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Abstract: The reliable prediction of corn yield for the United States of America is essential for effective
food and energy management of the world. Three satellite-derived variables were selected, namely
enhanced vegetation index (EVI), leaf area index (LAI) and land surface temperature (LST). The
least absolute shrinkage and selection operator (LASSO) was used for regression, while random
forest (RF), support vector regression (SVR) and long short-term memory (LSTM) methods were
selected for machine learning. The three variables serve as inputs to these methods, and their efficacy
in predicting corn yield was assessed in relation to evapotranspiration (ET). The results confirmed
that a high level of performance can be achieved for yield prediction (mean predicted R2 = 0.63) by
combining EVI + LAI + LST with the four methods. Among them, the best results were obtained by
using LSTM (mean predicted R2 = 0.67). EVI and LST provided extra and unique information in peak
and early growth stages for corn yield, respectively, and the usefulness of including LAI was not
readily apparent across the whole season, which was consistent with the field growing conditions
affecting the ET of corn. The satellite-derived data and the methods used in this study could be used
for predicting the yields of other crops in different regions.

Keywords: EVI; LAI; LST; LSTM; MODIS

1. Introduction

The global food supply chain is facing increasing pressure from sustained population
growth, climate change and changes in economic structure [1]. The prediction of crop
yield at a regional scale is an important topic in agricultural studies, which can aid the
government in evaluating the demand and supply of domestic agricultural products [2],
and also help farmers make informed management and financial decisions [3]. As food,
feed, an industrial grain crop and the third most important cereal crop worldwide after
rice and wheat, corn is easy to process, readily digested and costs less to produce than
other cereals, occupying an important position in the world economy. The United States of
America (USA) was the largest corn producer in the world with an annual production of
0.366 billion metric tons in the 2018–2019 growing season (GS). Thus, the timely, convenient
and reliable prediction of corn yield in the USA is of great significance for both regional
and global food security.

Satellite remote sensing is an effective tool for predicting crop yields at large scales
by monitoring crop growing conditions and growth environments [4,5]. Thus, satellite-
derived data can be divided into data related to growing conditions, such as vegetation
indices, photosynthetic activities [6,7], and phenology [8–10], and data related to growth
environments, such as heat [11] and water stress [12,13]. Capturing crop growing conditions
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by use of spectral reflectance characteristics, the enhanced vegetation index (EVI) is the most
widely used and classic vegetation index, which has been considered to be less sensitive to
the background effects of the atmosphere and soil than the normalized difference vegetation
index (NDVI) [14]. Defined as the one-sided green leaf area per unit ground area for
broadleaf canopies, leaf area index (LAI) can be used for measuring the quantity and
quality of canopy cover, which in turn has been related to plant physiological processes,
such as photosynthesis and transpiration [15]. Providing a measure of plant heat stress,
land surface temperature (LST) has also been widely accepted as an indicator of water stress
in field crops [16]. Canopy temperature is directly associated with transpiration. Leaves
cool down when the plant transpires and evaporates water. The cooling of leaves during
evapotranspiration (ET) will then lower the surface temperature of the canopy. If moisture
is restricted and transpiration is reduced, leaves will absorb radiation, leading to a rise in
the surface temperature of the canopy. With the advancement of research, investigators
have tried to use the complementary nature of EVI and LST [17–19] or EVI and LAI [20]
in combination to predict crop yield. However, a limited number of studies have used all
three variables in combination for analytical purposes.

As the satellite-derived data are sometimes affected by the same abiotic factors, or
inter-related with each other, interpretation can be difficult. For example, the effects of
temperature and soil moisture on evapotranspiration (ET) are mediated by plant leaves
(LAI) [21], with LAI, in turn, sensitive to changes in EVI [22]. LAI also affects soil tem-
perature, air temperature, relative humidity and the microclimate of the plant canopy. In
fact, it is not clear how the information from the three satellite-derived indices singularly
and interactively confounds the interpretation of the final corn yield at a large scale. Some
studies have explored the roles of satellite-based growing conditions and environment
monitoring data in relation to the prediction of crop yields. However, the existing studies
based on the combined application of two satellite-derived indices (i.e., paired indices) did
not explain the relationship between these data; more specifically, why these data can be
combined and the associated crop growth principles involved.

Here, it was hypothesized that EVI, LAI and LST make both unique and shared
contributions to the prediction of yield from an ET perspective. Closely related to crop
yield, ET is an important metric for studying the relationship between crop yield and water
content and represents the production capacity of crops [23], which can be regarded as the
result of the comprehensive impact of many key environmental factors on crops [24]. As
an important link for water movement in the soil–plant–atmosphere system, ET is mainly
affected by soil moisture in the soil system, crop leaf conditions in the crop system as well as
solar radiation in the atmospheric system. Scholars analyzed the factors influencing actual
ET in addition to soil moisture (monitored by temperature vegetation dryness index, TVDI)
and solar radiation [23]. Soil moisture represents the soil system, while solar radiation
represents the atmospheric system, which simply simulates the soil–atmosphere system
to estimate crop yield. However, the water movement of crops involves a continuous
system of soil–crop–atmosphere. In order to explain the effect of water stress on crop
yield from an ET perspective, consideration should be given to all three components of
the soil–crop–atmosphere system. In the crop system, crop coverage and the number of
leaf stomata also have an impact on ET. Larger coverage means more exposure of leaves to
light, causing increased stomatal density (number of stomata per unit of area) and stomatal
index (ratio of stomata to epidermal cells plus stomata), which enhance the intensity of
water exercise [25]. LAI can describe the degree of canopy coverage, which provides
a measure of foliage density and has been closely linked to the photosynthetic and ET
capacities of plants [26,27]. TVDI based on the relationship between EVI and LST can be
used to indirectly assess crop water stress [28]. Nevertheless, simulating dry/wet edges to
calculate TVDI is probably problematic, as satellite images are lacking in sufficient pixels
to identify the dryness and wetness extremes of different coverages [29]. Hence, EVI and
LST should be used separately to represent soil moisture. As satellite data can dynamically
capture crop growing conditions and environments when used singly or in combination,
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the three satellite-derived indices were selected as the surrogate indicators of plant–soil
water relations and, hence, crop ET. In the case that they have commonly shared and
complementary information to contribute to the prediction of yield, the focus was also put
on determining their contributions to the prediction of corn yield in the USA.

Methods of crop yield prediction can be summarized as empirical and process-based
models [19] that both have their pros and cons and can achieve good prediction. The rapid
development of remote sensing techniques greatly benefits empirical models [30–33] which
include statistical regression and machine learning (ML). Compared with the process-based
model, empirical models provide a simpler alternative to spatially explicit studies and have
the advantages of simplicity, fewer inputs required and relatively high prediction power
in the case of sufficient training data [19]. Support vector regression (SVR), random forest
(RF), neural networks (NN) and other ML methods have demonstrated their powering
performance in the prediction or estimation of crop yield [33–36]. Different from conventional
regression models, ML methods are capable of deep mining features and can capture nonlinear
relationships between prediction or estimation variables and crop yield [19,33,36,37]. Called
long short-term memory (LSTM), a specific variation of NN has been more recently noticed in
yield prediction due to its large capacity to cope with sequential data [17].

In this study, EVI, LAI and LST were utilized to build statistical models using three
ML methods and a linear regression (LR) method based on influencing factors for ET. The
three ML methods used for this purpose were SVR, RF and LSTM, while the LR method
was the least absolute shrinkage and selection operator (LASSO) used to predict corn yield.
The following questions need to be solved:

(1) Do the performances of models gradually improve with the input of each satellite-
derived index?

(2) Does the addition of data with time during the GS improve the performance of
models with regard to the prediction of corn yield?

(3) What are the unique and shared contributions from temporal EVI (LST and LAI)
data to the prediction of corn yield in the USA?

(4) Are the ET-related assumptions with regard to satellite-derived indices (i.e., EVI,
LST and LAI) consistent with the actual factors affecting ET and, hence, corn yield?

(5) Do ML methods perform better than the LR method in predicting corn yield?

2. Materials and Methods
2.1. Study Region

The focal area for the study was the Corn Belt of the USA. A total of 766 agricultural
counties selected for the study were located in 12 states, namely Minnesota, South and
North Dakota, Wisconsin, Michigan, Nebraska, Iowa, Illinois, Indiana, Ohio, Kansas and
Missouri, which accounted for 89% of US corn production in 2016 [19]. The distribution of
these counties is shown in Figure 1.
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2.2. Datasets
2.2.1. Crop Yield and Area

County-level corn yields were obtained from the National Agricultural Statistics
Service (NASS) of the US Department of Agriculture (USDA) (https://quickstats.nass.usda.
gov/ (accessed on 21 April 2019)). The yield unit was converted from bushels acre−1 to
kg ha−1. As some counties had no individual annual yield data, the total number of yield
samples was n = 6783 (i.e., S number of years with data per county from 2008–2018), which
was less than the theoretically possible n = 8514. Crop planting coverage was obtained from
the Cropland Data Layer (CDL, http://nassgeodata.gmu.edu/CropScape/ (accessed on 21
April 2019)) with a 30 m resolution. CDLs needed to be reprojected to match the geographic
projection of moderate resolution imaging spectroradiometer (MODIS, Collection 6) data,
which were used to distinguish pixels dominated by corn from those dominated by other
land cover types.

2.2.2. Satellite Data

Ordered from the National Aeronautics and Space Administration (NASA) (https://
ladsweb.modaps.eosdis.nasa.gov/ (accessed on 12 October 2019)), three MODIS-based datasets
(i.e., EVI, LST and LAI) included four tiles for the USA from 2008–2018 (MODIS tile numbers
h10v04, h11v04, h10v05 and h11v05), which were reprojected to the universal transverse
mercator (UTM) using the MODIS reprojection tool (MRT).

EVI [36], LST (daytime) and LAI were a composite dataset of 16, 8 and 8 days, with
a spatial resolution of 1000 (i.e., MYD13A2 product), 1000 (i.e., MYD11A2 product) and
500 (i.e., MYD15A2H product) m, respectively. All data were collected by the Aqua
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satellite which collected data at the time of maximum atmospheric evaporative demand
(approximate satellite overpass: 14h30). This condition ensured that EVI, LST and LAI data
were obtained for the time of day when ET was the greatest.

In the 16- or 8-day time-series images for EVI, LST and LAI, monthly images were
obtained by averaging four EVI, two LST or two EVI composite images [38,39]. For monthly
time-series images, EVI, LST and LAI values were extracted from corn pixels identified
using CDL data and then averaged to obtain mean values for each county [40].

2.3. Methods

An advanced method of LR and three representative ML methods were tested to
analyze and describe the relationships between yield and three selected satellite-derived
indices (i.e., EVI, LAI and LST). The selected methods were as follows: LASSO, SVR, RF
and LSTM.

2.3.1. LASSO

As a regularized linear regression method using shrinkage and selection, LASSO
was selected as a benchmark model relative to the three ML algorithms. In addition, it
minimized the absolute value sum of coefficients by imposing a constraint on model param-
eters causing regression coefficients for some variables to shrink toward zero, ultimately
resulting in a parsimonious model [41]. Moreover, LASSO performed automated feature
selection and introduced L1 regularization to avoid overfitting during the construction of
the yield estimation model. Due to the autocorrelation of input indices (i.e., EVI, LST and
LAI), the LASSO method was used to automatically remove redundant information.

2.3.2. SVR

SVR is a regression algorithm used to find an optimal regression plane where sample
points are closest to it. The key to the SVR algorithm is the choice of the kernel function,
which can be either linear or nonlinear according to the relationship between target sample
values, and input features. A linear model was subsequently built in feature space for
balancing the minimization of errors and overfitting. The optimized kernel function was
adopted to determine whether the relationships between the three satellite-derived indices
and yield were linear or nonlinear.

Four kernel functions (liner, polynomial, radial basis and sigmoid) were modeled, and
the kernel function with the best model performance was selected as the modeling kernel
function. It was necessary to “tune” the overfitting penalty (value range and step size, 1–10
and 1) and gamma (0–1, 0.02), independent term (−3–3, 0.2) and polynomial degree (1–7, 1)
for these kernel functions.

2.3.3. RF

RF is a supervised ensemble algorithm where every input feature is trained using
its respective target value, whose performance mainly depends on the establishment of
numerous decision trees based on input features, and target values selected randomly and
integrated for regression. The number of trees in the “forest” (value range and step size,
10–500 and 50), the maximum depth of trees (10–100, 5) and the maximum number of
features (1–number of variables, 1) to consider in the case of looking for the best split were
three user-defined hyper-parameters needing to be tuned. With low sensitivity to outliers
and high computational efficiency, RF is not prone to overfitting [42], which is insensitive
to multi-collinearity and can be used to efficiently analyze high-dimensional datasets for
significant variables. These properties made it a suitable analytical tool for use in the three
satellite-derived indices (i.e., EVI, LST and LAI) for the six-month GS.
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2.3.4. LSTM

As a recurrent neural network (RNN) where a sequence of inputs are processed at
nodes with directed connections, LSTM networks can be used to identify important features
related to time-series because of maintaining a chain structure incorporating time steps
in crop yield modelling [17,43]. Each step takes information from the previous one and
outside input (from feature space–new EVI, LST and LAI values), and provides output for
the next one. In addition, the algorithm can retain the key information of input signals
during the training process and ignore less important aspects. The LSTM model for corn
yield estimation was implemented using TensorFlow, an open-source ML library in Python.

We first defined three bi-directional LSTM layers to learn time-continuous and satellite-
based input features, and a fully connected layer with one neuron, which was used to
output a yield prediction value (pre1). Then, the geographic location, named county ID,
was considered to have effects on crop growth, which was learned by two fully connected
layers with one output layer of one neuron activated by the sigmoid function, obtaining
a range of values (0, 1) (pre2). Lastly, pre1 was regulated by pre2 to derive the final yield
(pre2 × pre1).

Specific parameter settings were as follows:
(1) Neurons: Tuning the number of neurons on each LSTM layer and one fully con-

nected layer;
(2) Regularization: L2;
(3) Loss function: Huber;
(4) Optimizer: Adam;
(5) Epoch: The number of epochs was set at 1000. The training applied the EarlyStop-

ping callback function from Keras API [17], with a patience parameter (the number of
epochs without improvement after which training was stopped) equivalent to 100 to
avoid overfitting;

(6) Data dividing: We assumed that the prediction year’s yield was strongly correlated
with the yield of the previous year, but with a progressively weaker correlation for each
preceding year, for a period of three years. The proportion of training samples in each year
was different, with most training samples obtained from the year preceding the prediction
year. For example, the proportions of training samples for the years 2008–2016 were
1:2:4:6:8:10:12:14:16, with 2018 as the prediction year and 2017 as the validation year.

2.4. Experiment Design

Data were preliminarily explored by determining the spatiotemporal pattern of corre-
lations between different satellite-derived indices and corn yield and selecting significant
months for yield estimation. The relationship metric used was the Pearson correlation
coefficient (r).

(1) Temporal correlation analysis: The monthly county-level correlations between
yield and different indices in all years were calculated to investigate whether corn yield
was similarly or uniquely sensitive to satellite-derived indices in different months.

(2) Spatial pattern of correlation analysis: To further investigate whether spatial differ-
ences existed in yield–satellite index relationships, the month with the highest correlation
was selected according to the absolute value, and the spatial pattern of this correlation for
all counties was examined in that month.

Three groups of experiments were designed using seven inputs and four empiri-
cal methods to address the research questions mentioned in this paper. Seven inputs
were four combinations of indices, namely EVI + LST + LAI, EVI + LST, EVI + LAI, and
LST + LAI, and three individual indices, namely EVI, LST and LAI, while four empirical
methods included one method of LR (LASSO) and three nonlinear methods of ML, namely
SVR, RF and LSTM.

(1) The first research question was answered by the first group of experiments. That is,
was the performance of the yield prediction model affected by the number of indices
used as input variables?
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(2) The second question was answered by designing the second group of experiments that
focused on the temporal progression of model performance for successive months and
was used to highlight predictive performance changes within the season of the model
for corn yield. For any month during the GS, satellite data from the beginning of the
GS to the current month were used as inputs to predict the corn yield at harvest. The
approach allowed for the determination of the progression in model performance for
different satellite data inputs. These results helped identify the added value of satellite
data over time for the prediction within the season. In addition, the optimal time
during the GS could be identified for predicting corn yield using different methods
and inputs. For example, the earliest month for obtaining an accurate corn yield
estimate could be identified at the county level.

(3) The third group of experiments was designed to investigate how satellite data con-
tributed to yield prediction in different growing stages (the third question). Three
growing stages were defined for use in this study:

(a) The early growing stage (GSearly) (Planting–Jointing, May–June);
(b) The peak growing stage (GSpeak) (Jointing–Dough, July–August);
(c) The late growing stage (GSlate) (Dough–Harvest, September–October).

To assess the influence of three satellite-derived indices in different growth stages
on crop yield estimation, one or two satellite-derived index datasets from the whole GS,
but only one satellite-derived index dataset during one specific growing stage about the
following three options, were used.

Option 1: Only one satellite-derived index dataset was used during the GSearly (“one
satellite in the early stage + one or two satellites in the whole season”);

Option 2: Only one satellite-derived index was used during the GSpeak (“one satellite
in the peak stage + one or two satellites in the whole season”);

Option 3: Only one satellite-derived index was used during the GSlate (“one satellite
in the late stage + one or two satellites in the whole season”).

We only applied the three methods (LASSO, SVR and RF) to the satellite-derived
indices, and then compared the predicted R2 of the above three options model results with
the benchmark model results. The benchmark model results were obtained with one or
two satellite-derived indices of the whole GS. The experiment determined the stage where
one satellite-derived index had more additional value for final yield prediction.

2.5. Model Training and Evaluation

The three variables were normalized to have a mean of zero and unit standard devia-
tion (SD) before model training, making it possible to compare the three satellite-derived
index variables in models. The performance of crop yield models is dependent on their pre-
dictive power for real-world yield in a future year. Thus, the yield prediction performance
of each model was evaluated by an out-of-sample test, to be specific, a “leave-one-year-out”
cross-validation (LOYO-CV) test [31]. With 11 years of data (2008–2018) available, 10 years
were used to train models, with one year removed to be used later as an independent
dataset for testing purposes. We determined the best hyper-parameters for the LASSO,
SVR and RF methods from empirical candidates, based on the cross-validated R2 values
calculated by applying three-fold cross-validation using only training data. The whole
process was repeated 11 times, namely once for each of the 11 years of data. The LSTM
method was also trained by taking the LOYO-CV approach.

We applied the optimized models to the testing dataset and calculated the predicted R2,
which was then used to compare the performance of different models for yield estimation
for the first experiments. In the second and third groups of experiments, the mean predicted
R2 values were used for comparing the performances of different models and testing the
contributions of different data inputs.
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3. Results
3.1. Spatiotemporal Correlations between Different Variables and Corn Yield

The spatiotemporal patterns of correlations between corn yield and satellite-derived
index variables are shown in Figure 2. Linear correlations between corn yield and input
variables provided important clues regarding the importance of predictors. The correlation
for the temporal evolution of sequential variables is presented in Figure 2 (left panels).
The three sources of satellite data displayed similar patterns of variation. The correlation
between EVI or LAI and corn yield first increased steadily until the peak around July
or August, and then decreased. The rise and fall in LST had an adverse trend in the
relationship between EVI or LAI and yield. In general, EVI and LAI variables related to
crop growth both had the highest positive correlation with yield in July or August, but
then the highest negative correlation in May and October, which might indicate that yield
was most sensitive to the intensity of growth, the growth of seedlings and the degree of
attenuation in the GSpeak (July–August), GSearly (May) and GSlate (October), respectively.
Generally, the thermal environment related to LST had the highest negative correlation
with yield in August and the highest positive correlation in May, indicating that yield was
most sensitive to high temperature in the GSpeak and low temperature in the GSearly. In
addition, the maximum correlation with the highest absolute value occurred around the
GSpeak (i.e., July or August) for each variable.

The spatial patterns of correlations between corn yield and different variables (right
panels in Figure 2) during the GSpeak were homogenously high for all the three satellite-
derived indices (Table 1), with the exception that small counties in the north and west were
less well correlated with yield. The spatial correlation for LST was the opposite of that
for EVI and LAI (Table 1). The negative correlation between LST and EVI (LAI) across a
variety of spatial and temporal scales was previously reported by Gao et al. [44]. Overall,
the spatiotemporal patterns of relative similarity for the whole Corn Belt indicated that one
model could be constructed for the whole region rather than different models for different
sub-regions within the Corn Belt at the county level.

Table 1. R values for the correlations of each two indices for all counties. The correlations were the r
values between each satellite-derived index during the peak GS and corn yield in each county (right
panels in Figure 2).

EVI LST LAI

EVI - −0.56 * 0.38 *
LST - - −0.49 *
LAI - - -

* Significant at p < 0.01.
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Figure 2. Changes in the spatiotemporal correlations (r values) between monthly values for satellite-
derived indices during the GS and corn yield ((a)—EVI, (b)—LST and (c)—LAI). The left panel is
the temporal pattern of the correlation between indices and corn yield. The right panel is the spatial
pattern of the correlation between indices and maize yield, and the indices are the indices for the
months with the largest correlation with corn yield in the temporal pattern (the red dots).
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3.2. The Relationships between the Three Indices and ET and the Relationship between ET
and Corn Yield

There is a positive correlation between ET and EVI (Figure 3). Among the twelve
states, six states had a positive linear correlation, four states had a positive nonlinear
correlation, and two states had a negative linear correlation. Among the ten states with a
positive correlation, four states had a significant relationship (r > 0.30), and six states had
an insignificant relationship. This relationship reflects that the more corn canopy coverage
there is, the stronger the photosynthesis will be, the more water that needs to be absorbed
and transported, and the more water that will be lost.

There is a negative correlation between ET and LST (Figure 3). Among the twelve
states, six states had a negative linear correlation, four states had a negative nonlinear
correlation, and two states had a positive linear correlation. Among the ten states with
a negative correlation, five states had a significant relationship (r > 0.30), and five states
had an insignificant relationship. Increased temperature leads to increased transpiration,
making the stomata close to prevent water loss of corn leaf cells.

There is a positive correlation between ET and LAI (Figure 3). Among the twelve
states, seven states had a positive linear correlation, four states had a positive nonlinear
correlation, and one state had a negative linear correlation. Among the eleven states with a
positive correlation, two states had a significant relationship (r > 0.30), and nine states had
an insignificant relationship. The larger LAI, the more exposure of leaves to light, and the
more water is transpired into the atmosphere through stomata.

Corn yield correlates positively with ET (Figure 3). Among the twelve states, seven
states had a positive linear correlation, four states had a positive nonlinear correlation, and
one state had a negative nonlinear correlation. Among the eleven states with a positive
correlation, four states had a significant relationship (r > 0.30), and seven states had an
insignificant relationship. The more ET, the more water is consumed by corn growth, and
the higher the productivity and yield.

3.3. Multi-Model Performance in Corn Yield Estimation

Figure 4 shows the results of performance in the first group of experiments when the four
methods were applied to different inputs with all month data. The ranking of these inputs
from high to low was as follows: EVI + LST + LAI (mean x and SD of all predicted R2 values
for the four methods, 0.64 and 0.08) > EVI + LST (x, 0.61; SD, 0.08) > EVI + LAI (x, 0.61; SD,
0.09) > EVI (x, 0.59; SD, 0.08) > LST + LAI (x, 0.56; SD, 0.11) > LST (x, 0.49; SD, 0.13) > LAI
(x, 0.45; SD, 0.12). As expected, the EVI + LST + LAI input performed best, followed by the
paired indices and the single-index variable. However, the single-index EVI input exhibited
better performance than the paired LST + LAI input, suggesting that EVI was better for corn
yield estimation than the combination of LST and LAI. For the model performance with
paired inputs, the EVI + LST combination performed best, better than either the EVI + LAI or
LST + LAI combination. For single-index inputs, EVI data performed better than LST and
LAI ones. The results in Figure 4 answered the first research question, namely whether
the combination of all three satellite-derived data inputs showed the best performance in
estimating corn yield, followed by paired satellite data combinations.
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The ranking of the four methods from high to low was as follows: LSTM (mean x and
SD of all predicted R2 for all different inputs, 0.61 and 0.11) > RF (x, 0.57; SD, 0.12) > SVR
(x, 0.55; SD, 0.11) > LASSO (x, 0.53; SD, 0.12). Overall, the LSTM NN analysis produced
the highest R2 values, followed by RF and SVR, with LASSO producing slightly inferior
performance. These results were consistent with those reported in other studies [33], noting
that nonlinear methods (i.e., LSTM, RF and SVR) outperformed the method of LR (i.e.,
LASSO). This could be attributed to the nonlinear nature of most correlations between
yield and different indices.
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Figure 4. Model performance (predicted R2) for the four methods using various combinations of
satellite-derived index inputs in the whole GS. Different colors represent different methods (blue
green, red and yellow for LASSO, SVR, RF and LSTM, respectively). R2 values in Box plots were
derived from LOYO-CV. Gray represents the R2 value; the lighter the gray, the higher the R2.

The ranking of model performance for the four methods and different inputs has
been shown in Figure 5. The three-fold EVI + LST + LAI combination and LSTM method
produced the highest R2 value (mean for the results derived from LOYO-CV) of 0.67,
followed by EVI + LAI and LSTM with an R2 value of 0.67 and EVI + LST + LAI and RF
with an R2 value of 0.65. For the single-index inputs, EVI and LSTM achieved the best
results with an R2 value of 0.63, which was higher than most models. LSTM produced
the best predictive performance of the four methods, when applied to all different inputs,
except for LST. When applying LASSO and SVR, choosing EVI + LST + LAI allows for
optimal yield estimation.
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Figure 5. The ranking of model performance (predicted mean R2) for the four methods using different
satellite-derived index inputs for the whole growing season.

3.4. Quantification of Unique and Shared Information from Different Satellite Data

Figure 6 shows the contribution of sequential information on satellite-derived indices
(EVI, LST and LAI) to the prediction of corn yield during different growth stages (GSearly,
GSpeak and GSlate).

First, the conditions of one index dataset for all months (i.e., the whole GS) and one
index dataset for only one specific growth stage were described.

(1) The models constructed using EVI for all months and LAI for a specific growth
stage showed an increased R2 value ranging from 0.00 to 0.02 (Figure 6a). All the R2 values
for each method in the three stages improved slightly or even declined (bars above or below
the solid line in Figure 6a) after the combination of a specific LAI and all EVI, meaning that
LAI throughout the whole GS could not provide unique and added information for better
yield estimation when combined with EVI. In contrast, the increased R2 values (0.01–0.19)
for all LAIs and a specific EVI (Figure 6b) were higher than those in Figure 6a. Notably, the
largest improvement of R2 (0.17–0.19) was found in the models with the peak EVI, while
smaller changes were evident for those in the other two stages, especially the early EVI. EVI
played different roles as the peak EVI reflected most crop growth states when the crop was
exposed to both biotic and abiotic stresses. The crop in the GSearly was in the vegetative
stage, indicating that EVI was not a good indicator of biomass and final yield.
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Figure 6. Model performance (predicted R2) using one index or two indices for all months (i.e., the
whole GS), but one index per stage of the GS. The GS was divided into three stages, namely early (GSearly,
May and June) (blue bars), peak (GSpeak, July and August) (orange bars) and late (GSlate, September and
October) (green bars). (a) EVI of all months and LAI of per stage; (b) LAI of all months and EVI of per
stage; (c) EVI of all months and LST of per stage; (d) LST of all months and EVI of per stage; (e) LAI of all
months and LST of per stage; (f) LST of all months and LAI of per stage; (g) LAI + LST of all months and
EVI of per stage; (h) EVI + LAI of all months and LST of per stage; (i) EVI + LST of all months and LAI
of per stage. The solid line represents the performance of the benchmark model using only one index or
two indices for all months as input data. Error bars are one SD of predicted R2 derived from LOYO-CV.
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(2) The models constructed using all EVI and a specific LST showed an increased R2

value ranging from −0.01 to 0.07 (Figure 6c). The largest improvement of R2 (0.04–0.07) was
found in the models with the early LST, while smaller changes were apparent for those in
the other two stages. By comparison, the increased R2 values (−0.01–0.14) for all LST and a
specific EVI (Figure 6d) were higher than those in Figure 6c, while the largest improvement
of R2 (0.09–0.14) occurred in the GSpeak, especially for RF models.

(3) The models constructed using all LAI with a specific LST showed an increased R2

value ranging from −0.01 to 0.06 (Figure 6e). The largest improvement of R2 (0.05–0.06)
was found in the models with the peak LST, while smaller changes were apparent for those
in the other two stages. In contrast, all LST and a specific LAI demonstrated an increased
R2 value (0.00–0.08, Figure 6f), while the largest improvement of R2 (0.02–0.08) occurred in
the GSpeak.

Then, the conditions for paired indices for all the months with one index for only
one specific growth stage were described. The models constructed using LAI + LST and
a specific EVI showed an increased R2 value ranging from 0.00 to 0.08 (Figure 6g). The
largest improvement of R2 (0.07–0.08) was found in the models with the peak EVI, while
smaller changes were apparent for those in the other two growth stages, especially the
early stage EVI. In contrast, the models constructed using the EVI + LAI combination
and a specific LST showed an increased R2 value ranging from −0.01 to 0.06 (Figure 6h).
LST had a greater increase in R2 (0.02–0.06) during the GSearly than during the other two
growth stages, although the contribution of the LST during the GSpeak slightly reduced
the performance of the EVI + LAI combination derived using LASSO and SVR methods.
The increased R2 values produced using the RF method in the GSearly and GSlate were
smaller than those obtained using LASSO and SVR methods. Finally, the increased R2

values (0.00–0.02) for all stages using the EVI + LST pairing and a specific LAI (Figure 6i)
were smaller than those in Figure 6g,h.

In addition, Figure 7 summarizes the temporal variation of the R2 values for the four
methods in more detail using different combinations of satellite-derived input variables.
All the R2 trajectory curves derived from the four methods showed a similar pattern.

(1) For any satellite-derived inputs, R2 values increased with time as more input
data became available. Model performance usually reached saturation during the GSpeak
(i.e., August).

(2) The characteristics of different inputs after July were as follows: The three-fold
index input (EVI + LST + LAI) was superior to paired index inputs, followed by individual
index variable inputs. Overall, the EVI + LST pairing performed better than EVI + LAI
and LAI + LST pairings. For single inputs, EVI only performed better than LAI and LST.
Interestingly, EVI alone performed better than the LAI + LST pairing.

Additionally, obvious differences were found in the performance of LAI as a single
input and other input variables (i.e., EVI and LST as single inputs, paired inputs and three-
fold inputs) for the three methods (LASSO, SVR and RF), and also LST as a single input
and other input variables (i.e., EVI and LAI as single inputs, paired inputs and three-fold
inputs) for the LSTM method.

For the whole GS, LAI as a single input started with much higher performance (~0.1–0.2),
and achieved a much lower increase in performance later (an increase of ~0.2–0.3) compared
with EVI and LST for the three methods (LASSO, SVR and RF), with most of the increased
performance achieved before July. In contrast, both EVI and LST as single inputs started with
relatively poor performance (~0.0–0.1) but produced much greater increases (an increase of
~0.4–0.5) later in the GS. These later increases exceeded those produced for LAI in the same
stage. The numbers in brackets represent the predicted R2 values. These results indicated
that LAI during the GSearly provided more information than EVI or LST. In contrast, both EVI
and LST in the GSpeak and GSlate offered more information for corn yield estimation. All the
inputs for the LSTM method started with much higher performance than those for the other
three methods (LASSO, SVR and RF), which was related to the LSTM framework. It indicated
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that the LSTM method performed better in May and June, and failed to detect time-series
features from May to June.
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Figure 7. Changes in model performance during the GS for the four methods ((a)—LASSO, (b)—SVR,
(c)—RF and (d)—LSTM). Each sub-figure shows the change in model performance with time. The
performance of models improved with time as more data became available with each passing month.

Furthermore, the focus was on the value added by each satellite-derived data input as
the season advanced (from May to October) for different data combinations (Figure 8). The
results for the three-fold combination (EVI + LST + LAI) are shown in a series of sub-figures
(Figure 8a–l) in Figure 8.
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(1) The contributions of LAI declined as corn grew from the GSearly to the GSpeak and
then stagnated from the GSpeak to the GSlate, while those of the EVI + LST pairing initially
increased and then stagnated using the three methods (LASSO, SVR and RF). For the LSTM
method, the contributions to yield made by both LAI as a single input and the EVI + LST
paired input first rose and then decreased over the duration of the GS.

(2) Over the GS, the contributions of EVI to the prediction of yield increased before de-
creasing based on different trends exhibited by the LAI + LST pairing for the three methods
(LASSO, SVR and RF). For the LSTM method, the contributions of EVI to yield prediction
increased from the GSpeak to the GSlate, whereas those of the LAI + LST pairing decreased.

(3) The contributions of LST to yield prediction increased from the GSearly to the GSlate,
whereas those of the EVI + LAI pairing for each of the three methods (LASSO, SVR and
RF) declined. For the LSTM method, the contributions of LST as a single input and the
EVI + LAI pairing both declined from the GSpeak to the GSlate.

(4) For the LSTM method in particular, the value added by a single or a paired input
was negative in the GSearly. This disparity could be mostly attributed to different model
frameworks. The LSTM method considered the temporal variability of input data from the
early GS to prediction time, but the time-series data from May to June could not provide a
sufficient number of distinctive time-series features for training purposes.

Figure 8m–x shows the added value in paired inputs (i.e., EVI + LST, EVI + LAI and
LAI + LST).

(1) The EVI + LAI pairing produced similar patterns for the three methods (LASSO,
SVR and RF) over the duration of the GS. The value added by EVI increased from the
GSearly to the GSpeak and then stagnated, while that added by LAI almost showed an exactly
reversed pattern. For LSTM, the value added by EVI increased from the GSearly to the
GSpeak and then stagnated, while that added by LAI increased and then decreased.

(2) For the EVI + LST pairing, EVI had increased (GSearly–GSpeak) and then de-
creased (GSpeak–GSlate) added value with LASSO and SVR. However, EVI had increased
(GSearly–GSpeak) and then stagnated (GSpeak–GSlate) added value with RF, and increased
added value with LSTM. The value added by LST initially increased (GSearly–GSpeak) and
then stagnated (GSpeak–GSlate) for LASSO, SVR and RF, but increased (GSearly–GSpeak) and
then decreased (GSpeak–GSlate) for LSTM.

(3) For the LAI + LST pairing, the value added by LST initially increased (GSearly–GSpeak)
and then stagnated (GSpeak–GSlate), while that added by LAI decreased initially (GSearly–GSpeak)
and then stagnated (GSpeak–GSlate) with the three methods (LASSO, SVR, and RF), but increased
from the GSearly to the GSlate for LSTM.

4. Discussion
4.1. Yield Prediction Based on Satellite Data and ML

Each index contributed to corn yield estimation, whether it is a specific growth stage
(Figure 6) or the whole GS (Figure 8). Previous studies have focused on estimating yields
using two indices [19,20]. In this study, compared with using paired indices or indices
used as single inputs, the three-fold combination of EVI + LST + LAI produced the best
results for corn yield prediction, using any of the four methods in the study. At the same
time, adding data with time during the whole GS improved the performance of corn yield
prediction models. Based on the overall situation of all inputs, it was found that nonlinear
methods (i.e., SVR, RF and LSTM) were superior to the linear method (i.e., LASSO) [33],
among which the best performing one was LSTM [17,41].

The three indices as single inputs had the highest correlation with corn yield around
the GSpeak (July or August) (Figure 2), which largely explained why individual index-based
models reached their best performance around the GSpeak (Figure 6). Compared with the
EVI model showing the best performance for a single input, LST added as a predictor
(EVI + LST) after June improved the performance of national yield prediction, and LAI
added upon the EVI + LST pairing further improved prediction performance from July
to October.
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4.2. Unique and Shared Contributions of Satellite Data to Yield Prediction

The three satellite-derived indices have always been the main satellite data for the
monitoring of crop growth and the prediction of yield. Based on identifying the contribu-
tions of satellite data relative to meteorological data to crop yield estimation [3,33], this
study complements the shared and unique contributions of the three satellite indices, which
can support predicting and estimating crop yield more scientifically and accurately.

Firstly, about 56%, 40% and 49% of corn yield variability could be explained by only
using EVI, LAI and LST, respectively. However, the better results for crop prediction
could be obtained by using two paired indices as inputs, namely EVI + LAI, or the three-
fold combination, namely EVI + LST + LAI. The best results were obtained by use of the
three-fold combination.

Secondly, the increased R2 from a single index in a specific period (the GSearly, GSpeak
and GSlate) combined with either one or two index datasets in the whole GS were analyzed.

(1) The paired combination: The increased R2 values from a specific LAI combined
with the EVI of the whole GS were much smaller than those from a specific EVI combined
with the LAI of the whole GS. The increased R2 values from a specific LST combined with
the EVI of the whole GS were much smaller than those from a specific EVI combined with
the LST of the whole GS. The increased R2 values from a specific LST combined with the
LAI of the whole GS were similar to those from a specific LAI combined with the LST of
the whole GS. The finding substantiates that EVI supplies more information than LAI and
LST for corn yield estimation [19,20], and LAI and LST supply similar information.

(2) The three-fold combination: The increased R2 values from a specific EVI combined
with the LAI + LST of the whole GS were bigger than those from a specific LST com-
bined with the EVI + LAI of the whole GS, followed by a specific LAI combined with the
EVI + LST of the whole GS. The finding further substantiates that EVI supplies more
information than LST (LAI) for accurate corn yield estimation.

Thirdly, the focus was on the specific periods (the GSearly, GSpeak and GSlate) and
indices (EVI, LST, LAI) showing more unique contributions.

(a) Analysis of the paired combination: For the EVI + LAI pairing, GSpeak EVI was
found to provide more corn yield information in the GSpeak than in the other two stages,
suggesting that GSpeak EVI contained biotic or abiotic stress-related information [3,33],
which might not have been captured by accumulated LAI [20]. No differences between
stages were apparent for LAI data, suggesting that no unique individual information
existed across the whole season for LAI. For the EVI + LST pairing, LST provided more
information in the GSearly than in the other two stages, suggesting that GSearly LST was
critical for the growth of crops and included more temperature information of bare land.
For the LAI + LST pairing, we found that the GSpeak LST (GSpeak LAI) provided more
information than the other two stages.

(b) Analysis of the combination of the three-fold variable: The GSpeak EVI (GSearly
LST) provided more corn yield information than the other two stages. However, no such
differences were apparent for LAI, suggesting that no unique individual LAI information
existed in any special stage across the whole season (Figure 6).

4.3. Satellite Variables and Evapotranspiration

According to the unique information of satellite-derived variables on corn yield, the
explanation of EVI, LST and LAI on corn yield from an evapotranspiration perspective was
discussed based on the combination input of the three variables, which was consistent with
the actual factors affecting the ET of corn [45–47]. In the early and middle vegetative stages,
the corn canopy coverage density was relatively small. As a result, ET was dominated by
evaporation from the soil surface and not via the plant. Soil evaporation in the early and
middle vegetative stages was mainly determined by soil surface temperature (LST used
as a surrogate value) [48]. At full crop canopy, namely in the late vegetative stage and
early reproductive growth stage, when corn grows vigorously and needs a lot of water,
the crop canopy closes to completely shade the soil surface. During these stages, most ET
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could be attributed to transpiration. Corn transpiration in these stages was related to the
corn canopy coverage (EVI) [49], without the canopy temperature (indirectly measured
using LST) and number of stomata (LAI). Corn stomata (LAI) during the whole GS had no
significant implications for ET and yield.

4.4. The Constructed LSTM Framework

The main methods for yield prediction and estimation, namely LASSO, SVR and RF,
usually produce acceptable results, but they were not developed according to time-ordered
data analysis. Since EVI, LST, and LAI were inherently temporal in nature, with the future
yield predictions dependent on the past state of these variables, we could assume that
algorithms that could be trained to identify temporal patterns would outperform those that
did not account for this variation. This assumption was confirmed by the results of our
study. LSTM NN outperformed LASSO, SVR and RF, which was consistent with the results
presented in other studies [33,35]. Interestingly, LSTM was better at predicting crop yields,
based on data collected for May and June, than the other three methods. This finding
indicated that LSTM method was best suited for making yield predictions based on data
collected in the GSearly.

4.5. Limitations and Outlook

(1) The use of additional variables perhaps improves the accuracy of the yield predic-
tion model. For example, solar radiation has been known to influence actual evapotranspi-
ration [23]. We did not include solar radiation data in this study as the spatial resolution of
the solar radiation data was too coarse. The solar radiation data used in the research [23]
from the Monthly Ed4A of CERES_SYN1deg product had a spatial resolution of 8 km
(http://ceres.larc.nasa.gov/ (accessed on 17 January 2020)). We tried to add this radiation
data to the combined EVI, LST and LAI model, but the accuracy of the corn yield prediction
did not improve. In future research, radiation data with a better spatial resolution could be
considered for analysis.

(2) Climate data may be added to the EVI, LST and LAI models to further improve
crop yield prediction. We proved that the three satellite-derived indices can be combined
to estimate corn yield. In terms of the soil–crop–atmosphere system, EVI and LST (used
to calculate TVDI) can be used as an indicator for soil moisture content in the soil system;
LAI can be used as an indicator for crop growth status in the crop system, and climate
data can be used as indicators of the abiotic environmental factors in the atmospheric
system. In addition, growth periods, rather than months, can be used as the time scale
of different combinations for EVI, LST and LAI. The growth period can better reflect the
growth characteristics of crops in different phenological stages.

5. Conclusions

In this study, an assessment was made of how the three satellite-derived indices (i.e.,
EVI, LST and LAI) can be used singularly and in combination to predict corn yield in
the USA. The unique and shared contributions of these indices to yield prediction were
discussed from an ET perspective. Three ML methods and an advanced LR method were
used for data analysis. The results showed that the best yield prediction was obtained when
the three indices (EVI + LST + LAI) were used in combination. The best yield prediction for
paired indices was obtained for the EVI + LST combination, while that for a single index
was obtained for EVI. Interestingly, the performances of the above single and paired indices
were similar. The best result was obtained from the EVI + LST + LAI combination and LSTM
analysis. The contributions made by EVI, LST and LAI were decomposed to determine
their value for yield prediction. When the three indices were combined, EVI and LST can
capture variability in corn yield during the GSpeak and GSearly, respectively, but LAI made
no significantly unique contributions across the entire GS to predict corn yield. This was
consistent with the field growing conditions affecting ET of corn for the explanation of EVI,
LST and LAI on corn yield prediction from an ET perspective. It was found that the indices

http://ceres.larc.nasa.gov/
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can be used singularly or in combination to predict corn yield two months before harvest
in the USA. In this study, a robust modelling framework was formulated for the integration
of satellite-derived datasets for the prediction of corn yield at large spatial scales, which
was designed to be applicable to other grain crops and geographic contexts, and provided
an alternative to yield prediction based solely on satellite-derived data.
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