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ABSTRACT
Most of the existing remote sensing-based yield estimation methods adopt the mean or 
cumulative value of meteorological factors within the whole growing season, which may 
ignore the impact of adverse meteorological conditions on the growth of winter wheat in 
a certain phenological period. In this study, we distinguished the developmental progression of 
winter wheat as three phenological periods. In each phenological period, the vegetation 
indices and meteorological factors were optimized. Then the accuracy and spatiotemporal 
transferability of the phenological piecewise modelling was compared with that of the whole- 
season modelling based on four regression methods (i.e. multiple linear regression, artificial 
neural network, support vector regression and random forest). The results showed that the 
optimal combinations of variables for the whole-season modelling and the phenological 
piecewise modelling were different. Compared with the whole-season models, the R2 for the 
phenological piecewise models improved by 1.4% to 7.6%, the root mean square error (RMSE) 
decreased by 1.1% to 8.2% among four regression methods . In addition, compared with the 
whole-season models, the spatiotemporal transferability for the phenological piecewise mod
els was generally better. The accuracies after spatiotemporal transfer for the phenological 
piecewise models were still higher than that for the whole-season models.
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Introduction

The capacity of global food supply is facing increasing 
pressure due to the population growth, climate change, 
and ecological environment deterioration (Godfray et al., 
2010; Rounsevell et al., 2005; Searchinger et al., 2008). 
Winter wheat is one of the most widely cultivated food 
crops in the world. Its growth and yield are closely related 
to global food security (Thenkabail et al., 2012). 
Therefore, timely and accurate estimation of the winter 
wheat yield in a large region is of great significance to 
guide agricultural production and improve the agricul
tural disaster response ability.

Remote sensing statistical models, crop growth 
models, and data assimilation models are the three 
commonly used methods to estimate crop yield 
(Huang et al., 2019). Crop growth models predict the 
crop yield by simulating the growth processes of crop 
from sowing to harvest (Challinor et al., 2004; Jones 
et al., 2003). It has a clear physiological mechanism 
and can be successfully applied at a field scale (Jego 
et al., 2012). However, the various model parameters 
of crop growth models are hard to obtain at a large 
scale and crops growth models are usually based on 
simplified growth processes, which may lead to some 
uncertainties (Huang et al., 2019). The data 

assimilation method can solve this problem to some 
extent by assimilating remote sensing data and crop 
growth models, but its calculation processes are com
plicated and the computational efficiency is not satis
factory at a large scale (Lee et al., 2010). Compared 
with the two methods above, the remote sensing sta
tistical model is a type of empirical models. Although 
the established model may only perform well on spe
cific crop cultivars or certain geographical regions 
(Doraiswamy et al., 2003; Fang et al., 2011), it is still 
commonly adopted to estimate the crop yield due to 
its advantages of few data requirements, fast computa
tional efficiency, and applicable to a large scale 
(Kowalik et al., 2014; Liao et al., 2019; Nolasco et al., 
2021). Since the vegetation indices calculated by 
remote sensing reflectance data can reflect the growth 
status of vegetation and has a high correlation with 
yield, the early developed statistical methods were 
based on the linear statistical regression models 
between the vegetation index and the actual yield 
(Mkhabela et al., 2011; Rasmussen, 1997; Siyal et al., 
2015). After that, more and more studies notice the 
improvement effect of combining the remote sensing 
vegetation index with meteorological factors (such as 
temperature, precipitation and sunlight; Kamir et al., 
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2020; Prasad et al., 2006; Sharifi, 2020; Stepanov et al., 
2020). In addition, the phenology variables such as 
start of season, heading date and mature date can 
reflect the duration of crop key growth periods, 
which control the accumulation of effective dry matter 
(Saseendran et al., 2000). In recent years, some studies 
improved the accuracy of crop yield statistical estima
tion models by introducing crop phenology variables 
as additional independent variables (Guo et al., 2021; 
Ji et al., 2021; Sun et al., 2020). Except for the abun
dance of model variables, the spatial resolution of 
remote sensing data has been also improved with the 
development of satellite sensors. The main sensor 
products used in crop yield estimation include: SPOT- 
VEGETATION composite products (1000 meters, 
10 days; Kowalik et al., 2014), MODIS composite 
products (250/500 meters, 8/16 days; Funk & Budde, 
2009; Leroux et al., 2019), Landsat products (30 
meters, 16 days; Liao et al., 2019; Siyal et al., 2015), 
and Sentinel-2 products (10 meters, 3–5 days; He & 
Mostovoy, 2019; Hunt et al., 2019). Different satellite 
sensors may have different characteristics (e.g. with 
a higher spatial resolution but a lower temporal reso
lution). It is necessary to select appropriate remote 
sensing products according to the study area and 
research objectives.

Although the current remote sensing statistical 
yield estimation methods are relatively mature, 
there is still room for improvement. Firstly, in 
terms of the vegetation index, some studies have 
compared the performance of commonly used 
vegetation indices on crop yield estimation, such 
as the normalized difference vegetation index 
(NDVI) and enhanced vegetation index (EVI; 
Johnson, 2016; Nolasco et al., 2021; Tuvdendorj 
et al., 2019). However, some new vegetation 
indices with great potential in yield estimation 
are rarely evaluated, such as the near-infrared 
index (NIRv), which is closely related to solar- 
induced chlorophyll fluorescence (Badgley et al., 
2017), and the normalized difference phenology 
index (NDPI), which is extremely insensitive to 
soil and contains vegetation water information 
(Chen et al., 2019; Wang et al., 2017). In addition, 
different vegetation indices may show different 
applicability in different phenophases due to their 
different emphasis. Secondly, when introducing 
meteorological factors to improve the yield esti
mation model, most studies considered the 
meteorological factors within the whole growing 
season. Even in the study that integrating meteor
ology and phenology, the phenology was usually 
taken as new independent variables into the model 
(Guo et al., 2021; Ji et al., 2021). Since crops have 
different requirements for hydrothermal condi
tions in different growth phases, using the mean/ 
accumulated value of meteorological factors within 

the whole growing season may weaken/ignore the 
impact of adverse meteorological conditions on 
crop growth in a certain phase. Therefore, the 
phenological piecewise modelling, i.e. separating 
the growing season into different phenological 
periods and selecting appropriate input variables 
in each phenological period to construct the yield 
estimation model, may be more conducive to the 
improvement of yield estimation.

The main objectives of this study are: (1) to 
compare the optimized variables between the 
whole-season yield modelling and the phenologi
cal piecewise yield modelling; (2) to compare the 
estimation accuracy between the whole-season 
yield models and the phenological piecewise 
yield models; and (3) to compare the spatiotem
poral transferability (i.e. the ability of models to 
predict the winter wheat yield in other years or 
regions whose samples did not participate in the 
model training) between the whole-season models 
and the phenological piecewise models.

Materials

Study area

The Henan Province is located in central China 
(110.4°E – 116.6°E, 31.4°N – 36.4°N), covering 
approximately 167,000 square kilometres 
(Figure 1a). Under the temperate monsoon cli
mate, the annual averaged temperature in Henan 
Province in 2018 was 15.5°C, and the annual 
precipitation was 748.9 mm (Henan Statistics 
Bureau, 2019). Henan Province is one of the 
main grain-producing provinces in China, and 
the main crops are winter wheat and summer 
maize (Figure 1b). According to the China Rural 
Statistical Yearbook (National Bureau of Statistics 
of China, 2019), in 2018, the sown area of winter 
wheat in the province was 5.74 million ha, and 
the total yield of winter wheat in the province was 
36.03 million tons, ranking the first among all 
provinces in China. Henan Province mainly con
sists of plains, and also has some mountainous 
regions (Figure 1c). In the mountainous regions 
in the west of Henan Province, the fields of win
ter wheat are relatively small and scattered 
(Figure 1d). In contrast, the fields of winter 
wheat cultivated in the plains in the east of 
Henan Province are large and concentrated 
(Figure 1e and 1f). Based on the FROM-GLC10 
land cover product with 10-m spatial resolution 
(Gong et al., 2019), the statistical results of the 
area of each cropland patch in Henan Province 
showed that more than 75% of the cropland 
patches are over 25 hectares (i.e. 
500 m × 500 m) (Figure S1).

EUROPEAN JOURNAL OF REMOTE SENSING 339



Data

Remote sensing data
The 8-day composited product at 500 m resolution 
from 2017 to 2018, MODIS surface reflectance data set 
(MOD09A1 Version 6) was used to calculate the vege
tation indices (Vermote, 2015). There are seven reflec
tance bands including blue band (459–479 nm), green 
band (545–565 nm), red band (620–670 nm), near- 
infrared bands (841–876 nm and 1230–1250 nm) and 
short-wave infrared bands (1628–1652 nm and 2105– 
2155 nm). The vegetation indices, NDVI (Rouse et al., 
1974), EVI (Huete et al., 2002), NIRv (Badgley et al., 
2017) and NDPI (Wang et al., 2017), used in this study 
were calculated based on Equation (1)-(4), 
respectively. 

NDVI ¼
ρNIR � ρR
ρNIR þ ρR

(1) 

EVI ¼ 2:5�
ρNIR � ρR

ρNIR þ 6ρR � 7:5ρB þ 1
(2) 

NIRv ¼ NDVI� ρNIR (3) 

NDPI ¼
ρNIR � 0:74� ρR þ 0:26� ρSWIR

� �

ρNIR þ 0:74� ρR þ 0:26� ρSWIR
� � (4) 

where ρNIR, ρR, ρB, ρSWIR represent the surface reflec
tance of the near-infrared band (841–876 nm), red 
band (620–670 nm), blue band (459–479 nm) and 
short-wave infrared band (1628–1652 nm), 
respectively.

Figure 1. Study area. (a) location map, (b) spatial distributions of winter wheat and phenology observation stations, (c) 
topographic map, (d) google earth image of the mountainous regions in the west of Henan province, (e) google earth image 
of the plains in the northeast of Henan province, (f) google earth image of the plains in the southeast of Henan province. The data 
sources of winter wheat distribution and winter wheat phenology stations refer to section 2.2.4 and Appendix A, respectively.
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To reduce the effects of clouds and atmospheric 
conditions on vegetation index time-series data, the 
change-weight filtering method (Zhu et al., 2012), 
which can effectively reduce noise and preserve crop 
phenology characteristics, was used to reconstruct the 
vegetation index time-series data with good quality.

Meteorological data
The meteorological data set CFSv2 (Climate Forecast 
System Version 2) was used in this study, which was 
released by the National Centers for Environmental 
Prediction (NCEP; Saha et al., 2014). The CFSv2 rea
nalysis product is produced by the Climate Forecast 
System, which is a fully coupled model representing 
the interaction between the Earth’s atmosphere, 
oceans, land, and sea ice. The temporal resolution is 
6 h, and the spatial resolution is 0.2°. The data set 
contains a variety of meteorological data worldwide 
since 1979 and was commonly used in related 
researches (Carbin et al., 2016; Pegion & Alexander, 
2013). Considering the growth and development of 
crops are mainly affected by temperature, moisture 
and sunlight conditions, the daily mean temperature 
2 m above the ground, total precipitation, mean spe
cific humidity, mean soil moisture content 5 cm depth 
below the surface layer and total short-wave solar 
radiation were used and computed on the Google 
Earth Engine platform in this study.

Phenology data
The phenology data used in this study were the spatial 
distributions of the start dates of four winter wheat 
phenological events in Henan province: the start date 
of regreening (BBCH 21), the start date of jointing 
(BBCH 31), the start date of heading (BBCH 51) and 
the start date of milking maturity (BBCH 73). The 
regreening date is the date when the leaves of winter 
wheat begin to turn green after overwintering. It is the 
date that marks the beginning of winter wheat growth, 
that is, the start of the growing season. The jointing 
date is the date when the stem of winter wheat begins 
to elongate fast, which indicates that winter wheat has 
entered a period of rapid growth. The heading date is 
the date when the fully developed spike of winter 
wheat extends out of the top leaf with the elongation 
of the stem, which marks the transition from vegeta
tive growth to reproductive growth. The milking 
maturity date is the date when the grain filling of 
winter wheat is complete, which indicates that winter 
wheat has ended its growth and entered the mature 
stage. According to the phenology calendar released 
by the Ministry of Agriculture and Rural Affairs of the 
People’s Republic of China (http://www.moa.gov.cn/), 
in Henan Province, these four dates usually occur in 
early March, early April, late April, and late May. 
These four dates are important time nodes during 

the growing season of winter wheat, and the demands 
of winter wheat for hydrothermal conditions vary 
greatly during these periods (Table S1).

The start date of regreening was extracted by the 
dynamic threshold method (White et al., 1997) based 
on NDVI time-series data, and the threshold was set as 
20%, which was verified to be suitable for extracting 
the regreening date of winter wheat (RMSE is about 
10 days; Gan et al., 2020). The start date of heading 
was provided by Huang et al. (2020), which was 
extracted by the accumulated temperature method 
with a high accuracy (RMSE is about 5 days). The 
start dates of jointing and milking maturity were gen
erated by adding a fixed duration (number of days) to 
the start date of regreening and the start date of head
ing, respectively. The fixed duration was obtained 
from local phenological observation data (see details 
in Appendix A).

Winter wheat map and yield statistics data
Since this paper focuses on the comparison of whole- 
season yield modelling and phenological piecewise 
yield modelling, we pursue a high user accuracy to 
ensure the classified winter wheat pixels are as much 
as possible the true winter wheat pixels. The winter 
wheat map used in this study (Figure 1) was the inter
section of the winter wheat maps in 2017 and 2018, 
which were both produced by a double threshold 
method (Huang et al., 2020; see details in 
Supplementary Materials). The spatial resolution is 
250 m. The overall accuracies of winter wheat maps 
in 2017 and 2018 are 90.0% and 89.2%, respectively. 
The producer accuracies are 87.5% and 85.4%, respec
tively. The user accuracies are 95.4% and 96.1%, 
respectively. The kappa coefficients are 0.80 and 0.79, 
respectively.

The county-level statistical data of winter wheat 
yield from 2017 to 2018 in Henan Province, China 
were downloaded from the EPS data platform (http:// 
olap.epsnet.com.cn/) as the reference data to train the 
yield estimation models and assess accuracy. To 
reduce the uncertainty from some counties with 
small winter wheat planting area, the top 100 counties 
with winter wheat planting area in Henan Province 
(the number of winter wheat pixels for each county is 
between 1721 and 34,005, and the winter wheat culti
vated area for each county is between 10.8 × 103 ha 
and 212.5 × 103 ha) were finally selected in this study 
(Figure 1).

Methods

This study was conducted on the county level and the 
spatial aggregation of the data was realized by calcu
lating the average value of pixels in each county. 
Therefore, the dependent variable is the winter wheat 
yield (kg/ha) in each county from 2017 to 2018, and 
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the independent variables are the spatial mean values 
of optimized vegetation indices or meteorological fac
tors corresponding to winter wheat pixels in each 
county from 2017 to 2018. The variable optimization, 
model building and accuracy assessment were con
ducted based on the samples from both years. In 
addition, to ensure the robustness of the results, 
these steps were also conducted based on the samples 
from each year respectively.

Variable optimization

Variable optimization was divided into two parts and 
based on the multiple linear regression model. The 
first part was the optimization of vegetation indices, 
and then the meteorological factors were optimized. In 
the optimization of vegetation indices, four vegetation 
indices, NDVI, EVI, NIRv and NDPI, as well as two 
calculation methods, the maximum value in a growth 
phase (VImax) and the mean value in a growth phase 
(VImean), were considered. The combination of vege
tation index and calculation method which showed 
the highest R2 with the county-level yield statistics 
was selected. Then the optimal vegetation index was 
combined with different meteorological factors to 
build multiple linear regression models with different 
independent variables. Finally, the multiple linear 
regression model was selected based on two criteria: 
(1) it showed the highest R2 with the county-level yield 
statistics; and (2) each independent variable of the 
model passed the P < 0.05 significance test. The inde
pendent variables of the selected model were consid
ered as the optimal input variables. The 
meteorological factors included daily mean air tem
perature (T), total precipitation (P), mean soil moist
ure content (SM), mean specific humidity (SH) and 
total solar radiation (SR). In addition, since the pre
cipitation, soil moisture content and specific humidity 
all characterize the water condition, only the variable 
with the highest R2 among them was selected when 
combined with other meteorological factors.

The growth and development process of winter 
wheat was divided into three phenophases: from 
regreening to joining, from jointing to heading and 
from heading to milking maturity. In each pheno
phase, the vegetation indices and meteorological fac
tors were optimized according to the above method. 
The selected variables in each phenophase were all 
used as independent variables to participate in the 
modelling.

Yield estimation models

To test whether the phenological piecewise modelling 
always performed better than the whole-season mod
elling based on different regression methods, in addi
tion to the traditional multiple linear regression 

(MLR), three commonly used and state-of-the-art 
machine learning regression models, artificial neural 
network (ANN), support vector regression (SVR) and 
random forest regression (RF), were selected in this 
study. ANN, SVR, and RF were implemented based on 
the “nnet”, “e1071”, and “randomForest” packages 
within the R environment software, respectively. The 
zero-mean normalization was conducted and the 
parameters were optimized by comparing the errors 
of the models with different combinations of para
meters (Table 1).

Multiple linear regression
Multiple linear regression is a linear regression model 
applied to the case that multiple independent variables 
jointly affect the dependent variable. Compared with 
the simple linear regression model, it is more effective 
and closer to reality (Sousa et al., 2007).

Artificial neural network
Artificial neural network imitates the natural neural 
network, and it can effectively solve the complex 
regression problem with a large number of correlated 
variables. The structure of an artificial neural network 
includes an input layer, multiple hidden layers and an 
output layer. Each hidden layer is formed by several 
artificial neural nodes, and the estimation error is 
transmitted to the feedforward neural network 
through the backpropagation algorithm. The weight 
of each node is adjusted through continuous iteration 
until the estimation error reaches an acceptable level 
(Tsai & Lee, 1999; Zhou, 1999).

Support vector regression
Support vector regression is a kind of regression mod
els based on the kernel function. When solving non
linear problems, low-dimensional variables are 
mapped to high-dimensional space by the kernel func
tion. By finding the optimal hyperplane (the sum of 
the distances from all points to the hyperplane is the 

Table 1. Parameter settings of the three machine learning 
regression models.

Models Parameters

Artificial Neural Network 
(ANN)

The number of hidden layers = 3 
The number of nodes in each hidden 

layer = 5 
Learning rate = 0.01 
Momentum = 0.4 
Error criterium = “LMS” 
Hidden layer = “Tansig” 
Output layer = “Tansig” 
Method = “BATCHgdwm”

Support Vector Regression 
(SVR)

Kernel = “radial” 
Gamma = 0.25 
Cost = 1 
Episode = 0.2

Random Forest (RF) The number of trees = 500 
Mtry = 3

342 X. HUANG ET AL.



shortest) in the high-dimensional space, the nonlinear 
problem is transformed into a linear problem (Bennett 
& Demiriz, 1998; Suykens & Vandewalle, 1999).

Random forest regression
Random forest regression is an ensemble learning algo
rithm, which uses the bootstrap resampling method to 
generate different sample subsets to build different deci
sion trees, and calculates the average of the prediction 
results of all decision trees as the final prediction result 
(Briem et al., 2001). It has become one of the most widely 
used machine learning regression models because it has 
few parameters, high prediction accuracy and can effec
tively solve the problem of interaction among indepen
dent variables (Leroux et al., 2019; Peng et al., 2020).

Accuracy assessment

This study adopted the 10-fold cross-validation 
method, and it was repeated 20 times to take the 
average of each accuracy indicator. The coefficient of 
determination (R2), BIAS, mean absolute error 
(MAE), root mean square error (RMSE), and relative 
root mean square error (RRMSE) were used as the 
accuracy indicators. Among them, R2 is used to eval
uate the goodness-of-fit of a model, and a larger R2 

indicates a better goodness-of-fit. BIAS is used to 
evaluate the deviation between the estimation and 
the reference. If the value is greater than 0, it indicates 
that the estimated result is overall greater than the 
reference result, and vice versa. MAE and RMSE are 
used to evaluate the overall absolute error between the 
estimation and the reference, and RRMSE is used to 
evaluate the overall relative error between the estima
tion and the reference. The smaller the absolute values 
of these four indicators indicate the smaller error and 
the higher accuracy. The calculations of the five indi
cators were shown in Equations (5)-(9), respectively. 

R2 ¼
cov Ŷ; Y
� �2

var Ŷ
� �

var Yð Þ
(5) 

BIAS ¼
PN

i¼1 Ŷ i � Yi
� �

N
(6) 

MAE ¼
PN

i¼1 Ŷ i � Yi
�
�

�
�

N
(7) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Ŷ i � Yi
� �2

N

s

(8) 

RRMSE ¼
RMSE

�Y
(9) 

where Ŷi is the estimated result of the i th sample, Yi is 
the corresponding reference value, �Y is the average of 
samples, N is the number of samples, cov Ŷ; Y

� �

represents the covariance between the estimated 
results and the references, and var Ŷ

� �
and var Yð Þ

represent the variance of the estimated results and 
the references, respectively.

In addition, the independent samples t-test was 
used to test whether there were statistically significant 
differences (P < 0.05) in the accuracies between the 
phenological piecewise models and the whole-season 
models. The experimental results being tested were the 
accuracy indicators (e.g. RMSEs) from 10-fold cross- 
validation (conducted 20 times). The Kolmogorov– 
Smirnov (K-S) test was performed in advance to verify 
that all samples were normally distributed.

Evaluation of the spatiotemporal transferability

In addition to the estimation accuracy, the spatio
temporal transferability of the whole-season mod
els and the phenological piecewise models were 
also compared. In the evaluation of temporal 
transferability, the data in 2017 was first selected 
as training data to build the models, and the data 
in 2018 was selected as test data to assess the 
accuracy. Then the data in 2018 was selected as 
training data, and the data in 2017 was selected as 
test data. It is to evaluate the ability of models to 
predict the winter wheat yield in other years 
whose samples did not participate in modelling 
(i.e. the temporal transferability). In the evaluation 
of spatial transferability, the 100 counties were 
randomly divided into two equal groups, and the 
two groups also took turns as the training samples 
to build the models or test samples to assess the 
accuracy. Correspondingly, it is to evaluate the 
ability of models to predict the winter wheat 
yield in other regions whose samples did not par
ticipated in modelling (i.e. the spatial transferabil
ity). The assessment indicators were R2, MAE, 
RMSE and RRMSE mentioned above.

Results

The optimal combination of variables for different 
models

For the whole-season model, the R2 between mean 
value of EVI (EVImean) within the growing season 
and yield was the highest (Figure S2a). After combin
ing the vegetation index with meteorological factors, 
the R2 was greatly improved (Figure 2). Among those 
combinations, the combination of air temperature, 
soil moisture content and solar radiation performed 
the best. The R2 was the highest and all independent 
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variables passed the significance test (P < 0.05). 
Therefore, the combination of EVImean, air tempera
ture, soil moisture content and solar radiation was the 
optimal combination for the whole-season yield 
model. Similar results were found based on samples 
from 2017 and 2018 respectively (Figure S3 & 
Table S2).

For the phenological piecewise model, EVI also 
performed the best among the four vegetation 
indices in each phenophase. Specifically, EVImax 

was the best choice in the period of regreening- 
jointing, and EVImean was the best choice in the 
periods of jointing-heading and heading-milking 
maturity (Figure S2b, c and d). However, the 
importance of meteorological factors was different 
in different phenophases (Figure 3 & Table 2). 
For the period of regreening-jointing, EVImax 

combined with soil moisture content performed 
the best. The independent variables all passed 
the P < 0.001 significance test and the R2 (0.42) 

Figure 2. The scatterplots between estimated yield and referenced yield for the multiple linear regression models based on 
different combinations of vegetation index and meteorological factors within whole-season.
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was higher than that of other combinations. For 
the period of jointing-heading, the combination of 
EVImean, soil moisture content and solar radiation 
was the best. For the period of heading-milking 
maturity, air temperature and solar radiation both 
significantly contributed to the yield model. 
Therefore, the combination of EVImax and SM in 
the period of regreening-jointing, EVImean, SM 
and SR in the period of jointing-heading, and 
EVImean, T and SR in the period of heading- 
milking maturity was the optimal combination 
for the phenological piecewise model. Similar 
results were found based on samples from 2017 
and 2018 respectively (Figure S4, Table S3 & 
Table S4).

The estimation accuracy for different models

In general, the accuracies of the phenological pie
cewise models were higher than that of the whole- 
season models (Figure 4). Except for SVR only with 
a little improvement (failed to pass P< 0.05 signifi
cance test), the accuracies of MLR, ANN and RF 
were all improved significantly (passed P< 0.05 sig
nificance test). The R2 increased by 4.3% to 7.6% 
among the three models, the absolute value of BIAS 
decreased by 19.9% to 33.3%, the MAE decreased 
by 7.1% to 8.4%, and the RMSE and the RRMSE 
decreased by 3.0% to 8.2%. Similar improvements 
were found based on samples from 2017 and 2018 
respectively (Figure S5).

The spatiotemporal transferability for different 
models

After spatiotemporal transfer, the accuracies of the 
whole-season models and the phenological piecewise 
models both decreased to some extent (Figure 5). 
After temporal (spatial) transfer, the R2 for the 
whole-season models and the phenological piecewise 
models decreased by 0.01 to 0.03 (0.04 to 0.05) and 
0.01 to 0.05 (0.03 to 0.05) among four regression 
models, respectively. The MAE increased by 23 kg/ 
ha to 89 kg/ha (28 kg/ha to 87 kg/ha) and 9 kg/ha to 
44 kg/ha (22 kg/ha to 67 kg/ha), respectively. The 
RMSE increased by 13 kg/ha to 79 kg/ha (23 kg/ha to 

Figure 3. The R2 of the multiple linear regression models established by different combinations of vegetation index and 
meteorological factors in different phenophases. (a) regreening-jointing (reg-jot), (b) jointing-heading (jot-hed), and (c) heading- 
milking maturity (hed-mlk).

Table 2. The significance between independent variables and 
yield in different phenophases.

Regreening-jointing Jointing-heading
Heading-milking 

maturity

EVImax*** EVImean*** EVImean***
EVImax***+T EVImean***+T*** EVImean***+T***
EVImax***+SM*** EVImean***+SM*** EVImean***+SM***
EVImax***+P*** EVImean***+P*** EVImean***+P**
EVImax***+SH** EVImean***+SH*** EVImean***+SH**
EVImax***+SR** EVImean***+SR EVImean***+SR***
EVImax***+T+SM*** EVImean***+T+SM*** EVImean***+T***+SM**
EVImax***+T+SR EVImean***+T**+SR EVImean***+T*** 

+SR***
EVImax***+SM*** 

+SR
EVImean***+SM*** 

+SR**
EVImean***+SM** 

+SR***
EVImax***+T+SM*** 

+SR
EVImean***+T+SM*** 

+SR**
EVImean***+T***+SM 

+SR***

***: P < 0.001; **: P < 0.01; *: P < 0.05. Note that the words in bold 
represent the optimal combination of variables.
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81 kg/ha) and 1 kg/ha to 58 kg/ha (27 kg/ha to 
70 kg/ha), respectively. The RRMSE increased by 
0.2% to 1.3% (0.4% to 1.3%) and 0.0% to 1.0% 
(0.4% to 1.1%), respectively.

Although the difference for decreased accuracies 
between the whole-season models and the phenological 
piecewise models was unobvious and varied depending 
on the specific regression model, the accuracies after 
spatiotemporal transfer for all four regression models 
based on phenological piecewise modelling were still 
higher than that based on whole-season modelling.

Discussion

The difference for the optimal combination of 
variables between the whole-season modelling 
and the phenological piecewise modelling

For winter wheat, temperature, water and sunlight 
are all important to its growth and development 
(Xiao et al., 2016). Therefore, the air temperature, 
soil moisture content, and solar radiation were all 
selected to build the whole-season models. 
However, the degrees of importance of these 
meteorological factors are different in different 

phenophases in our study, which may be related 
to the different demands of crops for hydrother
mal conditions in different phenophases and leads 
to the difference for the optimal combination of 
variables between the whole-season modelling and 
the phenological piecewise modelling.

During the period of regreening-jointing, win
ter wheat needs much water to differentiate its 
spike primordium, and the soil moisture content 
should reach 75%-85% of the field capacity (Song 
et al., 2006). Therefore, the soil moisture content 
may be the most important factor during this 
period. The jointing-heading is the period when 
winter wheat grows the fastest. The study area in 
this study can generally meet the needs of sun
light and temperature for the growth of winter 
wheat during this period, while the lack of water 
is an important factor restricting the growth of 
winter wheat in this area (Liu et al., 2018). 
Therefore, the meteorological factors that charac
terize the water condition show the highest 
importance during this period in our study. 
Similarly, Lei et al. (2010) found that the water 
deficit had a significant effect on the yield of 
winter wheat especially during the periods of 

Figure 4. The estimation accuracy for the whole-season models and the phenological piecewise models. * above the column 
indicates that there is a significant difference (P < 0.05) in the accuracy between the whole-season model and the phenological 
piecewise model based on this regression method.

Figure 5. Assessment of the spatiotemporal transferability for the whole-season models and the phenological piecewise models. 
Note that the change after transfer for R2 is decreased, while the change after transfer for the other indicators is increased.
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regreening-jointing and jointing-heading. 
Heading-milking maturity is a critical period for 
the maturity of winter wheat. During this period, 
the requirements for temperature, water and sun
light conditions are very strict. Too high or too 
low will both have a great negative impact on the 
growth of winter wheat. In our study, the tem
perature contributes the most among the meteor
ological factors during this period. This may be 
because the period of heading-milking maturity is 
the most sensitive temperature stage for wheat 
(Sánchez et al., 2014), and the high temperature 
stress is one of the most important influence 
factors (Duncan et al., 2015; Teixeira et al., 2013).

The difference for the accuracy between the 
whole-season models and the phenological 
piecewise models

Due to the different optimal combinations of variables, 
the accuracies for the phenological piecewise models 
and the whole-season models are different. Compared 
with the accuracies of whole-season models, the accura
cies of phenological piecewise models are higher. This 
may be explained by the stronger biophysical mechan
ism of phenological piecewise models. In addition to the 
different demands of crops for hydrothermal conditions 
in different phenophases mentioned above, the other 
reason is that the meteorological factors within the 
whole growing season cannot reflect the influence of 
adverse meteorological conditions in a certain pheno
phase. For example, the range of suitable temperature 
for the growth of winter wheat is 4–6°C during the 
period of regreening-jointing, 12–16°C during the per
iod of jointing-heading, and 18–22°C during the period 
of heading-milking maturity (Gong, 1988; song et al., 
2006). The suitable temperature for the growth of win
ter wheat varies greatly in different phenophases, so the 
mean temperature during the whole growing season 
cannot effectively reflect whether the growth of winter 
wheat is always in a suitable condition. Therefore, the 
phenological piecewise modelling is closer to the actual 
growth process of crops and can achieve a higher 
accuracy.

The difference for the spatiotemporal 
transferability between the whole-season models 
and the phenological piecewise models

In general, there is little difference for spatiotemporal 
transferability between the whole-season models and 
the phenological piecewise models. However, the dif
ference for the spatiotemporal transferability between 
the specific regression models (i.e. MLR, ANN, SVR, 
RF) is relatively obvious. The spatiotemporal transfer
ability of SVR and RF based on phenological piecewise 
modelling is stronger than that based on whole-season 

modelling, but for MLR and ANN, the results are 
opposite. Compared with the whole-season modelling, 
the phenological piecewise modelling needs more 
independent variables and contains more crop growth 
information. In this case, the spatiotemporal transfer
ability or generalization ability of MLR and ANN is 
limited due to their disadvantage of easy overfitting 
(Karystinos & Pados, 2000; Lawrence & Giles, 2000). 
In contrast, the spatiotemporal transferability of SVR 
and RF is stronger by their advantage of applicable to 
handle high-dimensional data (Belgiu & Dragut, 2016; 
Chang & Lin, 2011; Maulik & Chakraborty, 2013).

The performance of different vegetation indices 
and regression methods

Among the four vegetation indices, EVI and NIRv 
performed the best in winter wheat yield estima
tion, followed by NDPI and NDVI. This may be 
related to the characteristics of the vegetation 
indices. NDVI can effectively reflect the greenness 
of vegetation, but it is easily saturated and suscep
tible to atmospheric conditions and soil back
ground. Compared with NDVI, EVI solves these 
problems to a certain extent and can better reflect 
the growth status of vegetation. It shows a higher 
accuracy in yield estimation, which is consistent 
with the results of Johnson (2016) and Sharifi 
(2020). NDPI is mainly designed to eliminate the 
interference of soil background changes on vegeta
tion signals in the early growth phase of vegetation 
(Wang et al., 2017), and its ability to resist the 
interference of soil background is stronger than 
that of NDVI (Chen et al., 2019). However, in the 
early growth phase of crops, the contribution of 
vegetation index to yield estimation is limited 
according to our results, which may explain there 
is no obvious advantage in yield estimation when 
comparing NDPI with other vegetation indices. 
NIRv can reflect the photosynthesis of vegetation 
because of its high correlation with the sun- 
induced chlorophyll fluorescence. Therefore, it has 
great advantages in estimating the gross primary 
productivity and yield of crops (Peng et al., 2020; 
Wu et al., 2020).

Among the four regression methods, RF per
formed the best, with the highest accuracy, signifi
cant improvement, and the best spatiotemporal 
transferability. This is similar to the results of 
Peng et al. (2020) and Guo et al. (2021). The 
response function between crop growth rate and 
meteorological factors generally presents 
a nonlinear relationship (Soltani & Sinclair, 2012). 
In this case, the machine learning regression meth
ods, which are more suitable for building nonlinear 
relationships, perform better in crop yield estima
tion (Ludwig & Asseng, 2006). Moreover, there are 
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many factors affecting crop growth, and the 
machine learning regression methods also perform 
better in dealing with the problem of the strong 
interaction between independent variables. In addi
tion, compared with the other two machine learning 
regression methods (i.e. ANN and SVR), RF can 
better solve the curse of dimensionality. It requires 
fewer parameters and is less dependent on training 
data (Belgiu and Dragut, 2016), which may explain 
the superiority of RF.

Limitations and prospects

In this study, we aim to compare the difference 
between the whole-season modelling and the pheno
logical piecewise modelling for winter wheat yield 
estimation. Except for input variables, other aspects 
of the two modelling schemes are generally identical. 
However, if the objective is to estimate crop yield, 
the uncertainties from data sources (Zhang et al., 
2019), parameter settings of models (Rodriguez- 
Galiano et al., 2015), scale effects (Tarnavsky et al., 
2008), or some other factors should be more care
fully considered. Moreover, a main potential limita
tion of this study is the resolution of MODIS data we 
used. The fields of winter wheat cultivated in the 
plains in the east of our study area are large and 
concentrated (Figure 1e & 1f), thus the resolution of 
MODIS can be well matched. However, in the 
mountainous regions in the west of our study area, 
there are a few small and scattered winter wheat 
fields cultivated (Figure 1d). These fields may be 
influenced by sub-pixels due to the sparse spatial 
resolution of MODIS. In this case, the remote sen
sing data with finer resolution (e.g. Sentinel-2) can 
be used to solve the problem. In addition, the phe
nological piecewise modelling requires additional 
phenology data. Considering the availability of phe
nology data and the relatively fixed time frame of 
crop growth, the phenophases distinguished by 
a fixed time frame may be also effective. Finally, it 
was found in this study that the phenological piece
wise modelling is better than the whole-season mod
elling for winter wheat yield estimation, while for 
other crops and at other scales (e.g. the filed scale), 
the performance of phenological piecewise model
ling needs to be further evaluated.

Conclusions

In this study, the optimized variables, accuracy and 
spatiotemporal transferability of the phenological pie
cewise models were compared with that of the whole- 
season models. The accuracies of the phenological 
piecewise models were higher than that of the whole- 
season models. The difference for spatiotemporal 
transferability between the phenological piecewise 

models and the whole-season models was little and 
the results varied depending on the specific regression 
model. However, the accuracies after spatiotemporal 
transfer for the phenological piecewise models were 
still higher than that for the whole-season models.

About the optimized variables, the enhanced vege
tation index, air temperature, soil moisture content, 
and solar radiation were selected for the whole-season 
modelling, while for the phenological piecewise mod
elling, the optimal combinations of variables in differ
ent phenophases were different. It was mainly related 
to the different demands of crops for hydrothermal 
conditions in different phenophases. The phenological 
piecewise model has stronger biophysical mechanism 
and we highlight the empirical yield estimation mod
els in the future should considered it.
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Appendix A Determination of the duration of 
phenophases

The fixed durations from regreening to jointing and heading 
to milking maturity were obtained from the observation 
data of 35 winter wheat phenology stations in Henan 
Province (Figure 1) from 2017 to 2018. The phenology 
stations were established by the China Meteorological 
Administration (CMA). The stations monitor the growth 
and development status of field crops through direct human 
observation. The specific records include the crop variety, 
the name of the crop development stage and its date, the 
anomaly of the development stage, etc.

A total of 61 (recording both regreening and jointing 
dates) and 63 (recording both heading and milking 
maturity dates) station-year samples were used. 
Considering the days from regreening to jointing and 
heading to milking maturity recorded by most stations 
did not vary greatly (the differences between the upper 
quartiles and the lower quartiles in Figure A1 were 
within 10 days), the median value of samples was 
taken as the corresponding fixed duration (i.e. 
26 days for the duration from regreening to jointing 
and 34 days for the duration from heading to milking 
maturity).

Figure A1. The days from regreening to jointing (reg-jot) and heading to milking maturity (hed-mlk) recorded by phenology 
stations from 2017 to 2018. n: the number of samples.
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