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Abstract— Clumping effect denotes the nonrandomness of
foliage. It deviates from the random distribution assumption of
Beer’s law which is usually applied to leaf area index (LAI)
retrieval from large-footprint full-waveform light detection and
ranging (LiDAR). Some studies correct for large gaps-induced
between-crown clumping, yet ignore the within-crown clumping.
The error of LAI caused by these clumping effects and the
influence of the forest structure parameters on them have not
been quantitatively studied. This study quantified the between-
crown, within-crown, and total clumping indices through a theo-
retical derivation, clarifying the mechanism of clumping; we used
airborne LiDAR point clouds data in 11 290 footprints (diame-
ter = 25 m) to estimate these indices in real forests. We found
that: 1) the underestimation of LAI caused by directly applying
Beer’s law could be up to 93%, and it decreases with fractional
crown coverage but increases with crown length and leaf area
density; 2) the method of correcting between-crown clumping
improves LAI retrieval for cylindrical canopies effectively; how-
ever, 3) considerable underestimation (up to 58%) exists if we
neglect the within-crown clumping for other canopies, which has
not been realized before; and 4) both the between-crown and the
within-crown clumping can be the dominant contributor, and
the within-crown clumping was greater than the between-crown
clumping in 47% of the studied footprints. In the two physically
based LAI retrieval methods, Beer’s law has been commonly used
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due to its simplicity. Pathways to improve future LAI retrieval
would be instrument improvement to capture the between-crown
gaps and method study to correct the within-crown clumping
further.

Index Terms— Airborne light detection and ranging (LiDAR),
clumping effect, clumping index, full-waveform LiDAR, leaf area
index (LAI).

I. INTRODUCTION

LEAF area index (LAI), defined as total one-sided leaf
area per unit horizontal ground area [1], [2], is a crucial

vegetation structure parameter in the domains of agriculture,
forestry, and ecology [2], and is important for modeling
mass and energy exchange between the biosphere and the
atmosphere [3]–[5]. Light detection and ranging (LiDAR)
waveform data quantify the vertical distribution of vegetation
by recording highly detailed reflected energy from canopy
elements and ground as a function of time (equivalent to the
range) [6]–[9]. In the forest that is covered by the footprint
(25–70 m, [10]–[12]) of spaceborne LiDAR instruments, such
as geoscience laser altimeter system (GLAS) [10] and global
ecosystem dynamics investigation (GEDI) [11], the laser pulse
emitted by the laser transmitter is capable of reaching the
ground through gaps between the foliage elements. Conse-
quently, the saturation problem for a dense forest is minor
than that with passive optical remote sensing [6], [11], [13]
when using spaceborne LiDAR for LAI retrieval.

The clumping effect denotes the nonrandomness of foliage.
In the large footprints of spaceborne LiDAR, real forests
generally have heterogeneity at multiple scales. Crowns
are dispersed as discrete objects [14], which lead to the
between-crown clumping; foliage elements are clumped in the
volumes defined by crowns [14], [15], which causes additional
within-crown clumping. These phenomena deviate from the
random spatial foliage distribution assumption of Beer’s law
(gap probability theory) [16]–[20], on which the LAI retrieval
from spaceborne LiDAR is based. The clumping of foliage,
together with the nonlinear relationship between LAI and gap
probability in Beer’s law, usually leads to an underestimation
of LAI [21]. In ground-based indirect LAI measurement [2],
it might range from 30% to 70% in forests where leaves
were highly clumped [22]–[25]. However, less attention has
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been given to the clumping effect and the impact of forest
structure on it in LAI retrieval from a spaceborne LiDAR
perspective.

Some of the existing findings in ground LAI measurement
could hardly apply to spaceborne LiDAR due to the differences
in the measurement setup. They mainly focus on two aspects:
1) in which kind of forest structure the clumping effect is the
most severe? and 2) which kind of clumping is the dominant
factor influencing LAI retrieval? In LAI retrieval from terres-
trial laser scanning (TLS), it was reported that the clumping
effect of coniferous plots, on average, is larger than that of
the deciduous plots [25]. Ryu et al. [26] studied the impact
of forest structure on LAI using LAI-2000 Plant Canopy
Analyzer (Li-COR, Nebraska, NE, USA). Their results show
that the apparent clumping index (i.e., clumping index [1],
[17], [27] without considering the shoot-level clumping [15])
is the lowest in canopies with short crown lengths (from
the top to the bottom of the crown), large canopy cover,
and vertical prolonged crown shape. It indicates that the
underestimation of LAI is severe in such cases since the
greater the degree of clumping, the smaller the clumping index
[26], [28]. However, there is a large difference between TLS,
LAI-2000, and spaceborne LiDAR in observing angle: TLS
usually observes a hemisphere, LAI-2000 observes beneath
the canopy using five central zenith angles ranging from 7◦
to 68◦, and spaceborne LiDAR is placed above the canopy,
almost at nadir, with small off-nadir angles (up to 1◦ for GLAS
[29], and up to 6◦ for GEDI [30]). The conclusions from
the ground-based measurements of TLS or LAI-2000 may
not be applicable to spaceborne LiDAR since the clumping
effect depends on viewing geometry [31]–[35]. In addition,
current reports on the dominant factor in the clumping effect
are inconsistent so far. For instance, Ryu et al. [36] found that
the clumping effect is dominant at the between-crown scale in
savannas, which corresponds with the open nature of savannas.
The study of Hu et al. [37] also indicates that between-crown
clumping is dominant in their simulated scenes. However,
Chen et al. [38] found that clumping at shoot level is
dominant in boreal coniferous trees. Therefore, the domi-
nant factor depends on the specific forest types and canopy
arrangements.

Current physically based methods of LAI retrieval from
spaceborne LiDAR either apply Beer’s law directly on the
total gap probability by assuming the entire footprint as a
homogeneous scene [30], [39], [40] or on the gap probability
in the crown-covered regions to correct the between-crown
clumping [21]. To the best of our knowledge, the clump-
ing in the crown-covered regions has not been considered
enough yet. It is important to quantify the clumping effect
at different levels, including in the entire footprint, between
the crown, and in the crown, so that the mechanism of LAI
underestimation and the status of the current methods could be
clarified.

The clumping index varies with the radiation pathway [35],
making it possible to analyze the clumping effect based on
the path length, which denotes the length that the ray passes
through a media and is equal everywhere for a homogeneous
canopy. The path length distribution model (called PATH) [37]

uses the relative path length distribution, which links the
difference in path length with the canopy heterogeneity,
to calculate the clumping-corrected “true” LAI from a mea-
sured gap probability. Assuming there are functions of the
relative path length distribution capable of describing the
heterogeneity of different types of the tree crown, a gap
probability can be derived from a given true LAI. In addi-
tion, by applying Beer’s law on this derived gap probability,
an effective LAI [41] can be obtained. We aimed to investigate
how to theoretically derive the clumping effects based on
the definition of the clumping index (i.e., the ratio of the
effective LAI and the true LAI). However, the complexity
of the real forests makes a theoretical exploration difficult.
Following the tradition of using virtual scenes for modeling
studies [9], [14], [42], we abstracted the tree crown as a
cylinder, sphere (ellipsoid), and cone to characterize crown
structures of different forest types. We performed a mathe-
matical derivation of these regular geometries’ relative path
length distribution functions in the nadir-observing direction of
spaceborne LiDAR. We found some general properties of these
functions, making a theoretical analysis of the clumping effect
possible.

We theoretically investigated how the between-crown,
within-crown, and total clumping indices quantitatively change
with the influencing factors, including the crown shape, crown
length, leaf area density (defined as the one-sided leaf area
(m2) per volumetric unit (m3) [43]) within the crown, and
the fractional crown coverage in the footprint. In addition,
we computed these clumping indices from airborne laser
scanning (ALS) point clouds data of real forests. Although
there is a method of estimating the clumping index from the
full-waveform data of GLAS [44], it suffers from the topogra-
phy effect when the terrain slope is large (>12◦), and only the
total clumping index of the footprint can be obtained. On the
contrary, the point clouds data contain more detailed 3-D
structure information and are less affected by the topography
effect in LAI retrieval when compared with the spaceborne
full-waveform data (the topography stretches waveforms, and
this effect increases with the terrain slope [45]). We used PATH
to compute multiple clumping indices from ALS data [46]
within a diameter of 25 m across locations of GEDI footprints
in the Canton of Aargau, Switzerland, to have some general
knowledge of the clumping effects at large-footprint scale in
real forests.

The objective of this study is to explore the following
research questions.

1) When can Beer’s law be applied directly in LAI retrieval
without causing large errors?

2) What kind of forest structure is suitable for correcting
between-crown clumping only?

3) How much of the error is caused by either
between-crown or within-crown clumping in LAI
retrievals? Which kind of clumping effect is the domi-
nant factor in the underestimation of LAI?

Answering the above questions contributes to understanding
the mechanism of LAI underestimation caused by clumping
effects and providing insights for future improvements of LAI
retrievals from large-footprint LiDAR.
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II. BACKGROUND

A. Current LAI Retrieval Methods From Large-Footprint
Full-Waveform LiDAR Data

1) Beer’s Law: The traditional Beer’s law [16] of light
transmission through a turbid medium is used to estimate
LAI [30], assuming that the medium of the vegetation is
homogeneous in the footprint

Pfootprint(θ) = e−G(θ)·LAIe/ cos θ (1)

LAIe = − 1

G(θ)
· ln(Pfootprint(θ)) (2)

where Pfootprint(θ) denotes the gap probability of the footprint
in the viewing zenith angle θ ; G(θ) represents the mean leaf
projection coefficient perpendicular to the observing direction
and is dependent on the leaf angle distribution and θ . Spher-
ical leaf angle distribution is assumed in this work with a
constant 0.5 for G(θ). Specifically, θ is assumed to be 0◦
due to the small off-nadir angle of the spaceborne LiDAR.
Consequently, we drop cos(θ) from (2), and drop θ in the
following equations.

2) Method of Correcting the Between-Crown Clumping: As
the distribution of canopy components is generally not homo-
geneous, the traditional Beer’s law was applied on the gap
probability in crown-covered regions (Pcrown, the probability
of the laser beam that shoots toward tree crowns reaching the
ground). Then, the retrieved LAI of the crown-covered regions
(LAIcrown) by applying Beer’s law on Pcrown was converted to
the footprint level using fcover [21]

Pcrown = Pfootprint − (1 − fcover)

fcover
(3)

LAIe_ fcover = fcover · LAIcrown = fcover ·
�
− 1

G
· ln(Pcrown)

�

(4)

where fcover is the fractional crown coverage within the foot-
print estimated from the Landsat Thematic Mapper imagery
based on the dimidiate pixel model [47] in [21], and (1− fcover)
means the between-crown gap probability (the probability of
the laser beam not intersecting with any tree crowns and reach-
ing the ground). Different from the homogeneity assumption
across the whole footprint [Fig. 1(b)], this method solved the
clumping problem caused by the large gaps [Fig. 1(a)] between
crowns in LAI retrieval from GLAS full-waveform data [21].

However, the homogeneity assumption in crown-covered
regions indicates that the path lengths of the rays passing
through the crown are constant [Fig. 1(c)]. It is usually not
the case in real forests [Fig. 1(d)] and leads to an underesti-
mation of the crown LAI (LAIcrown), and thus of the whole
footprint LAI, which has not been solved in LAI retrieval from
spaceborne LiDAR yet. We will analyze the uncertainty caused
by neglecting the clumping in the crown-covered regions,
and how the LAI retrieval is improved by correcting the
between-crown clumping using the method LAIe_ fcover [21] in
this study.

B. Path Length Distribution Method

PATH was used to characterize variable path lengths through
the canopy [see Fig. 1(d)] in the ground and ALS-based LAI

Fig. 1. (a) Real forest, (b) homogeneity assumption in footprint (LAIe), and
(c) crown-covered regions (LAIe_fcover ) in current LAI retrieval methods, and
the heterogeneity in the crown-covered regions which can be represented by
the difference in path length (d). fcover means the fractional crown coverage,
dividing the material in the footprint into two components: vegetation and
non-vegetation.

retrieval [37], [46]

Pcrown =
� 1

0
e−G·(ρ·lmax)·lr · p(lr )d(lr ) (5)

LAIPATH = fcover ·
� 1

0
(ρ · lmax) · lr · p(lr )d(lr ) (6)

where G is the leaf projection coefficient and is assumed to
be 0.5, ρ is the leaf area density (unit: m2/m3), l is the path
length, lmax and lr are the maximum and relative path length
(lr = l/lmax), respectively, and p(lr ) is the relative path length
distribution function that can characterize the heterogeneity
of the canopy,

� 1
0 p(lr )d(lr ) = 1. With known Pcrown, fcover ,

p(lr ), and G, (ρ · lmax) can be solved from (5); then, the “true
LAI”—LAIPATH can be calculated using (6) by substituting
(ρ · lmax) and p(lr ).

III. METHODS

We computed between-crown, within-crown, and the total
clumping index with varying forest structures through a
theoretical derivation, and estimated them at the footprints
of large-footprint LiDAR scale from real-world data. To be
specific, we approximated the forest as abstract canopies
composed of regular geometries (representing tree crowns); we
assumed the viewing zenith angle to be 0◦ and the leaf angle
distribution [25], [48]–[50] to be spherical. The shoot-level
clumping and the woody components [25] were not consid-
ered to make the theoretical analysis possible. Furthermore,
we used the discrete anisotropic radiative transfer (DART)
model [51] to generate various virtual scenes, where exact
values of gap probability, LAI, and clumping index are known
to test the reliability of the theoretical derivation.

A. Theoretical Derivation of the Clumping Index

Unlike inverting LAI from a known gap probability,
we derived the clumping index at crown and footprint level by
combining PATH and Beer’s law, i.e., from the true LAI to the
gap probability, and from the gap probability to the effective
LAI. The basis of this derivation is p(lr ) (details about
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Fig. 2. Workflow diagram for the theoretical derivation of the between-crown, within-crown, and total clumping indices.

the theoretical derivation in Section III-A.1) that is capable
of describing the heterogeneity of the crown with different
shapes.

The gap probability and true LAI at the crown level were
calculated based on PATH with given structure parameters
including p(lr ), ρ, and lmax of the regular geometry. Via
given fcover , both the gap probability and the true LAI at
the crown level were transformed to the footprint level,
assuming many of the same geometry were dispersed as
discrete objects in the footprint. We obtained the correspond-
ing effective LAI by applying Beer’s law on the crown and
footprint level gap probability, respectively. Then, we com-
puted the clumping index caused by within-crown clumping
(Section III-A.2), within-crown and between-crown clump-
ing together (Section III-A.3), and between-crown clumping
(Section III-A.4) for cylindrical, spherical (ellipsoidal), and
conical canopies when the viewing zenith angle is 0◦. Finally,
we identified the dominant factor in the underestimation of
LAI (Section III-A.5). Fig. 2 shows the overall derivation
process.

1) Derivation of Relative Path Length Distribution Function
of Regular Geometry: The probability density functions p(lr )
of relative path length (lr ) of regular crowns were derived
theoretically, as illustrated in Fig. 3.

For the cylinder, lr is always 1, so p(lr ) is

p(lr ) =
�

1, lr = 1
0, 0 < lr < 1.

(7)

For sphere or ellipsoid, the equations of the surface and lr

are

x2 + y2

k2
+ z2

( 1
2 )

2 = 1(k �= 0) (8)

Fig. 3. Schematic of regular geometries [(a) cylinder, (b) sphere, and (c) cone]
and (relative) path length (lr) (red line) that the rays (gray line with arrow)
pass through the geometry when the observing zenith angle is 0◦ . The length
(i.e., the maximum path length, lmax) of all the three kinds of geometries is
assumed to be 1, so the relative path length (lr) is equal to the path length (l).

lr = 2|z| (9)

where k is a parameter for adjusting the shape of the ellipsoid,
being a sphere when k = 0.5. Assuming countless rays pass
through the sphere with equal lengths (lr ), the intersections
with the sphere construct a circle [the blue one in Fig. 3(b)]
with a radius of r

r2 = x
2 + y2⇒r = g(lr ) = k

�
1 − l2

r (k> 0). (10)

Then, the probability density function of r is

f (r) = 2r

k2
(0 ≤ r ≤ k). (11)

The probability density function of lr can be given based
on (10) and (11)

p(lr ) = f (g(lr )) · ��g(lr )
��� = 2k

	
1 − l2

r

k2
·
�����−

k · lr	
1 − l2

r

�����
= 2lr (0 < lr ≤ 1). (12)
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It is noted from (12) that p(lr ) for any sphere or ellipsoid
is the same since it is not related to the parameter k.

Similarly, p(lr ) of the cone is not affected by the shape (i.e.,
whether fat or thin cone) and is

p(lr ) = 2 − 2 lr (0 <lr ≤ 1). (13)

Therefore, we can use p(lr ) of regular geometries to derive
the theoretical error and the clumping effect in corresponding
LAI retrieval since the characteristic that p(lr ) is not affected
by the length and the specific shape of each kind of geometry
makes the theoretical derivation more generally applicable.

2) Within-Crown Clumping Index: With theoretical p(lr )
and given ρ and lmax (crown length), we derived the clumping
index for a single crown of regular geometry based on its
definition, and all the variables related to LAI were defined at
the crown level.

Based on the PATH model, the gap probability in the crown
area (Pcrown) for a regular geometry, which is assumed to be
filled with randomly distributed leaves with a spherical leaf
angle distribution (G = 0.5), and a certain ρ, is the weighted
average of the transmittance (T = e−G·ρ·l = e−G·(ρ·lmax)·lr ) with
equal lr at the crown area, and the weight is p(lr )

Pcrown =
� 1

0
e−G·(ρ·lmax)·lr · p(lr )d(lr )

p(lr ) =
⎧⎨
⎩

1(lr = 1), Cylinder
2lr , Sphere or ellipsoid
2 − 2lr , Cone.

(14)

Based on Beer’s law, the effective LAI (LAIe_crown) of the
crown is a function of ρ and lmax

LAIe_crown = − 1

G
· ln(Pcrown) = h(ρ, lmax). (15)

The true LAI of the crown (LAItrue_crown) can be calculated
from (16) based on the relationship between LAI, ρ, and
l (lmax · lr ), i.e., LAI of the crown is the weighted average
value of LAIx at locations (x) in the projected area of the
crown with the same path length (lx = lmax ·lr x), which can be
calculated by LAIx = ρ ·lx , and the weight p(lr ) (derived from
Section III-A.1) in (16) is used to consider the nonuniform
distribution of lx (i.e., LAIx)

LAItrue_crown =
� 1

0
(ρ · lmax) · lr · p(lr )d(lr ) = f (ρ, lmax)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ · lmax, Cylinder
2

3
· ρ · lmax, Sphere or ellipsoid

1

3
· ρ · lmax, Cone.

(16)

The clumping index within the crown is

�within−crown = LAIe_crown

LAItrue_crown
(17)

�within−crown is a function of leaf area density (ρ) and crown
length (lmax), just like LAIe_crown and LAItrue_crown.

Then, the relative error (�within−crown) in LAIe_crown caused
by the within-crown clumping is

�within−crown = (�within−crown − 1) · 100%. (18)

Note that the error caused by within-crown clumping at the
footprint level is the same as that for an individual crown if
we assume many of the same crowns are dispersed as discrete
objects in the footprint, since they share the same p(lr ).

The corresponding relative error of LAI and clumping
index in the crown area, caused by within-crown clumping
with various crown lengths (1–20 m) and ρ (0.25–1.5), was
computed (see Section V-A).

3) Total Clumping Index: We calculated the total clumping
index at the footprint level by taking fcover into consideration
further, assuming many same crowns (with a shape of a cylin-
der, sphere (ellipsoid), or cone) dispersed as discrete objects in
the footprint with fcover (0.01 ≤ f cover ≤ 1, where 1 indicates
closed canopy) and there is no overlapping between them.
Similar to those variables for the crown, the corresponding
equations at the footprint level are as follows:

Pfootprint = fcover · Pcrown + (1 − fcover) (19)

LAIe_footprint = − 1

G
· ln(Pfootprint) = H (ρ, lmax, fcover)

(20)

LAItrue_footprint = fcover · LAItrue_crown

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fcover · ρ · lmax, Cylinder

fcover · 2

3
· ρ · lmax, Sphere or ellipsoid

fcover · 1

3
· ρ · lmax, Cone

(21)

�footprint = LAIe_footprint

LAItrue_footprint
(22)

�footprint is caused by within-crown and between-crown clump-
ing together and is a function of leaf area density (ρ), crown
length (lmax), and fcover.

The theoretical error of LAI if we directly apply Beer’s law
on Pfootprint is

�footprint = (�footprint − 1) · 100% (23)

�footprint and �footprint with various crown lengths (1–20 m),
fcover (0.01–1), and ρ (0.5, 1.0, 1.5), are shown in Section V-C.

4) Between-Crown Clumping Index: The total error of the
effective LAI at the footprint level is caused by two factors:
between-crown clumping and within-crown clumping. The
between-crown clumping index is

�between−crown = LAIe_footprint

fcover·LAIe_crown
(24)

where ( f cover·LAIe_crown) denotes the LAI of the footprint after
correcting the between-crown clumping, similar to LAIe_ fcover

in (4). The relative error of LAI caused by the between-crown
clumping is

�between−crown = (�between−crown − 1) · 100%. (25)

Since �between−crown and �between−crown are affected by three
parameters, we set ρ to be 0.5, 1.0, and 1.5, and the results
are shown in Section V-B.
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5) Identification of the Dominant Clumping Effect: We used
the difference between �within−crown and �between−crown to judge
whether within-crown clumping or between-crown clumping
is the dominant contributing factor in LAI underestimation,
which is a function of leaf area density (ρ), crown length
(lmax), and fcover

|�within−crown| − |�between−crown| = ∅(ρ, lmax, fcover). (26)

When |�within−crown| − |�between−crown| > 0, within-crown
clumping is the dominant factor; and when |�within−crown| −
|�between−crown| < 0, between-crown clumping is the
dominant contributing factor in LAI underestimation. The
results with given ρ (0.5, 1.0, 1.5) for the cylindrical,
spherical (ellipsoidal), and conical canopies are shown in
Section V-D.

B. Estimation of the Clumping Index From Real-World Data

Although our objective was to quantitatively explore the
clumping effect at different scales in LAI retrieval from large-
footprint full-waveform LiDAR data, we cannot distinguish
them because information of between-crown gaps is lacking in
such data. We used ALS point clouds data within the footprints
of spaceborne LiDAR—GEDI to quantify them. We retrieved
footprint-scale LAIs by correcting different levels of the
clumping, including not correcting any clumping (LAIe), just
correcting the between-crown clumping (LAIe_ fcover ), and cor-
recting both the between-crown clumping and within-crown
clumping (LAIPATH) using the equations above. The related
parameters for the retrieval were estimated as follows.

1) Pfootprint was calculated using an intensity-based method
([52, eq. (14)]) from the point clouds within an off-nadir
angle of 10◦ in the GEDI footprint. This method
was reported to be suitable for all footprint sizes of
small-footprint ALS, regardless of the structural and
optical properties of the vegetation [53]. After the
topographic normalization of the original point clouds,
a threshold of 3 m was used to further classify the points
to forest and nonforest in gap probability calculation;
thus, understory with a height less than 3 m was not
included in LAIs.

2) fcover was estimated from the ratio of the number of
pulses whose first returns were classified as vegetation
with a height of over 3 m.

3) p(lr ) was estimated from the canopy height
model (CHM) with a resolution of 0.5 m. Please
refer to [46] for more details about the estimation of
LAIPATH.

Using LAIPATH as the “true” LAI, we calculated multiple
clumping indices according to equations in [46]. The clumping
index in total (�footprint), between the crown (�between−crown),
and in the crown (�within−crown) was calculated as

�footprint = LAIe/LAIPATH (27)

�between−crown = LAIe/LAIe_ fcover (28)

�within−crown = LAIe_ fcover /LAIPATH (29)

respectively.

IV. MATERIALS

Virtual scenes with known exact values of gap probability
at both the footprint (Pfootprint) and crown (Pcrown) levels,
fcover , and LAI were generated to test the reliability of the
theoretical derivation of the between-crown, within-crown, and
total clumping indices, respectively. ALS point clouds data
within large footprints of GEDI were used to estimate these
kinds of clumping in real forests.

A. Virtual Scenes

We generated abstract discontinuous canopies, where
foliage clumps into cylindrical, spherical, and conical tree
crown, with three different tree densities (10, 16, and 22 trees,
corresponding to fcover values of 0.26, 0.41, and 0.56). Trees
were randomly located in the 25-m diameter footprints used
by GEDI [11] and the upcoming multifootprint observation
LiDAR and imager (MOLI) [12]. To avoid overlap, the dis-
tance between the centers of two crowns was larger than the
crown diameter (i.e., 4 m). The foliage was constructed using
randomly distributed square-shaped scatterers with an area
of 0.05 × 0.05 m2 (used in [53]). They were located in the
cylindrical, spherical, and conical tree crowns on horizontal
ground surfaces. The orientations of the leaf elements (scat-
terers) followed a spherical distribution, i.e., the probability to
be intercepted by a leaf were independent of the direction of
travel of the radiation, with the leaf projection function G set
to be 0.5.

Six different values of ρ (unit: m2/m3), ranging from
0.25 to 1.50 with an increment of 0.25, were generated.
Notably, 0.25 and 0.5 were used in [53], 0.5 was used
in [54], the reported ρ used for broadleaved 3-D crown models
summarized by Ligot et al. [55] shows that it ranges from
0.3 to 1.32 in seven published studies, and 1.59 was used
in [56]. Specifically, we designed the ten cylinders, spheres,
and cones with a 4-m diameter, 4-m crown length, and the
same locations in the footprint to analyze the clumping effect
for the three kinds of regular geometries with the same ρ.
We generated 10, 16, and 22 cones, with the diameter at the
bottom of the cone of 4 m and length of 8 m, to analyze the
clumping effect when ρ, fcover , and the crown length vary in
the footprint. Table I provides the detailed properties of the
crown and the scatterers for the parameterization in DART,
and the geometrical scenes will be shown in Section V.

B. Airborne LiDAR Data
The leaf-on ALS data covering the whole regions of Aargau

[Fig. 4(a)] (a canton located in northern Switzerland [Fig. 4(b)]
with an area of 1404.4 km2) were acquired from June 19 to
July 15 in 2014 using RIEGL LMS-Q680i long-range laser
scanner. The wavelength of the scanner is 1550 nm, and the
laser beam divergence is less than 5 mrad (corresponding to
about 50-cm increase of beamwidth per 1000-m distance).
A maximum number of seven returns were recorded per beam.
The operating flight altitude was 700 m, and only data within
a ±10◦ scan zenith angle were used to avoid the impact of
large off-nadir scan angle on gap probability estimation [57].
The average pulses density is ten pulses per square meter.
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TABLE I

PROPERTIES OF THE ABSTRACT DISCONTINUOUS CANOPIES

Fig. 4. (a) and (b) Data used in the study area and (c) canopy and topography information computed from ALS data in GEDI-covered footprints in the
forest area.

Considering the large data amount, we used the geolocations
of GEDI from the GEDI L1B product with the date of data
acquisition ranging from April 18, 2019, to April 15, 2020,
to sample the ALS point clouds data. We extracted point
clouds within each 25-m diameter of GEDI footprint for
LAI and clumping index retrieval. The forest and topography
information computed from the GEDI-covered footprints in
the forest area are shown in Fig. 4(c).

V. RESULTS AND DISCUSSION

For the theoretically derived values, the error caused by
the within-crown clumping indicates the theoretical error of
method LAIe_ fcover , and error caused by the between-crown
clumping and within-crown clumping together indicates the
error of method LAIe; methods LAIe and LAIe_ fcover are the two
current physically based LAI retrieval methods from space-
borne full-waveform LiDAR. In addition, the error caused by
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Fig. 5. Theoretical error and clumping index (�within−crown) caused by within-crown clumping in LAI underestimation at various crown lengths and leaf
area densities (ρ, unit: m2/m3) for cylindrical, spherical (or ellipsoidal), and conical canopies.

the between-crown clumping indicates how much the LAI can
be improved by using the method LAIe_ fcover .

A. LAI Retrieval Error Caused by Within-Crown Clumping
We theoretically calculated the relative error of LAI and the

clumping index (�within−crown) when the viewing zenith angle
is 0◦ in different conditions, including various crown lengths
from 1 to 20 m and various ρ from 0.25 to 1.50, caused by
within-crown clumping for scenes, which include cylindrical,
spherical (ellipsoidal), and conical canopies.

The error caused by within-crown clumping and
�within−crown are a collective effect of crown shape, ρ, and
crown length (Fig. 5). Apparently, there is no within-crown
clumping for the cylinder since it is a nadir observation.
However, for the other kinds of geometry: 1) |�within−crown| is
always larger (�within−crown is always smaller) for the conical
canopy than that for the spherical canopy, due to the greater
heterogeneity of the cone in the observing direction and
2) |�within−crown| increases (�within−crown decreases) with ρ
and crown length. The reason is that the larger the ρ, or the
longer the crown, the greater the heterogeneity in the crown
area. For instance, it is larger when ρ is 1.5 (6%–58% and
3%–53% for conical and spherical canopies, respectively)
than ρ is 0.25 (1%–18% and 1%–11% for conical and
spherical canopies, respectively) with crown length ranging
from 1 to 20 m. In addition, the theoretical computation
is reliable since �within−crown is nearly consistent with the
results of the simulation (Fig. 6 and Table II): |�within−crown|
for the virtual scene simulation and theoretical computation
is 22.0% versus 21.4% and 14.7% versus 13.7% for conical
and spherical canopies, respectively, when ρ is 1.5 and crown
length is 4 m.

Fig. 7 shows the histogram of �within−crown estimated from
the ALS data in 11 290 footprints. �within−crown ranges

from 0.31 to 1.00 (mean (μ) = 0.89 and the standard
deviation (σ) = 0.11).

The error caused by within-crown clumping is seldomly
studied from the spaceborne LiDAR perspective. Previous
studies on indirect ground-based LAI measurement found a
21%–33% underestimation of the gap size distribution method
[37], [58], [59]. Such an underestimation is mainly caused by
within-crown clumping [37]. Results from theoretical com-
putation and real-world data show that it could be highly
variable (up to 58% underestimation for conical canopies from
theoretical derivation, and 0%–69% for the real forests).

B. LAI Retrieval Error Caused by Between-Crown Clumping
The order of error caused by the between-crown clump-

ing (|�between−crown|) is: cylindrical canopy > spherical
(ellipsoidal) canopy > conical canopy (Fig. 8), indicating
that correcting between-crown clumping is more effective for
cylindrical and spherical canopies than that for the conical
canopy. Similarly, the order of �between−crown is: cylindrical
canopy < spherical (ellipsoidal) canopy < conical canopy.
�between−crown could be around 0.1 [Fig. 8(c)] at a small fcover

(0.01), long crown (20 m), and large ρ (1.5 m2/m3), indicating
that the homogeneity assumption in the footprint will cause
larger errors in such cases.

Comparing (a)–(c) in Fig. 8, we found that:
1) |�between−crown| increases with ρ; 2) |�between−crown|
increases with the crown length for the cylindrical canopy
but not for the spherical (ellipsoidal) and conical canopies;
3) |�between−crown| decreases with increasing fcover; however,
the larger the ρ, the larger the required fcover is to make
|�between−crown| close to 0, if we make a comparison when
crown ρ is 0.5, 1.0, and 1.5 in (a)–(c) in Fig. 8, respectively.

There is a good consistency between �between−crown from
our theoretical computation and the generated virtual scenes,
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Fig. 6. Geometrical scenes (leaf area density (ρ, unit: m2/m3) = 0.75), theoretical relative errors of LAI caused by within-crown clumping [i.e., the errors
after correcting the between-crown clumping (LAIe_fcover )] for virtual discontinuous cylindrical, spherical, and conical canopies with the crown ρ ranging
from 0.25 to 1.50, and fcover being 0.26.

TABLE II

RELATIVE ERRORS OF LAI CAUSED BY WITHIN-CROWN CLUMPING IN THE FOOTPRINT WITH DIFFERENT CROWN LEAF AREA DENSITY (UNIT: M2/M3)
AND CROWN SHAPE: FROM THEORETICAL DERIVATION AND THE GENERATED VIRTUAL SCENES

as shown in Fig. 9 and Table III. In addition, the reliability
of the theoretical computation of the clumping indices had
only been tested at a 25-m diameter footprint. The findings
also suit other footprint sizes as long as multiple tree crowns
are included in the footprint. It is because fcover used in the
derivation is a relative quantity that combines the coverage of
the tree crowns and the size of the footprint.

The histogram of �between−crown estimated from the real
forests is shown in Fig. 10. �between−crown ranges from 0.29 to
1.00 (μ = 0.88, σ = 0.10). The average �between−crown is
relatively large, which can partly be explained by the high
fcover (μ = 0.87, σ = 0.18) in the study area. As can be
learned from the theoretical derivation (Fig. 8), the larger

the fcover , the smaller the between-crown clumping under the
premise that the other structure parameters are fixed.

C. LAI Retrieval Error Caused by Within-Crown and
Between-Crown Clumping Together

The theoretical error of effective LAI (LAIe) and clumping
index at footprint scale (�footprint) were calculated by further
taking fcover into consideration.

The error of LAIe is caused by a collective effect of the
crown shape, crown length, ρ, and fcover (Fig. 11). Specifically,
1) the trend of the error of LAIe is exactly opposite to the
error caused by within-crown clumping (corresponding to the
error of LAIe_ fcover ) in Fig. 5. The magnitude of error of
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TABLE III

RELATIVE ERRORS OF LAI CAUSED BY BETWEEN-CROWN CLUMPING IN THE FOOTPRINT: FROM THEORETICAL
DERIVATION AND THE GENERATED VIRTUAL SCENES

TABLE IV

RELATIVE ERRORS OF LAI BY DIRECTLY APPLYING BEER’S LAW IN THE FOOTPRINT: FROM THEORETICAL DERIVATION

AND THE GENERATED VIRTUAL SCENES

Fig. 7. Histogram of the within-crown clumping index (�within−crown)
estimated from ALS point clouds data in 11 290 footprints with a diameter
of 25 m. LAIe_fcover denotes the retrieved LAI by correcting the between-
crown clumping.

LAIe is: cylindrical canopy > spherical (ellipsoidal) canopy >
conical canopy, due to the considerable heterogeneity resulting
from the large gaps between crowns for a cylindrical canopy.
It indicates that the clumping effect at the footprint scale is
most serious in open cylindrical canopies; 2) the error of LAIe

increases (�footprint decreases) with crown ρ (ρ changes from
0.5 to 1.5 with an increment of 0.5 in Fig. 11), since the larger
the crown ρ, the greater the heterogeneity in the footprint;
3) errors of LAIe and LAIe_ fcover (the error in Fig. 11 when
fcover = 1) increase with the crown length since the longer
the crown, the greater the heterogeneity in the footprint scale
for LAIe and crown area for LAIe_ fcover retrieval; and 4) error
of LAIe decreases (�footprint increases) with increasing fcover

since the larger the fcover , the closer the scene is to a homo-
geneous distribution of canopy elements. These computations
are consistent with those of our generated virtual scenes in
Fig. 12 and Table IV. Moreover, when fcover is 1 in Fig. 11,
the error is only caused by within-crown clumping.

There is a large difference between the clumping index at
the crown level and the footprint level. Comparing �footprint

(Fig. 11) and �within−crown (Fig. 5), �within−crown is 1 for the
cylindrical crown, but �footprint for the cylindrical canopy
could be around 0.1 at a small fcover (0.01), long crown
(20 m), and large ρ (1.5). It indicates that we are unable
to know �footprint even though we know �within−crown for
a specific tree in advance due to the large impact of the
between-crown gaps in the footprint. In addition, the large
difference between �within−crown and �footprint indicates that the
error of LAI acquired from directly applying Beer’s law at the
individual-tree level is smaller than that at the footprint/pixel
level. The reason is that the between-crown gaps lead to an
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Fig. 8. Theoretical error in LAI underestimation and clumping index (�between−crown) caused by between-crown clumping for cylindrical, spherical (or
ellipsoidal), and conical canopies, taking the crown length (1–20 m), fractional crown coverage (fcover) (0.01–1), and leaf area density (ρ, unit: m2/m3)
[(a) 0.5, (b) 1.0, and (c) 1.5] into consideration.

increase in heterogeneity, i.e., the scale effect when applying
a nonlinear Beer’s law in LAI retrieval is more severe [60].

Our result shows that the clumping effect is large for long
crowns, consistent with what Kuusk et al. [61] found from
ALS data of forest stands but is not consistent with other find-
ings in ground-based LAI measurement using LAI-2000 [26].
The reason is that the view angles of the LAI-2000 instrument
can see more crowns for taller canopies, which causes the
foliage to appear almost randomly distributed [26]. However,
the longer the crown, the more significant the heterogeneity in
the nadir-observing direction for airborne or spaceborne laser
scanning.

�footprint estimated from 11 290 footprints ranges from
0.16 to 0.99 (μ = 0.78, σ = 0.15), and the histogram is
shown in Fig. 13.

Previous studies in ground-based LAI measurement show
that indirect methods based on Beer’s law might cause
a 30%–70% underestimation of LAI because of nonran-
dom foliage distribution [22]–[24]. Inspired by the result
in Figs. 11 and 13, we believe that the underestimation of
LAI from spaceborne LiDAR could be highly variable, and
the error of LAIe increases as both the crown ρ and crown
length increase. For instance, it could be up to 93% for
discrete cylindrical canopy [Fig. 11(c)], and an up to 84%
underestimation was found in the real forest. Note that the
findings here apply to spaceborne LiDAR and can be used
to understand the errors in pixel-level (including multiple
tree crowns, such as 10-m grid in [62]) LAIe retrieval using
point clouds from small-footprint airborne LiDAR if the scan
angle is close to nadir. For instance, for small scan angles,
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Fig. 9. Generated geometrical scenes (leaf area density (ρ, unit: m2/m3) = 0.75) and the relative errors of LAI (theoretically derived and those of the virtual
scenes) caused by between-crown clumping from directly applying Beer’s law, for discontinuous cylindrical, spherical, and conical canopies with the crown
ρ ranging from 0.25 to 1.50, and the fractional crown coverage ( fcover) ranging from 0.26 to 0.56 with an increment of 0.15 for conical canopy: from the
theoretical derivation (dotted lines) and the virtual scenes (solid lines).

Fig. 10. Histogram of the between-crown clumping index (�between−crown)
estimated from ALS point clouds data in 11 290 footprints with a diameter
of 25 m.

no significant impact on proxies for fractional cover and LAI
were observed in [63]. In addition, it was suggested that large
off-nadir scan angle of small-footprint airborne LiDAR should
be avoided to ensure a more accurate gap probability and LAI
estimation in [57].

D. Dominant Contributing Factor in LAI Underestimation

Between-crown clumping and within-crown clumping are
the main factors affecting the clumping effect. So far,
there has been little attention on which one has greater
impact on LAI underestimation. We calculated the differ-
ence between |�within−crown| and |�between−crown| to identify

the dominant factor from the theoretical derivation. For the
real-world data �within−crown < �between−crown indicates that
the within-crown clumping is the dominant factor and vice
versa.

The dominant clumping effect depends on the forest struc-
ture. 1) �between−crown is the only contributing factor for
the clumping effect in cylindrical canopies [Fig. 14(a1)–(a3)],
which is highly variable from 0% (closed canopy) to 93%
(very sparse canopy) at the long crown (20 m), large ρ (1.5),
and small fcover(0.01). In addition, the larger the crown ρ,
the larger the required fcover and the smaller the length of
crown needed, to make the |�between−crown| small enough to
be neglected in LAI retrieval. 2) �within−crown is roughly the
dominant factor in the underestimation of LAI for discontinu-
ous conical canopy [Fig. 14(c1)–(c3)]. However, 3) it depends
on ρ, crown length, and fcover for discontinuous spherical
(ellipsoidal) canopy [Fig. 14(b1)–(b3)], and �within−crown is
the dominant contributing factor when fcover is close to and
over 0.9.

Identifying the dominant factor is of great significance for
method development. It indicates that the method that corrects
the between-crown clumping [21] (i.e., LAIe_ fcover ) makes a
significant advancement in improving the LAI retrieval for
cylindrical canopies from spaceborne LiDAR, where there is
no within-crown clumping, while the between-crown clumping
is the largest in all these three kinds of canopy. On the
contrary, within-crown clumping is the dominant factor for
conical canopies. In contrast, spherical canopies show a very
complex situation that the dominant factor may change with
fcover , crown length, and ρ.
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Fig. 11. Theoretical error in LAI underestimation and the total clumping index (�footprint) caused by the total clumping effect for cylindrical, spherical
(or ellipsoidal), and conical canopies, taking the crown length (1–20 m), fractional crown coverage (fcover) (0.01–1), and leaf area density (ρ, unit: m2/m3)
[(a) 0.5, (b) 1.0, and (c) 1.5] into consideration.

In 47.4% of the footprints in real forests, within-crown
clumping is the dominant contributing factor. The average
�between−crown and �within−crown in each interval (with an incre-
ment of 0.1) of the value of �footprint are shown in Fig. 15 (see
Appendix for more details about the computed three kinds of
clumping index, and the three kinds of LAI from not correcting
any clumping to correcting both the between-crown clump-
ing and within-crown clumping). It is noted that sometimes
the within-crown clumping and the between-crown clumping
dominate in different situations of the total clumping effect.
This phenomenon is consistent with our theoretical derivation
since the dominant factor depends on many factors, including
the crown shape, crown length, fcover , and the leaf area density.

E. Clumping Effects in Sloped Terrain
Both the within-crown clumping and between-crown clump-

ing are not affected by topography. For within-crown clump-
ing, Fig. 16 shows that path lengths (solid red lines in Fig. 16)
that the rays pass through the trees on a sloped terrain
[Fig. 16(a)] are the same as those on flat terrain [Fig. 16(b)].
It is because the observing direction of spaceborne LiDAR
is close to nadir. However, when the observing direction
deviates by a large amount from nadir, such as for TLS
in Fig. 16, the path lengths (solid blue lines) are quite
different from those on flat terrain, indicating that the
within-crown clumping is influenced by topography. As shown
in a previous study, topographic effects can lead to an
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Fig. 12. Geometrical scenes (leaf area density (ρ, unit: m2/m3) = 0.75) and the relative errors of LAI caused by between-crown clumping and within-crown
clumping together from directly applying Beer’s law (LAIe), for discontinuous cylindrical, spherical, and conical canopies with the crown ρ ranging from
0.25 to 1.50, and the fractional crown coverage ( fcover) ranging from 0.26 to 0.56 with an increment of 0.15 for conical canopy: from theoretical derivation
(dotted lines) and the virtual scenes (solid lines).

Fig. 13. Histogram of the total clumping index (�footprint) estimated from
ALS point clouds data in 11 290 footprints with a diameter of 25 m.
LAIe denotes the effective LAI by assuming homogeneous vegetation in the
footprint.

root mean square error (RMSE) up to 66.2% in the vertical
distribution of the plant area [64]. For the between-crown
clumping, the fraction of between-crown gaps (represented by
brown lines in Fig. 16) is not affected by the topography. The
between-crown gap probability is a fraction of between-crown
gaps on the projected flat ground, not on a sloped terrain
surface; in addition, the footprint size is defined by projection
on flat ground as well.

The impact of the terrain on LAI retrieval is on the
accuracy of the gap probability estimated from the waveform.
Waveforms are stretched by the topography, leading to a
mixing of return signals of vegetation and ground. This
effect increases with terrain slope and undulation [65]. More-
over, previous studies [65], [66] show that it also mani-
fests with footprint size (see Fig. 6 in [65] and Fig. 5
in [66]—comparisons of waveforms between footprint size
of 25 and 70 m at different terrain slopes).

F. Research Perspectives
This study focuses on the influence of the clumping effect.

The leaf projection coefficient (G), an essential parameter
in Beer’s law, is assumed to be 0.5 by assuming the leaf
angle distribution to be spherical distribution. Real canopies
might deviate from spherical distribution [67], [49], and it
has been reported that this assumption might lead to an up
to 53% underestimation of LAIe when the viewing zenith
angle is 0◦ [68]. The comprehensive influence of the clumping
effect and the assumption of G = 0.5 on true LAI retrieval
should be further studied. The unmanned aerial vehicle (UAV)
laser scanning (UAVLS) system [69] has greater flexibility
in scanning and can acquire higher point density when com-
pared with ALS. It is promising in this topic because an in
situ measurement of leaf angle distribution and LAI might
be realized. For the leaf angle distribution estimation, the
advantage of UAVLS in performing a hemispherical scanning,
current issues, and perspectives has been discussed in [50,
Sec. 4.4]. In contrast, Kuusk pointed that grouping together
G and clumping index would be more rational [70]. Both G
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Fig. 14. Theoretical difference between the error caused by within-crown clumping (|�within−crown|) and between-crown clumping (|�between−crown|) for
(a1)–(a3) cylindrical, (b1)–(b3) spherical (ellipsoidal), and (c1)–(c3) conical canopy in different conditions (0.01 ≤ fcover≤ 1, 1 ≤ crown length ≤ 20) with
the leaf area density (ρ, unit: m2/m3) set to be 0.5, 1.0, and 1.5, respectively. A negative value (on the left side of the black curve) and positive value (on
the right side of the black curve) in (b1)–(b3) and (c1)–(c3) denotes that the between-crown clumping or within-crown clumping is the dominant factor in
the underestimation of LAI.

and the clumping index are direction-dependent; whether this
idea could provide more possibilities in LAI retrieval deserves
further considerations, in theory.

Although the current spaceborne full-waveform LiDAR
instruments show significant advantages in LAI retrieval due
to its direct sampling of the 3-D vegetation structure, using
the LiDAR data itself is not enough to ensure LAI retrieval
accuracy because we cannot obtain the horizontal distribution
information of the trees from such data. What can be estimated
from the waveform is the total gap probability, which is a
mixture of the between-crown and within-crown gap probabil-
ity. However, separating them is crucial to correct either the

between-crown or the within-crown clumping. It is exactly
why passive optical Landsat Thematic Mapper imagery was
introduced to obtain the between-crown gaps for correcting
the between-crown clumping in LAI retrieval from GLAS
data in [21]. As one of the current physically based methods
to retrieve LAI from spaceborne LiDAR, this method is
superior in principle to the other method that directly applies
Beer’s law in the footprint. However, the differences in the
viewing zenith angle, the geolocation accuracy, and the spatial
resolution between different sensors on different platforms
would inevitably introduce errors, limiting the application of
this idea of joint use of the multisource data. In comparison,
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Fig. 15. Average between-crown (�between−crown) and within-crown clumping
(�within−crown) indices (95% confidence interval) in each interval (with an
increment of 0.1) of the total clumping index (�footprint). The right axis
shows the percentage of the footprints (N = 11 290) with the value of
�footprint in a specific interval in all the footprints with a diameter of 25 m.
�within−crown < �between−crown indicates that the within-crown clumping is
the dominant contributing factor in LAI retrieval.

Fig. 16. Path lengths that the rays pass through the trees on (a) sloped
and (b) flat terrain, and the between-crown gaps. TLS denotes terrestrial laser
scanning.

the method of directly applying Beer’s law has been widely
used due to its advantages in applicability and simplicity.

The future improvement of the LAI retrieval from the
spaceborne LiDAR could focus on two aspects: instrument
design and method research. From the perspective of instru-
ment design, a simultaneous measurement of a laser scanner
and high-resolution imagery on the same platform would
be promising in improving LAI retrieval, especially for the
nonnegligible between-crown clumping in sparse forests (see
Fig. 8). The upcoming MOLI [12], which will conduct a simul-
taneous measurement using a laser scanner (25-m diameter
footprint) and an imager (green, red, and near-infrared band,
with 5-m spatial resolution), would be a good data source.
However, what the spatial resolution of the imagery should be
to make sure that the fractional crown coverage information
can be acquired accurately still needs further investigation.
Simulating the passive optical imagery (with different spatial
resolutions) and the waveform through a 3-D radiative transfer
model such as DART [71] would be a pathway to provide
data. From the perspective of method research, fully utilizing
the 3-D sampling information in the waveform to correct the
within-crown clumping, instead of only using the 2-D gap
probability, would deserve further study.

This study contributes to understanding the mechanism of
the clumping effect in between-crown, crown, and footprint
levels. It provides some insights on improving LAI retrieval
from large-footprint LiDAR and offers potential explanations
for errors in pixel-level effective LAI retrieval from ALS
point clouds data when scan angles close to nadir are used.
In addition, the clumping effects in various forest structures are
helpful for better understanding the modeling of the directional
gap probability and the hotspot effect [72], which are affected
by the between-crown clumping and within-crown clumping,
in the radiative transfer model [73].

VI. CONCLUSION

Most physically based methods of LAI retrieval from large-
footprint LiDAR are based on Beer’s law, assuming random
foliage spatial distribution in the entire footprint. Some studies
have corrected for the between-crown clumping, but still
assume randomness in crown-covered regions. As a result,
there is usually an underestimation of LAI due to the hetero-
geneity of the forest canopy. This study quantitatively inves-
tigated the between-crown, the within-crown, and the total
clumping effect at a large-footprint LiDAR scale both through
a theoretical derivation and by using ALS point clouds data in
Aargau, Switzerland. Based on the definition of the clumping
index, we theoretically analyzed the clumping effects with
various forest structure parameters including different crown
shapes, crown lengths, crown leaf area densities, and fractional
crown coverages in the footprint, making the causes of the
clumping effect clear.

The computed clumping indices from the theoretical deriva-
tion and ALS data in 11 290 footprints (diameter = 25 m)
indicate the nonnegligible clumping effect from the space-
borne LiDAR perspective. The range of the total clumping
index is found to be 0.07–1.0 from theoretical derivation and
0.16–1.0 from real-world data. It increases with crown length
and crown leaf area density but decreases with increasing
fractional crown coverage, and is larger than that at the
individual tree level. Correcting for between-crown clumping
(�between−crown ranges from 0.29 to 1.0 in real-world data)
improves LAI retrieval significantly; however, the error caused
by within-crown clumping (�within−crown ranges from 0.31 to
1.0 in real-world data), which increases with crown length and
crown leaf area density, and is larger for conical than that for
spherical (ellipsoidal) canopies, cannot be neglected. We found
that.

1) When there are between-crown gaps, conical canopies
with short crowns, small crown leaf area densities, and
high fractional crown coverages are associated with the
lowest error in LAI retrieval by directly using Beer’s
law.

2) Cylindrical canopies are suitable for using the method
which just corrects between-crown clumping.

3) The error could be up to 93% caused by between-crown
clumping for cylindrical canopies and up to 58% caused
by within-crown clumping for conical canopies, and the
corresponding errors caused by between-crown clump-
ing and within-crown clumping for spherical canopies
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Fig. 17. (a) Scatter plot of three LAIs (LAIe—using homogeneity assumption, LAIe_fcover —correcting the between-crown clumping, and LAIPATH—correcting
both the between-crown clumping and within-crown clumping) and (b) between-crown, within-crown, and total clumping indices.

are smaller than these two values, respectively. Cor-
respondingly, the dominant factor in the underesti-
mation of LAI is related to the canopy types: it
is between-crown clumping for cylindrical canopies
and within-crown clumping for conical canopies, while
it depends on the specific fractional crown cover-
age, crown length, and leaf area density for spherical
canopies.

Correcting for between-crown clumping is an important
contribution to the improvement of LAI retrieval accuracy, and
our results highlight the importance of further correction of the
clumping effect in the crown-covered regions to improve LAI
retrieval in the future.

APPENDIX

LAIs [Fig. 17(a)] from not correcting any clumping to
correcting both the between-crown clumping and within-crown
clumping, and the clumping indices [Fig. 17(b)] at the
between-crown, crown, and footprint scale were computed
from the ALS point clouds data in 11 290 footprints with a
diameter of 25 m. We sorted all the results in ascending order
according to LAIe_ fcover and the total clumping index (�footprint)
to show the differences of the three LAIs [Fig. 17(a)] and the
three clumping indices [Fig. 17(b)], respectively.
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