36  − 2.59  1.72  6.38  1.05 
Pine (7, 47) 175  1.04  0.88  1.55  7.42  1.15  

Table 4 
Accuracy comparison of DBH measurement by different methods*.  

Method a Bias  
(cm) 

reBias (%) RMSE  
(cm) 

reRMSE  
(%) 

Range b N c Forest type d Main species e Price f  

($) 
Reference and source 

Ours  − 0.11  − 0.23  1.55  6.64 (6, 51) 371 AF/MF/UAF MS1 255 This study 
HMLS  − 0.39  − 1.40  0.90  3.50 (5,58) 68 NBF MS2 1500 (Hyyppä et al., 2020)  

Table 1, Table 2 & Table 7 
TLS  0.04  0.20  1.67  7.20 (5.65) 407 NBF MS3 >1500 (Kankare et al., 2015)  

Fig. 5 & Table 2 
SfM  − 0.77  − 3.77  1.62  7.73 (4,64) 140 UAF MS4 >450 (Roberts et al., 2019)  

Table 2 
TOF camera  0.33  1.78  1.26  6.39 (5,40) 193 AF MS5 600 (Fan et al., 2018)  

Table 1 & Table 3 

*The data were digitized and recompiled from the figures in the cited works, and there might be a slight bias to the original results. In addition, owing to the inability to 
control the consistency of forest stand conditions in different papers, our comparison can only provide some reference, and detailed results need to be carried out in 
more rigorous experiments. a: HMLS: Hand-held Mobile Laser Scanning, TLS: Terrestrial Laser Scanning, SfM: Structure from Motion, TOF camera: Time of Flight 
camera. b: Distribution range of measured values. c: The number of trees measured. d: AF: artificial forest, MF: montane Forest, UAF: urban artificial forest, NBF: 
norwegian boreal forest. e: MS1: Italian poplar, Camphor tree, Goldenrain tree, Arborvitae and Populus Canadensis, Pine; MS2: Pine, Spruces, Birches; MS3: Scots pine, Norway 
spruce; MS4: Loblolly pine, Virginia oak, Laurel oak; MS5: Ginkgo, Elm. f: The prices of the devices used in the cited study, which have been converted to USD after 
exchange rate calculations. 
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confirm that the combined consumer level devices can achieve accept
able precision of DBH with a noncontact mode. The statistical results of 
the measured DBH showed agreement with the reference value of the 
tree girder among the five accuracy evaluation indicators, with MAE, 
reBias, RMSE, reRMSE and SD of 1.12 cm, − 0.23%, 1.55 cm, 6.64% and 
1.07 cm respectively. The success of the DBH measurement was attrib
uted to the robust image identification algorithm and developed calcu
lation model. Our method’s advantages are in terms of low cost, simpler 
system structure and less expertise required. 

In future studies, a more rigorous integrated structure of active
–passive remote sensing should be explored to minimize the impacts of 
improper operation. Meanwhile, more forest structural parameters, such 
as tree height, volume and biomass, should be extracted to fulfill the 
demands of forest surveying work. 
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2020. Comparison of backpack, handheld, under-canopy UAV, and above-canopy 
UAV laser scanning for field reference data collection in boreal forests. Remote Sens 
12 (20), 3327. https://doi.org/10.3390/rs12203327. 
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