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A similarity distance-based space-time random forest model for estimating 
PM2.5 concentrations over China 
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H I G H L I G H T S  

• A similarity distance-based space-time random forest is used for PM2.5 estimation. 
• The similarity distance indicator contributes to improving the estimation accuracy. 
• The model outperforms other widely used regression models in predictive power. 
• PM2.5 concentrations at 0.1◦ are generated based on the latest MODIS AOD (C6.1).  
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A B S T R A C T   

China has experienced persistent fine particulate matter (PM2.5) pollution for the past few years, which adversely 
affects both physical and mental health. The availability of high-accuracy and full-coverage PM2.5 products will 
be of substantial value in formulating effective policies to combat and regulate PM2.5 pollution. Therefore, we 
have developed a similarity distance-based space-time random forest (SDSTRF) model to estimate daily PM2.5 
concentrations over China by integrating surface measurements, satellite aerosol products, meteorological data, 
and auxiliary information. The proposed model not only accounts for spatial-temporal heterogeneity, but also 
uses the similarity distance to avoid errors caused by outliers. It has undergone rigorous validation through three 
different cross-validation (CV) approaches and has shown high and stable accuracy, particularly in the site-based 
CV with a coefficient of determination (R2) of 0.87, and a root mean square error (RMSE) of 10.68 μg/m3, along 
with a relative RMSE (rRMSE) of 27.48%. In addition, the leave-out data are predicted to determine if the 
SDSTRF model is accurate in its predictive power, which achieves an impressive site-based CV R2 of 0.80 and an 
RMSE of 12.89 μg/m3, along with an rRMSE of 33.01%. The results from a variety of validation approaches 
strongly indicate that the SDSTRF model can provide accurate estimation of PM2.5 concentrations at different 
time scales and outperform many other space-time models by incorporating similarity distance. The proposed 
model would be a promising application in air pollution studies with remote sensing.   

1. Introduction 

Numerous epidemiological studies have identified PM2.5, which re-
fers to airborne particles with a tiny diameter not exceeding 2.5 μm, as 
responsible for a diverse range of respiratory diseases (Baccarelli et al., 
2008; Haikerwal et al., 2015; Hamra et al., 2014; Pope and Dockery, 
2006). Nearly 1 million people died from the severe haze in December 
2013, which blanketed almost all regions in north China (Guan et al., 
2016; Yue et al., 2020). The shock caused by the lethality of 

PM2.5-induced chronic diseases led to the accelerated construction of 
monitoring stations in China to measure particulate levels in the air. 
Gradually, a whole ground-level air pollutant observation network has 
been established, facilitating air quality assessment. Although it has 
satisfactory temporal continuity for recording once per hour, the 
ground-level PM2.5 observation network lacks spatial representativeness 
because the ground stations are sparsely distributed. As a result, while 
the forecasting performance works well at the local scale, its accuracy 
diminishes at regional and global scales. Nowadays, there are more than 
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2000 PM2.5 stations in China. However, western China is still under-
represented in comparison to eastern China, resulting from the higher 
cost of stations and sparser population (Li et al., 2020c). In addition to 
surface PM2.5 measurements, remote sensing is an innovative approach 
to expand station monitoring thanks to its extensive spatial coverage at 
regional and global scales (Hoff and Christopher, 2009; Lary et al., 
2014). Integrating remote sensing data allows for continuous moni-
toring of PM2.5 concentrations in both space and time. This will facilitate 
policies that can moderate air pollution and safeguard public health. 

As of now, numerous studies consider the fusion of satellite obser-
vations and surface measurements as the most promising approach to 
obtain high-accuracy, large-scale, and long-term PM2.5 products 
(Al-Saadi et al., 2005; Chu et al., 2003; Hutchison et al., 2004). The 
aerosol optical depth (AOD), a measure of light beam attenuation 
through the atmosphere, exhibits a strong correlation with PM2.5 
(Kumar et al., 2007; van Donkelaar et al., 2006). As a result, several 
models have been developed to establish the most accurate relationship 
between them. These models fall into three categories: simulated (Geng 
et al., 2015; Li et al., 2020a; Lin et al., 2015), semi-empirical (Chu et al., 
2013; Park et al., 2022; Tian and Chen, 2010), and statistical models 
(Boyouk et al., 2010; Wang, 2003). Using physical and chemical trans-
port models, the simulated models provide complete spatial coverage of 
PM2.5 concentrations on regional or global scales (Drury et al., 2010; Lee 
et al., 2022; van Donkelaar et al., 2010). However, uncertainties arising 
from input data (e.g., anthropogenic emissions) and physical models (e. 
g., aerosol dynamics) have an impact on their accuracy (Kukkonen et al., 
2012; Zheng et al., 2009). Based on physical models, the semi-empirical 
models integrate meteorological variables such as humidity and surface 
pressure (Emili et al., 2010; Tao et al., 2013). However, their parameters 
will vary with space and time because PM2.5 is a multi-factorial 
pollutant. At present, the statistical models are most applicable for 
PM2.5 estimates because they have fast and adaptive learning charac-
teristics as well as relatively high accuracy. At first, the most commonly 
used method is to use the simple linear regression (LR) model to 
establish the AOD-PM2.5 relationship. For example, Wang (2003) 
employed this model to quantitatively estimate local air quality cate-
gories and reported a linear correlation coefficient of 0.7 for AOD-PM2.5. 
Subsequently, the multiple linear regression (MLR) models were estab-
lished by introducing meteorological data to enhance the relationship 
(Al-Saadi et al., 2005; Gupta and Christopher, 2009). To further obtain 
considerable accuracy of the estimates, Boyouk et al. (2010) first 
developed an improved linear AOD-PM2.5 model that accounted for the 
effects of aerosol particles on the AOD-PM2.5 relationship, which varies 
with relative humidity and satellite height. Although considerable effort 
has been invested in building the most accurate linear models, the 
AOD-PM2.5 relationships derived from these models rely on a large 
number of ground observations and the existing data remain insufficient 
to achieve significant improvements. Furthermore, these methods have 
only been applied at the local scale due to the nonlinearity and 
spatial-temporal heterogeneity that exist in the AOD-PM2.5 relationship 
(Chu et al., 2015; Merbitz et al., 2012). 

Recent studies have shown that machine learning (ML) can resolve 
the AOD-PM2.5 relationship more effectively than traditional linear 
models (Li et al., 2017b). There have been a variety of ML models used to 
fit the nonlinear relationship, such as the support vector machine (Dong 
et al., 2016; Weizhen et al., 2014), random forest (Brokamp et al., 2018; 
Guo et al., 2021a; Park et al., 2020), and gradient boosting regressor 
(Chen et al., 2019; Gui et al., 2020). Considering the fact that the 
nonlinear relationships in AOD-PM2.5 are different in both space and 
time domains (Kumar, 2010; Miller, 2004), a single domain of interest 
can’t fully explain this characteristic of the relationship. Tremendous 
investigations have already been conducted to address this issue by 
incorporating various spatial and temporal variations into estimation 
models for local fitting. In an effort to account for the spatial hetero-
geneity in AOD-PM2.5, Hu et al. (2013), for example, proposed the 
geographically weighted regression (GWR) model by solving weights for 

each local sample. Moreover, some more complex models take temporal 
variation into account to enhance the relationship. For instance, Hu 
et al. (2014) introduced a two-stage model that incorporates both tem-
poral and spatial information using linear mixed effects (LMEs) and 
GWR, respectively. Since the spatial and temporal variations interact 
with each other (Choi et al., 2009), the space and time information 
should be embedded in ML simultaneously, which enables the nonlinear 
model to gain the capacity to handle the complex relationship between 
spatial heterogeneity and temporal variation. The space-time random 
forest (STRF) model (Wei et al., 2019) and the geo-intelligent deep belief 
network (Geoi-DBN; Li et al., 2017a) have successfully adopted this 
strategy and achieved a high level predictive performance. This 
approach is expected to have considerable potential to generate 
high-accuracy and space-time continuous PM2.5 products. 

At present, several PM2.5 datasets have been released by fusing sur-
face measurements, aerosol products, and other ancillary data based on 
the proposed methods. Xue et al. (2019) generated a daily PM2.5 product 
at 0.1◦ resolution for China from 2000 to 2016, using a model with the 
high-dimensional expansion of PM2.5 predictors. Wei et al. (2021) 
generated a ChinaHighPM2.5 dataset with 1-km resolution from 2000 to 
2018 with the proposed Space-Time Extra-Trees model. In addition, an 
open-access air pollution database, Tracking Air Pollution in China, 
keeps track of PM2.5 concentrations in near-real time and provides 1-km 
and 10-km products from 2000 to the present (Geng et al., 2021; Liu 
et al., 2022; Xiao et al., 2022). All of these works have achieved excellent 
performance and are of vast value, but a persistent challenge remains in 
underestimating PM2.5 concentrations on high pollution days, mainly 
due to the limited amount of samples available for cases with extremely 
high pollution levels (e.g., PM2.5 > 150 μg/m3) and the high nonline-
arity in AOD-PM2.5 (Wei et al., 2020). Therefore, the estimation model 
for such a complete PM2.5 dataset needs to be further improved, spe-
cifically with high accuracy, full spatial coverage, and a broad time span. 

In order to improve the accuracy of the PM2.5 estimates, this study 
introduces a similarity distance-based space-time random forest 
(SDSTRF) model. It is constructed and evaluated by integrating surface 
measurements, aerosol products, meteorological data, and auxiliary 
information from China. The model performance is validated by using 
sample-, time-, and site-based cross-validation (CV) approaches. This 
study provides a novel perspective to investigate the spatial-temporal 
heterogeneity of PM2.5 with high precision. 

2. Study area and data 

2.1. Study area 

Mainland China is chosen as the focal area of interest, where most 
cities have become dominated by PM2.5 pollution. According to the data 
in the Report on the State of the Environment in China 2022, the annual 
average PM2.5 level is 31 μg/m3 nationwide, which is slightly better than 
the acceptable standard recommended by WHO (i.e., 35 μg/m3). How-
ever, considering the densely populated areas, the exposure to PM2.5 for 
a single person is far more severe than the target (Wang et al., 2019). As 
a result, a great deal of importance should be attached to monitoring 
PM2.5 concentrations across mainland China. 

Fig. 1 depicts the distribution of ground stations across mainland 
China used for the analysis. We randomly divided 80% of all stations 
into training sites while the remaining 20% were assigned as test sites. A 
total of 1566 PM2.5 monitoring stations were finally collected for the 
study. 

2.2. Data 

The data used for analysis consist of ground observations, MODIS 
AOD products, meteorological data, and PM2.5-related auxiliary infor-
mation such as MODIS normalized difference vegetation index (NDVI) 
and digital elevation model (DEM). Table 1 provides a comprehensive 
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overview of all the variables utilized in the study. 

2.2.1. Surface PM2.5 measurements 
The hourly surface PM2.5 measurements, which have already been 

calibrated and quality controlled prior to access, are collected between 

January 1, 2018 and December 31, 2022. The measurements that re-
mains constant for more than consecutive 3 h or are missing for more 
than 12 h in a day are removed at each station due to probable instru-
ment failure (Rohde and Muller, 2015). The hourly PM2.5 data from the 
same day, corresponding to the satellite transit time, are then selected 
and added to the average for modeling. The mean value for each station 
is calculated from 2018 to 2022, reflecting the average levels of PM2.5 at 
the site and its surroundings (see Fig. 1). 

2.2.2. Aerosol products 
Considerable work has been undertaken to derive PM2.5 concentra-

tions utilizing the MODIS atmosphere L2 aerosol products, which are 
collected by the Terra and Aqua satellites (Ma et al., 2016; Rohde and 
Muller, 2015). The products at 10 km spatial resolution are included in 
this study, and their contained AOD datasets, obtained from the com-
bination of the dark target (Levy et al., 2013) and deep blue (Hsu et al., 
2013) algorithms, are applied to build the model for PM2.5 estimates. 
The datasets from the same day are mosaicked together as input to the 
built model. For each pixel, if only one is valid, it is selected. In the case 
of pixels corresponding to both datasets, the valid values are added to 
the average as final input. However, if there is no valid value, that pixel 
is regarded as missing and can’t be used in the estimation model. 

2.2.3. Meteorological data 
ERA5 is the fifth generation ECMWF atmospheric reanalysis and 

serves as the successor of ERA-Interim. It assimilates a wealth of his-
torical observations related to the atmosphere, ocean, and land (Hers-
bach et al., 2020). Meanwhile, it is capable of providing meteorological 
data which covers a large part of the globe in 1 h at a spatial resolution of 

Fig. 1. The distribution of ground PM2.5 stations (the circles represent the sites designated for training and validation, while the stars indicate the test sites used to 
assess the model’s predictive power) across mainland China. The colormap table of stations reflects the average PM2.5 levels from 2018 to 2022 at each respec-
tive location. 

Table 1 
Summary of the data sources used in this study.  

Dataset Variable Content Spatial 
Resolution 

Temporal 
Resolution 

Unit 

PM2.5 PM2.5 Fine particulate 
matter 

- Hourly ug/m3 

MO(Y) 
D04 

AOD Aerosol optical 
depth at 550 nm 

10 km × 10 
km 

Daily - 

MO(Y) 
D13 

NDVI Normalized 
difference 
vegetation index 

1 km × 1 
km 

8-day - 

SRTM DEM Digital elevation 
model 

250 m ×
250 m 

- m 

ERA5 SP Surface pressure 0.25◦ ×

0.25◦

1-h hPa  

TEM 2m air 
temperature 

0.25◦ ×

0.25◦

1-h K  

WS Wind speed 0.25◦ ×

0.25◦

1-h m/s  

WD Wind direction 0.25◦ ×

0.25◦

1-h degrees  

RH 2m relative 
humidity 

0.25◦ ×

0.25◦

1-h %  

BLH Boundary layer 
height 

0.25◦ ×

0.25◦

1-h m  
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0.25◦ longitude × 0.25◦ latitude. ERA5 data have been extensively used 
in PM2.5 estimation and shown superior performance compared to other 
global atmospheric reanalysis datasets, such as MERRA-2, ERA-Interim, 
and FNL (Cho et al., 2023; Guo et al., 2021b; Zuo et al., 2023). The 
performance comparison of estimating PM2.5 concentration with 
MERRA-2 and ERA5 is displayed in Fig. S1. In this study, the following 
meteorological variables are used: surface pressure (SP, unit: kPa), air 
temperature at 2 m height (TEM, unit: K), wind speed (WS, unit: m/s), 
wind direction (WD, unit: degrees), relative humidity (RH, unit: %), and 
boundary layer height (BLH, unit: m). 

2.2.4. Auxiliary data 
The MODIS NDVI products are used as a variable related to land 

cover in the estimation model for PM2.5. The NDVI products are sourced 
from the same database as the AOD products. Each data represents that 
the type of land cover remains unchanged within a 8-day period. In 
addition, the Shuttle Radar Topography Mission (SRTM) DEM with a 
spatial resolution of 250 m is adopted as a terrain-based variable for 
PM2.5 mitigation (Saide et al., 2011). 

3. Methodology 

3.1. Random forest 

The random forest (RF) model is composed of many individual de-
cision trees, and it has been widely used in classification and regression 
problems due to its superiority in fast convergence and accurate fitting 
results. In addition, each decision tree of the RF is highly independent, 
so it can build decision trees in parallel so as to develop the RF quickly 
(Chen et al., 2017). The key steps involved in the establishment of the RF 
model are as follows (Breiman, 2001): 1). Randomly extract the same 
quantity of samples from the original datasets by the bootstrap sample 
method several times; 2). Randomly extract partial features from the 
whole for each tree node, then sort these candidate features according to 
the rules selected by the decision tree growth algorithm, and then select 
a feature as an attribute to split the node. The decision tree can grow 
after this process is complete, which is the most important step in 
building an RF model; 3). Not prune each tree to maximize its growth, 
and finally form a random forest by integrating all decision trees. The RF 
model is widely used in various fields, and it has become increasingly 
popular in the fields of remote sensing and atmospheric science. It has 
been previously reported for applications in PM2.5 estimation (Brokamp 
et al., 2018; Hu et al., 2017). However, RF requires space-time infor-
mation to tackle spatial-temporal heterogeneity for higher estimation 
accuracy. 

3.2. Similarity distance-based space-time random forest (SDSTRF) model 

3.2.1. Space-time information 
There is a significant effect of spatial-temporal heterogeneity on 

PM2.5, and tremendous efforts have been made to resolve this problem 
by taking space-time information into consideration (Hu et al., 2013, 
2014). For instance, Gongbo et al. (2018) tried to input the geographical 
location and the day of the year (DOY) directly into the machine 
learning model. However, the coupling effect between space and time 
information is not considered in this method. The space-time informa-
tion for one pixel can be extracted from its adjacent pixels, since nearby 
things are more correlated with each other. Many desirable models have 
been developed by this method, such as GWR, the two-stage, GTWR, 
Geo-i DBN, and STRF. Among them, the STRF model has an excellent 
performance in fitting effect and generalization capacity by calculating 
the inverse distance weight (IDW) of the central pixel from adjacent 
pixels. The SDSTRF model extracts the space-time information in a 
similar approach. For a given pixel, the process of extracting spatial (Sij) 
and temporal (Tij) information can be described as follows: 

Sij =
ΣM

m ΣN
n

1
ds2

mn
Psmn

ΣM
m ΣN

n
1

ds2
mn

(1)  

Tij =

ΣL
l

1
dtlij

2 Ptl
ij

ΣL
l

1
dtlij

2

(2)  

where ds and dt are the distances in space and time, the M and N are the 
m rows and n columns of pixels adjacent to the jth column in the ith row, 
and the L is the l prior days at the same location. This method collects 
adjacent pixel values to generate the spatial vector of square windows in 
an odd shape (e.g., 3 × 3 and 5 × 5) and the temporal vector of the same 
length with spatial window size for weighting, which are Ps and Pt 
respectively. 

3.2.2. Similarity distance 
Using the STRF model to capture the distribution characteristics of 

PM2.5 in space and time can not only account for the global variation of 
PM2.5, but also achieve a good fitting effect at the local scale. However, 
two shortcomings undermine the performance of the model. The first is 
that the AOD products themselves are largely missing, which signifi-
cantly affects the PM2.5 estimation. The second is that the AOD products 
and the meteorological products have huge resolution discrepancies, 
which means that it is inevitable that the part of adjacent pixels from the 
central pixel exists as outliers when resampling to a consistent resolu-
tion. The final fitting effect and generalization capacity will drop if these 
outliers are input into the model. Therefore, the Jaccard similarity co-
efficient is introduced in the model construction to identify and exclude 
outliers. We use the complementary of the indicator as an assessment of 
the differences between pixels, which is the similarity distance. The 
similarity distance (Esd) is expressed as: 

Esd(x, y)= 1 − Ej(x, y)= 1 −
xj ∗ y

x2
j + y2 − xj ∗ y

(3)  

where Ej is the Jaccard similarity coefficient, xj is the vector of adjacent 
pixels and y is the central pixel. The Esd ranges from 0.1 to 0.9, with 
increments of 0.2 for each iteration to improve training efficiency. If any 
adjacent pixel falls outside the similarity distance, the geographical 
weighting should not be performed, and that pixel should be excluded 
from the spatiotemporal vectors. In such cases, the IDW is performed 
only on the adjacent pixels within the similarity distance to obtain Sadj 

and Tadj to improve the performance of the final model, which in turn 
determines the optimal setting of the similarity distance (see Fig. S2). 

3.2.3. Model construction 
Data preprocessing was performed to yield a spatially and temporally 

uniform input dataset for the SDSTRF model. As a first step, the corre-
lation analysis was conducted on AOD and PM2.5 and obtained a cor-
relation coefficient of 0.473 (R), which indicates that there is not a 
strong enough correlation between them in China, and other related 
variables should be incorporated to strengthen the relationship. There-
fore, variables that contribute significantly to PM2.5 concentrations were 
chosen (i.e., AOD, SP, TEM, WS, WD, RH, BLH, NDVI, and DEM; see 
Fig. S3). Secondly, all involved variables were uniformly reprojected to 
the same coordinate system as the AOD data and then resampled to a 
spatial resolution of 0.1◦ through the bilinear interpolation method. For 
consistency in temporal resolution, the selected meteorological vari-
ables were averaged on a daily scale aligned with the satellite transit 
time. The NDVI values were updated promptly whenever changes 
occurred within an 8-day interval in the corresponding grid cell, while 
the DEM remained constant throughout the specified time period. 
Finally, to match the surface PM2.5 measurements each day, data for 
these variables were extracted from the grid cells in which the moni-
toring stations were located. In the meantime, the ground observations 
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of PM2.5 were averaged for the same grid cell. After completing the data 
preprocessing, a total of 639,649 records were collected for all days from 
2018 to 2022. 

The estimation of the multiple regression model tends to be distorted 
due to the high correlation between the explanatory variables (e.g., R >
0.8), which is called multicollinearity (Kalnins, 2018). There may be an 
issue of multicollinearity between SP and DEM (R = − 0.938). In order to 
determine the true relationship between PM2.5 and its explanatory 
variables, the variance inflation factor (VIF) is adopted as a method for 
diagnosing multicollinearity between chosen variables. It is assumed 
that there is a collinearity problem if the VIF value is greater than 10 
(Sheather, 2009). All the variables meet the criterion, including SP and 
DEM with VIF values of 8.984 and 9.011 respectively. This indicates that 
these variables can be selected as the suitable inputs for the model in 
PM2.5 estimates (see Table 2). 

After finishing the selection of input variables, the model can be 
constructed, the structure of which is shown as follows: 

PM2.5 = f
(
Sadj,Tadj,AOD, SP,TEM,WS,WD,RH,BLH,NDVI,DEM

)
(4) 

Fig. 2 exhibits the schematic of the SDSTRF model for estimating 
PM2.5 concentrations. 

3.3. Model evaluation 

An evaluation of the estimation accuracy for the developed model is 
performed using the 10-CV approach (Rodriguez et al., 2010). The 
samples are equally and randomly split into ten folds, of which nine 
folds serve as training samples and the remaining fold serves as vali-
dation samples. By repeating this process 10 times, each fold is vali-
dated. In general, there are three types of CV approaches, including 
sample-, time-, and site-based CV, where the partition criteria are the 
original samples, the valid sample days, and the cells in which the 
monitoring stations are located, respectively. Their results should be 
indicative of overall, temporal, and spatial predictive performance. 
Historical validation is also conducted by predicting PM2.5 concentra-
tions for a specific period (e.g., July to December 2022). Meanwhile, an 
external validation approach is introduced to show the extent to which 
the spatial and temporal variations affect the estimation model perfor-
mance. In addition, a quantitative evaluation of the models is conducted 
using the following statistical indicators: linear regression equation 
(slope, unitless; intercept, μg/m3), coefficient of determination (R2, 
unitless), root mean square error (RMSE, unit: μg/m3), relative root 
mean square error (rRMSE, unit: %), and mean bias error (MBE, unit: 
μg/m3). 

4. Results and analysis 

4.1. Validation at different spatial scales 

4.1.1. Validation at the national scale 
A comparison of PM2.5 estimation results from three different models 

(RF, STRF, and SDSTRF) with those derived from ground measurements 
at the national scale is conducted using the sample-, time-, and site- 
based CV approaches. The density scatterplots in Fig. 3 present the 
training and 10-CV results. The model training results indicate that the 
three models have similar performance, achieving an identical R2 of 
0.98 (RF is 0.97). The corresponding RMSE are 4.75, 4.48, and 4.41 μg/ 

m3, with rRMSE of 12.12%, 11.45%, and 11.27%, respectively. These 
results suggest that the RF, STRF, and SDSTRF models all effectively 
capture the essential features of the dataset. For sample-, time-, and site- 
based CV approaches, the SDSTRF model shows relatively better per-
formance than the other two models in terms of overall R2, RMSE, and 
rRMSE. A higher R2 of 0.83, a lower RMSE of 11.83 μg/m3, and a lower 
rRMSE of 30.29% are achieved by the SDSTRF model for sample-based 
CV, as compared to either the STRF model (R2 = 0.82, RMSE = 12.06 
μg/m3, and rRMSE = 30.89%) or the RF model (R2 = 0.80, RMSE =
12.81 μg/m3, and rRMSE = 32.81%). For time-based CV, the SDSTRF 
model has an R2 of 0.84, an RMSE of 11.68 μg/m3, and an rRMSE of 
29.79%, which are superior to the STRF and RF models (STRF: R2 =

0.83, RMSE = 11.92 μg/m3, and rRMSE = 30.43%; RF: R2 = 0.81, RMSE 
= 12.62 μg/m3, and rRMSE = 32.19%). For site-based CV, the SDSTRF 
model achieves a significant improvement over the STRF and RF models 
with an R2 of 0.87, an RMSE of 10.68 μg/m3, and an rRMSE of 27.48%. 
In general, SDSTRF and STRF are significantly superior to RF due to 
taking space-time information into account. In addition, the site-based 
CV approach achieves better performance than other approaches indi-
cating that this cross-validation strategy can tackle spatial heterogeneity 
well. The overall statistical indicators of the SDSTRF model are rela-
tively better than the STRF for excluding outlier disturbances in spatial 
and temporal variations. 

4.1.2. Validation at individual stations 
The national scale reflects the overall estimation performance of the 

model, while the individual-station scale illustrates its local perfor-
mance. In light of this, the SDSTRF model is also validated at individual 
stations (Fig. 4). Those stations from the site-based CV with no more 
than 10 samples were ignored in order to show statistical significance. 
As displayed in Fig. 4, the daily PM2.5 estimates are consistent with 
observations at most monitoring stations across China. There is an 
average R2 of 0.78, and 72% of the monitoring stations show high 
estimation accuracy with R2 > 0.7, particularly those in central and 
northern China. Regarding the uncertainty indicators, the mean values 
are 8.97 μg/m3 for RMSE, 24.53% for rRMSE and 0.19 μg/m3 for MBE, 
respectively. ~88% of the monitoring stations have an average of RMSE, 
an average of rRMSE, and an absolute of MBE less than 15 μg/m3, 40% 
and 5 μg/m3, respectively, especially those in central and southern 
China. However, in the northwest region of China, lower prediction 
accuracies and larger estimation errors are observed. These issues can 
likely be attributed to the sparse distribution of monitoring stations in 
that area, which affects the model’s ability to capture local variations 
accurately. Additionally, the proposed model tends to slightly under-
estimate high PM2.5 concentrations and slightly overestimate low con-
centrations. There are three potential ways to address this issue. Firstly, 
it is essential to intensify the collection of in-situ measurements in this 
region. Secondly, mechanistic models can provide valuable insights to 
achieve a deeper understanding of the factors that influence PM2.5 
concentrations in this region. Lastly, the development of a more 
advanced model with excellent generalization ability could make a 
significant contribution to solving this problem and providing reliable 
PM2.5 estimates. In conclusion, considering the overall estimation re-
sults, the SDSTRF model provides accurate estimates of daily PM2.5 
concentrations at the majority of monitoring stations. 

4.2. Validation at different time scales 

4.2.1. Validation at the daily scale 
The adaptability of the SDSTRF model at the daily scale is also 

evaluated. Fig. 5 shows the model performance as a function of the DOY 
from available stations in China. With regard to the statistical signifi-
cance, days with less than 10 samples were ignored. As shown in Fig. 5, 
the SDSTRF model performs well on most days with an average R2 of 
0.74, and on approximately 64% of these days, the R2 value exceeds 0.7. 
Over the course of the year, the model prediction error indicators RMSE 

Table 2 
Collinearity analysis among all of selected variables.  

Variable AOD SP TMP WS WD 

VIF 1.256 8.984 1.815 1.306 1.132  

Variable RH BLH NDVI DEM - 

VIF 1.693 1.936 1.594 9.011 -  
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and MBE exhibit similar time series patterns. The RMSE initially de-
creases until around day 280 and then gradually increases, while the 
MBE fluctuates within a small range, then shows large deviations after 
day 280. A mean value of RMSE and an absolute value of MBE less than 
15 and 5 μg/m3 are observed on approximately 88% and 91% of these 
days, respectively. On the other hand, rRMSE remains relatively stable 
at an average level of 24.45%, which indicates that the SDSTRF model 
maintains a consistent level of performance across different periods of 
the year. In addition, it is generally observed that R2 is high at the 
beginning and end of the year as well as overall large RMSE and MBE 
values. The reason for this is that PM2.5 concentrations are always higher 
than normal due to increased pollutant emissions from human activities. 
By way of contrast, the middle of the year is less polluted, which results 
in a lower R2 as well as overall smaller RMSE and MBE values. It is 
evident from these results that, on most days of the year, the SDSTRF 
model accurately estimates PM2.5 concentrations. 

4.2.2. Validation at the seasonal and synthetic time scales 
An evaluation of the SDSTRF model is also performed on a seasonal 

basis to examine its performance over a longer period of time. Fig. 6 
shows the SDSTRF model’s performance on the site-based CV dataset for 
different seasons during 2018–2022. The small sample size is apparent 
in summer and winter, due to heavy cloud cover in summer and high 
frequency of snow and ice in winter. The SDSTRF model provides high 
estimation accuracy in spring, summer, autumn, and winter, which 
yields R2 values of 0.80, 0.76, 0.84, and 0.85, as well as RMSE values of 
12.85, 7.43, 9.18, and 14.15 μg/m3, respectively. Among the four sea-
sons, winter shows the best performance of the model, with the highest 
R2 (0.85), relatively good rRMSE (26.01%), and the best fitting line 
(slope = 0.78, intercept = 12.32 μg/m3). During summer, the model 
performs poorly with the lowest R2 (0.76), relatively poor rRMSE 

(29.78%) and slope (0.68). However, summer has the smallest RMSE 
(7.43 μg/m3) due to the least air pollution. The RMSE values in spring 
and winter are approximately twice that of summer for the reason that 
winter experiences the most severe pollutant emissions, followed by 
spring, resulting from natural conditions and human activities. In brief, 
the newly developed SDSTRF model can handle the seasonal variation of 
PM2.5 well, despite the differences in model performance. 

The validation against ground measurements is also conducted on 
the synthetic time scales of month, season, and year. For the monthly 
scale (Fig. 7a), the data for the evaluation are averaged from valid PM2.5 
days at individual monitoring stations. The SDSTRF model has good 
accuracy at the monthly scale with an R2 of 0.85, an RMSE of 8.26 μg/ 
m3, and an rRMSE of 21.62%. Seasonal data for the estimation are 
averaged from at least 2 months at each station (Fig. 7b), and it has an 
equal R2 (0.85) and a decreased RMSE (7.35 μg/m3). The annual data for 
the estimation are averaged from a whole year at each station (Fig. 7c). 
The estimation results at the annual scale are in reasonable agreement 
with the ground observations, with an R2 of 0.81, an RMSE of 5.23 μg/ 
m3, and an rRMSE of 14.18%. On the basis of these results, the SDSTRF 
model is accurate at capturing the long-term variation of PM2.5 across 
China. 

In summary, the SDSTRF model can estimate PM2.5 concentrations 
well on diverse time scales. It is extremely valuable for analyzing PM2.5 
concentrations over time across China. Moreover, it can provide reliable 
validation support for locations and time without ground observations. 

4.3. Mapping of the ground-level PM2.5 concentrations over China 

4.3.1. Seasonal mapping 
Based on the developed SDSTRF model, daily PM2.5 concentrations 

are predicted and averaged over the season. Fig. 8 exhibits the PM2.5 

Fig. 2. Schematic of the similarity distance-based space-time random forest (SDSTRF) model for PM2.5 concentration estimation.  
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distribution in different seasons across China in 2020. Spatially, the 
results cover most regions, but missing values can be observed in 
southwest China during the whole year and in northeast China during 
winter. Among the four seasons in 2020, PM2.5 pollution is lowest in 
summer with an average of 31.35 μg/m3, within a range of 20.72 μg/m3 

to 143.13 μg/m3. In contrast, winter experiences the highest concen-
tration with an average of 43.45 μg/m3, in a span of 22.07 μg/m3 to 
229.05 μg/m3, especially in central and eastern China. For example, 
cities such as Chengdu, Chongqing, and Wuhan are representative 
megacities located in midwestern China that suffer from severe PM2.5 
pollution, mainly due to the close topography, unfavourable dispersion 
conditions, and high emission intensity of air pollution in winter (Liao 
et al., 2018). Moreover, these cities are regions characterized by high 
population densities, a large number of motor vehicles, and numerous 
industries activities, leading to significant emissions of air pollutants. In 
addition, it is worth mentioning that Xinjiang Province also suffers from 
extreme PM2.5 pollution in the spring, primarily due to frequent 
sandstorms. 

4.3.2. Annual variation of the estimated PM2.5 concentrations over regional 
hotspots 

Annual mean PM2.5 concentrations are obtained using a similar 
method as in the previous section. It shows a variation of decline on the 
overall level from 2018 to 2022, i.e., 46.91, 46.74, 44.90, 43.60, and 
43.31 μg/m3, for the implementation of pollution control policies and 
potential contribution of COVID-19 (Yin et al., 2021). The predicted 
annual mean concentrations are in excess of WHO acceptable levels (i.e., 
35 μg/m3). This suggests that the control of PM2.5 pollution in China still 
cannot be taken lightly. 

The North China Plain (NCP), Yangtze River Delta (YRD), Pearl River 
Delta (PRD), and Sichuan Basin (SCB) regions, which suffer from severe 
PM2.5 pollution, are selected to conduct the regional variation analysis. 

Fig. 9 shows the estimated PM2.5 distribution for these hotspots during 
2018–2022. Fig. 9(a–e) show that PM2.5 pollution in the NCP region is 
decreasing from year to year. The highest concentrations are found in 
southeast Beijing, all of Tianjin, south Hebei, and northeast Shandong. 
The annual mean concentrations in this region are 42.98, 40.83, 39.83, 
38.27, and 37.54 μg/m3, respectively. Fig. 9(f-j) and Fig. 9(k-o) show 
that PM2.5 pollution is decreasing at the overall level for the YRD and 
PRD regions. For the YRD region, the highest concentrations are found 
in northwest and southeast Jiangsu, north Anhui, and all of Shanghai. 
For the PRD region, the highest concentrations are found in southern 
Guangdong. The detailed annual variations of these two hotpots are 
listed in Table 3. As shown in Fig. 9(p-t), PM2.5 pollution in the SCB 
region is overall increasing from year to year. The highest concentra-
tions of PM2.5 are found in central Sichuan and southwest Chongqing. 
The annual average concentrations in this region are 35.90, 36.59, 
37.24, 37.33, and 36.74 μg/m3, respectively. According to these results, 
it appears that the PM2.5 product derived from the proposed SDSTRF 
model is valuable for air quality studies in areas of high public concern. 

5. Discussion 

5.1. Predictive power of the SDSTRF model 

In this study, the performance of the newly developed SDSTRF model 
on estimating PM2.5 concentrations is evaluated by integrating station 
measurements, AOD products, meteorological data and auxiliary infor-
mation. Compared with traditional PM2.5 estimation models, the 
SDSTRF model uses a local fitting strategy to capture the PM2.5 varia-
tions in space and time, and it achieves an excellent performance on 
estimation accuracy. Based on a variety of validation approaches, the 
model has been found to be robust and stable by incorporating similarity 
distance into the STRF model, which eliminates the outlier disturbances 

Fig. 3. Training (N = 366,204) and sample-based (N = 127,926), time-based (N = 91,552), and site-based (N = 101,367) cross-validation results for the original RF 
(a–d), STRF (e–h), and SDSTRF (i–l) models at the national scale. 
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Fig. 4. Spatial distributions of the SDSTRF model performance at individual stations for the site-based cross-validation (a) R2, (b) RMSE, (c) rRMSE, and (d) MBE 
during 2018–2022. 

Fig. 5. Time series of the daily performance from the SDSTRF model for (a) R2 (red) and RMSE (blue) and (b) rRMSE (red) and MBE (blue) at validation stations in 
2019 across China. 

S. Guan et al.                                                                                                                                                                                                                                    



Atmospheric Environment 313 (2023) 120043

9

caused by the resampling and matching of data. The indicator of simi-
larity distance is designed to eliminate errors and retain the most useful 
adjacent information for the central cell. If the SDSTRF model can pre-
dict the untrained data accurately as well, it will be a highly prospective 
model for PM2.5 estimates. 

To determine if the SDSTRF model is accurate in its predictive power, 
the samples selected from the test sites are input into the best models 
from the site-based CV approaches. Fig. 10 shows the test results of three 
models derived from the site-based CV approach. The overall prediction 
accuracy of the three different models decreases using the test samples. 
The SDSTRF model performs best with a 0.80 R2, a 12.89 μg/m3 RMSE, 
and a 33.01% rRMSE compared with the STRF (R2 = 0.79, RMSE =
13.15 μg/m3, and rRMSE = 33.70%) and RF (R2 = 0.71, RMSE = 15.50 
μg/m3, and rRMSE = 39.91%) models. This indicates that the SDSTRF 
model is robust under the influence of spatial-temporal heterogeneity. 
However, the SDSTRF model underpredicts the higher PM2.5 concen-
trations slightly with an MBE less than 0 (i.e., − 0.92 μg/m3). Previous 
studies have commonly reported this problem (Li et al., 2020b, 2021; 

Wei et al., 2020). The chief reason for this is that there are only 1% of 
samples from those days when the daily PM2.5 level is extremely high (e. 
g., PM2.5 > 150 μg/m3). Our model, however, provides better pre-
dictions for high PM2.5 levels with a steeper 0.74 slope and a lower 
10.79 μg/m3 intercept. 

Historical validation is also conducted to assess the predictive power 
of the SDSTRF model by using the second half-year data of 2022 as a 
distinct test set (i.e., July to December). The validation results suggest 
that the SDSTRF model accurately captures more than 59% of historical 
daily PM2.5 concentrations, and exhibits overall minimal estimation 
uncertainties (RMSE = 14.70 μg/m3, rRMSE = 41.07%, and MBE =
− 4.81 μg/m3). Importantly, the SDSTRF model still outperforms the 
STRF and RF models (refer to Fig. S4a and Fig. S4b). This robust pre-
dictive power indicates that the SDSTRF model is adept at estimating 
historical PM2.5 concentrations across mainland China. 

Fig. 6. Site-based cross-validation results from the SDSTRF model for (a) spring (N = 27,195), (b) summer (N = 16,346), (c) autumn (N = 28,016), and (d) winter (N 
= 20,042) in China during 2018–2022. 

Fig. 7. Site-based cross-validation results from the SDSTRF model at (a) monthly (N = 11,712), (b) seasonal (N = 4143), and (c) annual (N = 1131) scales dur-
ing 2018–2022. 
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5.2. Influences of the space-time information on model accuracy 

In addition to introducing similarity distance to improve the esti-
mation accuracy, another SDSTRF’s superiority is that it fully considers 
the influences of independent variables on AOD-PM2.5. The appropriate 
meteorological variables are indispensable for PM2.5 estimates (Chen 
et al., 2020), and actually so are spatial and temporal variables. An 
external test is performed to investigate the extent to which 
spatial-temporal variations can explain the PM2.5 concentrations. Based 
on the SDSTRF model, Fig. 11 exhibits the test results with different 
inputs of spatial-temporal variations. Compared to incorporating both 
spatial-temporal variations into the model (Fig. 10c), the R2, RMSE, and 
rRMSE values for the model without space-time information decrease 
dramatically to 0.71, 15.50 μg/m3, and 39.91%, respectively. When only 
spatial (temporal) information is considered in the model, they decrease 
slightly to 0.77, 13.83 μg/m3, and 35.38% (0.78, 13.55 μg/m3, and 
34.77%). The spatial and temporal variations are essential for esti-
mating PM2.5 concentrations, and temporal variation accounts for more 
PM2.5 concentrations than spatial variation. 

5.3. Comparison with recent studies 

Previous studies have tried to further extend the predictive power of 
PM2.5 models. With the development of these models, we can obtain the 
space-time continuous distribution of PM2.5 to mitigate its impact on air 
quality. An analysis of this study in comparison with recent studies on 

China is presented in Table 4, i.e., GWR, GTWR, Two-stage, Geoi-DBN, 
and STRF models. With respect to these models, the SDSTRF model using 
the site-based CV approach captures 87% of the daily variation, which 
outperforms most of the previous models, such as GWR (R2 = 0.64), 
GTWR (R2 = 0.80), the two-stage (stage-1: R2 = 0.78; stage-2: R2 =

0.79), and STRF (R2 = 0.85). In addition, the SDSTRF model is examined 
for its predictive power on leave-out data from both temporal and spatial 
perspectives, with R2 of 0.59 and 0.80, respectively. The comparison 
results confirm the SDSTRF model’s ability to accurately estimate and 
predict PM2.5 concentrations across China. 

6. Summary and conclusions 

PM2.5 has long-lasting detrimental effects on the environment and 
human health. This situation can be improved by obtaining PM2.5 var-
iations using remote sensing. The similarity distance-based space-time 
random forest (SDSTRF) model is therefore proposed to provide PM2.5 
estimates with high accuracy over China. By taking into account the 
nonlinearity and spatial-temporal variations in AOD-PM2.5, the SDSTRF 
model achieves satisfactory performance with the input of independent 
variables. For model validation, the sample-, time-, and site-based 10-CV 
approaches are adopted, with R2 values of 0.83, 0.84, and 0.87, 
respectively. Compared with previous space-time models, such as GTWR 
and STRF, the SDSTRF model has a significant advantage in estimation 
accuracy. Its predictive power is also evaluated by predicting the leave- 
out data for the historical data and test sites (historical data: R2 = 0.59, 

Fig. 8. Seasonal mean distribution of the estimated PM2.5 concentrations for (a) spring, (b) summer, (c) autumn, and (d) winter in 2020 across China.  
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RMSE = 14.70 μg/m3, and rRMSE = 41.07%; test sites: R2 = 0.80, RMSE 
= 12.89 μg/m3, and rRMSE = 33.01%). Meanwhile, to investigate the 
extent to which spatial-temporal variations affect the estimation accu-
racy, an external test is performed by inputting spatial-only or temporal- 
only variation into the model (spatial-only: R2 = 0.77, RMSE = 13.83 
μg/m3, and rRMSE = 35.38%; temporal-only: R2 = 0.78, RMSE = 13.53 
μg/m3, and rRMSE = 34.77%). It is shown that spatial-temporal 

heterogeneity, especially temporal heterogeneity, strongly affects the 
PM2.5 estimation. 

The SDSTRF model is capable of accurately predicting PM2.5 con-
centrations at different time scales. In accordance with this, the PM2.5 
distributions across China are mapped by season and year. As a final 
point, the SDSTRF model can generate an accurate and long-term PM2.5 
product, which will be useful for air quality studies, especially in a large 
area of interest. 
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Fig. 10. The results based on the site-based cross-validation approach for assessing the predictive power of (a) the original RF, (b) STRF, and (c) SDSTRF models (N 
= 181,875) on test sites. 

Fig. 11. Test results based on the site-based cross-validation approach for different space-time information inputs: (a) the none of spatial and temporal variation, (b) 
only spatial variation, and (c) only temporal variation inputs. 

Table 4 
Statistical indicators to compare the performance of different space-time models in China.  

Related study Model Spatial resolution Temporal span Training Validation Prediction 

R2 RMSE R2 RMSE R2 RMSE 

Ma et al. (2014) GWR 10 km 2012–2013 0.71 29.58 0.64 32.98 - - 
He and Huang (2018) GTWR 3 km 2015 0.85 15.28 0.80 18.00 0.47 37.57 
Ma et al. (2016) Stage-1 10 km 2004–2013 0.81 26.31 0.78 27.99 - -  

Stage-2   0.82 25.74 0.79 27.42 0.41 - 
Li et al. (2017a) Geoi-DBN 10 km 2015 0.88 13.05 0.88 13.03 - - 
Wei et al. (2019) STRF 1 km 2015–2016 0.98 5.57 0.85 15.57 0.55 27.38 
this study SDSTRF (Historical validation) 10 km 2018–2022 0.98 4.61 0.85 11.46 0.59 14.70  

SDSTRF (Site-based CV)   0.98 4.41 0.87 10.68 0.80 12.89  
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