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Reconstructing Missing Information of Remote
Sensing Data Contaminated by Large and Thick

Clouds Based on an Improved Multitemporal
Dictionary Learning Method

Mu Xia and Kun Jia

Abstract— The presence of clouds and cloud shadows has
limited the applications of optical remote sensing data. Currently,
most cloud removal methods are focused on reconstructing
remote sensing data contaminated by small or thin clouds. This
study proposes an improved method based on multitemporal
dictionary learning to reconstruct missing information of remote
sensing data contaminated by large and thick clouds. First,
the contaminated target image is initialized using all avail-
able adjacent cloud-free reference images. Second, reconstructed
images from each of the reference images are produced using
dictionary learning and sparse representation methods. Then,
weights are determined for the abovementioned reconstructed
images based on their reconstruction errors over uncontaminated
regions and are used to generate the preliminary reconstruction
result. Finally, an error correction step for the contaminated
regions is applied to the preliminary result, which is then
combined with the original uncontaminated pixels to produce the
final reconstruction result. The proposed method was evaluated
on simulated clouds/cloud shadows based on remote sensing data
with various sizes and land cover types. Visual and quantitative
analyses of the reconstruction results show that the proposed
method outperformed the generally used geostatistical neighbor-
hood similar pixel interpolator (GNSPI) and nonnegative matrix
factorization and error correction (S-NMF-EC) methods. There-
fore, the results indicated that the proposed method was capable
of accurately and effectively reconstructing data contaminated
by large and thick clouds.

Index Terms— Missing information, multitemporal dictionary
learning (MDL), reconstruction, sparse representation.

I. INTRODUCTION

W ITH the development of remote sensing technology,
software computational efficiency, and hardware capac-

ity, remote sensing data have been widely used in a variety

Manuscript received December 30, 2020; revised March 14, 2021 and
April 16, 2021; accepted July 1, 2021. Date of publication July 16, 2021;
date of current version January 17, 2022. This work was supported in part by
the Second Tibetan Plateau Scientific Expedition and Research Program under
Grant 2019QZKK0405, in part by the National Natural Science Foundation
of China under Grant 41671332, and in part by the National Key Research
and Development Program of China under Grant 2016YFB0501404 and
Grant 2016YFA0600103. The work of K. Jia was supported by the Tang
Scholar of Beijing Normal University. (Corresponding author: Kun Jia.)

The authors are with the State Key Laboratory of Remote Sensing Science
and the Beijing Engineering Research Center for Global Land Remote Sensing
Products, Faculty of Geographical Science, Beijing Normal University, Beijing
100875, China (e-mail: jiakun@bnu.edu.cn).

Digital Object Identifier 10.1109/TGRS.2021.3095067

of applications, including precision agriculture [1], biodi-
versity assessment [2], hydrological modeling [3], geologic
mapping [4], and hazard assessment [5]–[7]. Among all the
sensors, optical remote sensing systems have the longest
history as well as the largest data archives. Recently, it has
been convenient to acquire medium- to high spatial resolu-
tion optical remote sensing data all over the world at short
time intervals. However, clouds form at different altitudes
throughout the atmosphere, which cast great influence on
optical remote sensing data. Thin clouds do not block the
spectral information of the earth’s surface entirely, and part
of the spectral signals can still pass through and reach the
satellite sensors. However, thick clouds obscure all spectral
information of the earth’s surface at visible and near-infrared
wavelengths [8]. Although the remote sensing of clouds is
important for atmospheric studies [9], the presence of clouds
and cloud shadows has long been one of the greatest obstacles
in other optical remote sensing data applications, because
they cover approximately 50% of the earth’s surface at any
time [10].

Many algorithms for removing cloud/cloud shadow effects
and recovering cloud-contaminated information from opti-
cal remote sensing data have been developed in recent
decades. They can be classified into four categories based
on the auxiliary information needed, including spatial-based,
spectral-based, temporal-based, and hybrid methods [11].

Spatial-based methods utilize information from the
cloud-uncontaminated regions to reconstruct the contaminated
regions from the same image. Typical algorithms include
geostatistical interpolation [12], [13], propagated diffusion
[14], [15], and variation-based [16] and exemplar-based [17],
[18] methods. These methods assume that the spectral
characteristics over both contaminated and uncontaminated
regions are similar. Therefore, they only work well for
images with small cloud contamination in homogeneous
regions. However, clouds and cloud shadows seldom appear
so idealized, which limits their actual applications.

Spectral-based methods are developed based on the existing
high correlation among neighboring spectral bands and the
different abilities of electromagnetic radiation to penetrate
clouds at different wavelengths. The main applications of these
methods are retrieving a corrupted band using its neighboring
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intact bands [19] and recovering land surface information
covered by thin clouds [20]–[22]. However, when thick clouds
obstruct the earth surface information over all bands from
reaching to the sensors, these methods are not applicable.

Temporal-based methods utilize uncontaminated reference
information over the same region with different acquisition
times. This category of methods assumes that the land cover
types remain unchanged over the acquisition times of all
images. Some of the temporal-based methods predict the
contaminated data using similar patches were determined by
reference data, e.g., Lin et al. [23] proposed information
cloning by selecting the most similar patches over a sequence
of images and formulated the reconstruction process as a
global optimization of solving a Poisson equation. Other
algorithms predict cloud-contaminated pixels using established
relationships between uncontaminated data over multitemporal
images [24], [25]. Methods such as the Savitzky–Golay (SG)
filter [26], asymmetric Gaussian (AG) model [27], double
logistic (DL) technique [28], and harmonic analysis of time
series (HANTS) [29] are often used for eliminating noise over
time-series data, typically for vegetation indices [30]–[33].
Since vegetation growth follows a certain temporal pattern,
these methods can filter out outliers and provide a proper
prediction of the missing data according to the pattern curves.
However, not all pixels follow temporal patterns like vegeta-
tion. In addition, the abovementioned methods are developed
mainly based on mathematical derivation processes, which is
restricted by the existing knowledge of mathematical axioms.
Generally, temporal-based methods are capable of producing
better reconstruction results and are more practical than the
spatial- and spectral-based methods.

Hybrid methods integrate information from spatial, spec-
tral, and temporal domains. Some hybrid methods estimate
contaminated data using their “similar pixels” selected from
intact reference images with adjacent acquisition dates. Among
them, various methods have been introduced to determine the
“similar pixels.” The neighborhood similar pixel interpolator
(NSPI) [34] and the geostatistical NSPI (GNSPI) [35], [36]
methods select similar pixels for each target pixel based on the
spectral similarity from time-series data and utilize a geosta-
tistical approach to predict missing data. Other methods select
“similar pixels” using methods including spatial–temporal
Markov random fields (MRFs) [37], spectral-angle-mapper-
based spatial–temporal similarity (SAMSTS) [38], etc. Apart
from generating estimations using “similar pixels,” many other
hybrid methods are proposed in recovering contaminated data.
Melgani [39] recovered the contaminated data using an unsu-
pervised contextual prediction process based on established
spectral–temporal relationships. Deep learning methods are
also adopted to develop missing information reconstruction
algorithms. For example, a unified spatial–temporal–spectral
deep convolutional neural network (STS-CNN) method was
recently proposed to recover corrupted data in remote sensing
images [40]. This method can deal with multiple tasks using
a unified framework, including reconstructing cloud/cloud
shadow contaminated data, Landsat ETM+ SLC-off data,
and deadlines in Aqua MODIS band 6. The CNN is
trained using samples selected among the time series Landsat

Thematic Mapper (TM) image. However, the trained network
may not be applicable for other time periods, geographical
locations, or data from other sensors because the network
relies largely on the selected samples. The Hidden Markov
random field (HMRF) framework involving spatial–temporal–
spectral and environmental information was also proposed
to improve cloud-contaminated MODIS snow products [41].
The HMRF-based framework successfully reduced the cloud
cover-related data gap below 1% and improved the cur-
rent snow mapping accuracies using energy functions in
spectral, spatial–temporal, and environment-associated infor-
mation. Moreover, in recent years, an increasing number
of studies have employed dictionary learning and sparse
representation methods for cloud removal. This category
of methods is capable of recovering sparse signals with
high accuracy from a small set of random measurements
by solving a linear program [42]–[44]. Lorenzi et al. [15]
introduced three dictionary learning-based methods utilizing
basic pursuit (BP), orthogonal matching pursuit [45], and
genetic algorithms (GAs), and achieved satisfactory perfor-
mances in recovering missing information over different land
cover types. Multitemporal dictionary learning (MDL) [46],
group sparse representation (GSR) [47], [48], and nonnegative
matrix factorization and error correction method (S-NMF-EC)
[49] are representative methods of this kind. However,
most dictionary learning-based methods change pixel values
within the uncontaminated areas along with the reconstruction
process. In other words, the reconstruction results would
suffer from obvious reconstruction edges between contami-
nated and uncontaminated regions if the original uncontam-
inated pixel values are retained. In general, hybrid methods
perform better and are more promising in reconstructing
contaminated data by integrating information from multiple
domains.

Most of the abovementioned methods perform well over
the study areas with small amount of clouds. However, in the
real situation, clouds often appear in large chunks. Therefore,
fusion methods based on auxiliary data from multiple sensors
are often used for heavily contaminated images. However,
the fusion methods always require time and effort consuming
data preprocessing and will also introduce uncertainties from
other sensors due to differences in the spectral design and
spatial scales. These factors increase the difficulties for the
fusion methods to be further applied in real time-series data
production. As discussed above, dictionary learning-based
methods can greatly improve the computational efficiency by
representing features and their intrinsic relationships using
representative dictionary atoms and sparse coefficients. There-
fore, an improved method to reconstruct missing information
contaminated by large and thick clouds based on MDL with
the following advantages is proposed. First, it is capable
of reconstructing remote sensing data contaminated by large
and thick clouds/cloud shadows with high efficiency. Second,
it improves previous MDL-based methods in reconstruction
accuracy by introducing weighting and error correction steps.
Third, our method avoids the application of multisensor data
and retains true values within cloud/cloud shadow uncontam-
inated areas.
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Fig. 1. Flowchart of our method.

II. METHODOLOGY

The algorithm flowchart of our method is shown in Fig. 1.
First, the cloud/cloud shadow contaminated image, referred to
as the target image, is initialized using selected multitemporal
cloud-free reference images. K -means classification algorithm
is adopted to obtain the classification map based on cloud-free
images. Then, based on each reference image, the initialized
target image is reconstructed using dictionary learning and
sparse representation methods. Next, a weighting step is intro-
duced to determine the weights of all the reconstructed images
from each reference. The preliminary reconstructed image is
produced by the weighted sum from the corresponding recon-
structed images. An error correction step is then applied to the
preliminary reconstructed image to reduce the errors between
contaminated and uncontaminated regions. Finally, the original
uncontaminated pixels are combined with the reconstructed
contaminated pixels to produce the final reconstruction result.

To illustrate the procedure, the target image is referred to
as I t ∈ RM×N×Q , while cloud-free reference images covering
the same area with different acquisition times are referred to
as I r(1), I r(2), . . . I r(n) ∈ R

M×N×Q
, where n is the number

of reference images and M , N , and Q are the number of
rows, columns, and spectral bands of each image, respectively.
Acquisition dates t2–tn are aligned from the closest to the
farthest to t1. As is shown in Fig. 2, the cloud/cloud shadow

Fig. 2. Cloud/cloud shadow contaminated area �+ and uncontaminated area
� on target and reference images.

contaminated area of the target image is referred to as �+ and
the uncontaminated area is referred to as �. The corresponding
areas in the reference images are also referred to as �+ and �.
A pixel belonging to the target image is denoted as xt , while
that of a reference image is denoted as xr .

In our method, all the pixels contaminated by clouds/cloud
shadows are masked out and substituted with a value of 0. Due
to the complexity of cloud types and properties, cloud/cloud
shadow detection is not part of this study, and all cloud/cloud
shadow masks are either manually simulated or extracted from
the Landsat QA bands by the function of mask (FMASK)
algorithm [50].
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A. Normalization of Reference Images and the Initialization
of Target Images

For our method, it is assumed that the land cover types
on the target and reference images remain unchanged.
Due to different atmospheric conditions, sensor statuses,
and vegetation-growing stages during image acquisition
times, even temporally close remote sensing data experience
reflectance distinctions over the same land cover types. To alle-
viate these differences, normalization was first applied to all
the reference images based on the target image. Since different
land cover types show different temporal changes of spectral,
a simple k-means cluster algorithm was applied to classify the
reference image acquired at t2 into C classes. The least squares
fitting is then applied to each class to establish relationships
between the reference image and the target image

x(i, j, q) = a × xr (i, j, q) + b (1)

where xr (i, j, q) is the value at the i th row, j th column, and
qth band in a reference image; x(i, j, q) is the normalized
value from xr ; and a and b are the least squares fitting
coefficients calculated within each class by

a =
(

M N
∑(

I r (i, j, q) × I t (i, j, q)
)

−
∑

I r (i, j, q)

×
∑

I t (i, j, q)
)/(

M N
∑(

I r (i, j, q)
)2

−
(∑

I r (i, j, q)
)2

)
(2)

b =
∑

I t (i, j, q) − M N
∑

I r (i, j, q)

M N
. (3)

It should be noted that the least square coefficients are
calculated based only on the pixels within �. After all the
reference images are normalized, a simple arithmetic average
is applied to all the pixels over region �+ in the normalized
reference images. The results obtained are used to substitute
values in the target image over region �+ as initial values
for the missing information. Therefore, the initialized target
image Xt is obtained.

B. Image Reconstruction Based on the Dictionary
Learning Method

Before implementing dictionary learning on multispectral
remote sensing data, a patch extraction process should be
carried out first to obtain the patch matrix (Fig. 3). The patch
matrix is a combination of patches extracted from the original
image I ∈ RM×N×Q by moving an r × r sliding window with
a step length of l. Each column in the patch matrix denotes
to a patch vector, representing features from the original data.
We assume that the land cover types remain unchanged, and
the pixel spectral characteristics are similar among target and
reference images. Therefore, the patches were selected using
a fixed sliding window with a step length of 1. In this way,
each column in the patch matrix refers to the reflectance of a
pixel over all spectral bands. The patch extraction process can
be expressed as

x2D(q, ( j − 1) × M + i) = P(x(i, j, q)) (4)

Fig. 3. Patch extraction process of a remote sensing image.

where P(·) is the patch extraction operator; x(i, j, q) is a
matrix element in the i th row, j th column, and qth spectral
band of an image I ∈ RM×N×Q ; and x2D is the same
element in the new transformed patch matrix. Based on the
patch matrices extracted from the initialized target image and
reference images Pt and Pr , dictionary learning and sparse
representation are then carried out.

Image reconstruction based on dictionary learning requires
two components, the dictionary matrix D and the sparse matrix
α; both are learned from the patch matrix. A patch matrix
P ∈ RQ×(MN) can be expressed by the product of D ∈ RQ×k

and α ∈ Rk×(MN) as

P = Dα. (5)

In the dictionary matrix, the columns are referred to as
dictionary atoms, which show the representative features of
columns in P . Each dictionary atom holds Q elements. The
number of dictionary atoms K should be determined by the
user. Typically, K > Q. The sparse matrix α, in which zero
elements greatly outnumber nonzero elements, can be used to
determine which dictionary atoms are related to each pixel in
P and their corresponding significances. All the calculations
regarding to dictionary learning and sparse representation in
this study was carried out using the SPArse Modeling Software
(SPAMS) toolbox [51].

Suppose P = [p1, p2, . . . , pMN], D = [d1, d2, . . . , dk], and
α = [α1, α2, . . . , αMN], then D and α should satisfy

min
D,α

t∑
i=1

1

2
‖pi − Dαi‖2

2, subject to D ≥ 0, ∀αi ≥ 0. (6)

This is a joint minimization problem in terms of D and α.
The problem can be transformed to a convex optimization to
solve each value of D and α when the other is fixed. When
D is given, α can be acquired by the sparse coding methods.
When α is given, D can be calculated using dictionary learning
methods. The online dictionary learning (ODL) algorithm,
based on stochastic approximations, is commonly applied for
this process. ODL performs faster and trains better dictionaries
for large datasets than other classical methods [52]. In this
study, NMF, a variation of the ODL algorithm, is adopted.
The NMF adds constraints to ODL, which guarantee all
components in the dictionary and sparse matrices to be non-
negative [53]. Thus, it is meaningful to reconstruct the surface
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reflectance data. The detailed steps are described as follows.
First, the initial dictionary D is acquired by randomly selecting
K columns from the original dataset, and the sparse coding
step is followed to find the sparse matrix α based on the least
angle regression (LARS) algorithm [54]. Then, the dictionary
matrix is updated to find the solution to (5) when fixing α.
These steps are carried out iteratively to update D and α until
a convergence is met. More details about the algorithm can be
found in [51].

Based on the patch matrices of the initialized target image
and reference images Pt and Pr , dictionary and sparse matrices
for each image Dt , αt , Dr , and αr could be learned separately
using the abovementioned method by

Pt = Dtαt (7)

Pr = Drαr (8)

where Dt and αt are the dictionary and sparse matrices for the
target patch, and Dr and αr are those for a reference image.

As is assumed that land cover types remain unchanged
among the target and reference images, the relationships
between each pixel and dictionary atoms, represented by
the sparse matrix, are also considered unchanged. There-
fore, the reconstructed image patch from image Y P can be
expressed as

Y P = Dtαr . (9)

The reconstructed image from a reference image y can be
obtained by the inversion of patch extraction operator P−1(·)
using Y P

y = P−1
(
Y P

)
. (10)

In this step, multiple reconstructed images are generated
based on multitemporal reference images. The integration
of these reconstruction results is discussed in Section II-C.
It should be noted that this step reconstructs the whole image,
regardless of whether the pixel belongs to � or �+. Thus, all
the pixel values have been changed over the whole image.

C. Weight Calculations for the Reference Images
Even though image normalization is applied to all the

reference images in Section II-B, temporal differences are
not completely eliminated. Therefore, a weighting step is
introduced to determine the weights of multiple reconstruction
results based on their reconstruction accuracies over region �.
Thus, the errors between the reconstruction results and their
corresponding original data within � are calculated. Less error
indicates a greater weight of the reconstructed image.

The mean absolute error (MAE) of the reconstruction results
for uncontaminated area I t (�) is selected as the accuracy
indicator. The weight of the sth reference image w(s) is
calculated using

w(s) =
∑n

1 MAE� − MAE�(s)

(n − 1)
∑n

1 MAE�
(11)

n∑
1

w = 1 (12)

where n is the number of reference images, and the sum of
weights for n reference images is 1, and MAE�(s) is the MAE
within region � between the sth reconstructed image ys(�)
and the target image I t (�)

MAE�(s) = 1

m

m∑
1

∣∣I t (�) − ys(�)
∣∣ (13)

where m is the number of uncontaminated pixels in the target
or reference images.

Therefore, the preliminary reconstructed image ynew is
obtained by the weighted average of all the reconstructed
images from each reference image

ynew =
n∑
1

w(s)×ys . (14)

D. Error Correction per Class
After the previous steps, some errors may still exist on

the preliminary reconstructed image compared with the target
image. This might result from the differences between the ini-
tialized target image I t and the actual target image. As stated
in Section II-A, I t (�+) is obtained from the arithmetic average
of normalized reference images over �+. The normalization
process could not completely eliminate the reflectance distinc-
tions between images acquired at different times. Therefore,
the preliminary reconstructed image might suffer from con-
siderable errors over some regions. Moreover, it is generally
believed that the residuals remain stable within the same class
and vary among classes [47], since pixels belonging to the
same land cover class with similar spectral characteristics
react similarly during the reconstruction process. To further
improve the reconstruction result by reducing the remaining
differences, an error correction process for each class is intro-
duced within �+ in this study. Based on C classes obtained
from k-means classification, mean residuals are calculated for
each class within �

rc =
∑(

I t
c (�) − ynew

c (�)
)

n′ (15)

where n′ is the number of pixels in � belonging to the
cth class. The reconstruction result after the error correction
process Xnew is obtained by removing the residuals per class
from the preliminary reconstructed image ynew

Xnew
c = ynew

c − rc. (16)

To keep pixel values over � the same as the target image in
the final result, the final reconstructed image Xfinal is obtained
by Xfinal = x t(�) ∪ Xnew(�+).

III. CASE STUDY TO VALIDATE THE PROPOSED METHOD

A. Study Area and Test Data

In this study, Landsat 8 OLI surface reflectance data
acquired from two study areas were used to evaluate the
performances of our method. The first study area covers
the majority of Beijing, northern Tianjin, and part of Hebei
Province, China. This area has a warm temperate semihumid
continental monsoon climate. Large and thick clouds often
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Fig. 4. Study area around Beijing and the distribution of subsets A, B, and C,
and the large test area on a Landsat 8 OLI image.

appear during vegetation growing seasons, causing difficulties
for land surface observations using remote sensing techniques.
The second study area selected is the Qinghai–Tibetan Plateau
(QTP). The QTP, with altitudes ranging from 3000 to 8000 m,
is dominated by plateau mountains and subtropical monsoon
climates. The QTP is drawing increasing attention in environ-
mental studies, since it is highly vulnerable to environmental
changes [55]. These two test areas were selected because
they vary greatly in climate types, natural conditions, and the
intensity of human activities, leading to distinctive land cover
types. Thus, the performance and stability of the proposed
method can be tested over multiple land cover types under
different environmental conditions.

Experiments were conducted separately on five small local
subsets with sizes of 500 × 500 pixels and a large subset
with a size of 3950 × 4925 pixels, and their distributions
are shown in Figs. 4 and 5. Among the five local subsets,
three were located around Beijing (subsets A, B, and C) and
the other two (subsets D and E) were located on the QTP.
Simulated cloud/cloud shadow masks were created manually.
Subsets A, B, and C were extracted from the same OLI image
(path: 123, row: 32) acquired on September 28, 2017. Two
reference images were also applied, which were acquired on
September 12 and October 30, 2017. Subset D is located in
Shannan, extracted from an OLI image (path: 136, row: 40)
acquired on February 11, 2017, and the reference images were
acquired on January 26, 2017 and February 27, 2017. Subset E
is located in Qamdo, extracted from an OLI image (path:
133, row: 38) acquired on January 21, 2017, and the two
reference images were acquired on December 20, 2016 and
February 6, 2017.

To demonstrate the reconstruction performance on different
land cover types, subsets A, B, and C were covered by forest,
urban area, and croplands, while subsets D and E were covered
by sparsely vegetated land and evergreen forest in mountain

Fig. 5. Study area located in the QTP and the distributions of subsets D
and E on Landsat 8 OLI images.

areas. Subset A is a homogeneous mountain area located in the
southwestern Beijing. This area is mainly covered with forest.
The simulated cloud/cloud shadow [Fig. 6A(b)] accounted for
48.88% of the total area (122 196 missing pixels). Subset B
is mostly covered by the urban area of Beijing city. Built-up
areas are less likely to change over time compared to vegetated
areas. The simulated mask [Fig. 6B(b)] represents missing
information in up to 42.75% of the total area (106 875 missing
pixels). Subset C shows a rural area located southeast of
the study area, north of Tianjin. This area mainly consists
of cropland with a small pond and river running through
it and sparsely distributed farmhouses. The simulated mask
[Fig. 6C(b)] accounted for 41.42% of the total subset (103
553 missing pixels). Subset D shows a mountain area with
high altitude in Shannan city and its land surface is covered
with sparse vegetation and bare ground. A narrow river runs
across the subset. The simulated mask [Fig. 6D(b)] accounted
for 52.72% of the total area (131 799 missing pixels). Subset
E also shows a mountain area in Qamdo city, with evergreen
forests covering mountain tops. The tree lines can be identified
clearly. The simulated mask [Fig. 6E(b)] accounted for 52.72%
of the total area (131 799 missing pixels).

A large subset was selected to test how our method
performs on a large heterogeneous region covered by vast
clouds/cloud shadows. This subset was extracted from an OLI
image acquired on May 23, 2017, and acquisition dates for
the reference images were March 4 and May 7, 2017. The
target image was generated by overlaying the real cloud/cloud
shadow mask on January 15, 2017, simulating a real cloud
distribution. The simulated cloud/cloud shadow contaminated
area accounted for approximately 68.63% of the total area.
All the remote sensing data used in this study were obtained
from EarthExplorer of the United States Geological Survey
(USGS) (https://earthexplorer.usgs.gov/).
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Fig. 6. Results of missing information reconstruction of the simulated missing areas over subsets A, B, C, D, and E (R = band 5, G = band 4, and
B = band 3). (a) Actual images. (b) Simulated target images (actual image overlaid with simulated cloud mask). (c) Reconstruction results from GNSPI.
(d) Reconstruction results from S-NMF-EC. (e) Reconstruction results from our method.

B. Results
The reconstructed results and the actual original data were

compared, and corresponding density scatter plots and accu-
racy statistics over cloud/cloud shadow contaminated areas
were presented to illustrate the performance of our method.
To draw comparisons, the GNSPI and the S-NMF-EC meth-
ods were also applied over the same test data to recon-
struct missing information because all three methods utilized
spatio-temporal–spectral information. The GNSPI method is
a generally used effective method based on geostatistical

approaches, and S-NMF-EC is a state-of-the-art dictionary
learning based method that generates the reference image
by fusing data from multiple sensors. MODIS daily surface
reflectance product (MOD09GA) was used for the S-NMF-EC
method to conduct the fusion process. Two reference images
were selected in the experiments.

The MAE, root-mean-square error (RMSE), peak signal-
to-noise ratio (PSNR), and structure similarity (SSIM) indi-
cators were calculated for bands 2, 3, 4, and 5 in terms
of quantifying the accuracy of the reconstructed data. PSNR
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TABLE I

QUANTITATIVE ANALYSIS OF RECONSTRUCTION RESULTS FOR SUBSETS A, B, C, D, AND E FROM GNSPI,
S-NMF-EC, AND OUR METHOD FOR BANDS 2–5

refers to the ratio between the maximum possible value of
an image and the noise, which measures the quality of the
reconstructed image. SSIM evaluates the similarity between

the reconstructed and original images. Higher PSNR and
SSIM and lower MAE and RMSE values indicate better
reconstruction accuracies.
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Fig. 7. Results of missing information reconstruction of the simulated missing area over the large subset (R = band 5, G = band 4, and B = band 3).
(a) Actual image on May 23, 2017. (b) Simulated target image (actual image overlaid with simulated cloud mask). (c) Reconstruction result from GNSPI.
(d) Reconstruction result from our method.

1) Reconstruction Results for Simulated Cloud Cover on
Local Subsets: As discussed in Section II, the number of
classes (C) and dictionary atoms (K ) are two main parameters
in our method. Optimal C and K values were chosen for the
subsets to achieve the balance between reconstruction accuracy
and computational cost for each subset. The influences of
C and K on reconstruction accuracies will be discussed in
Section IV-A. For subsets A, B, C, D, and E, the number
of classes (C) are 10, 10, 30, 4, and 18, while the number
of dictionary atoms (K ) are 40, 40, 150, 100, and 100,
respectively. Reconstruction results for all five subsets are
shown in Fig. 6. Visually, all three methods produced sat-
isfactory results without obvious errors. However, the GNSPI
method produced unexpected dark or bright patches over some
places, as is shown in the enlarged windows in Fig. 6(c).
The results generated by the S-NMF-EC method seemed more
blurring than the other two methods, and also brighter than
the original images, especially in Fig. 6A(d), D(d), and E(d).
As the S-NMF-EC method obtains reference data by fusing
MODIS and Landsat data, the reconstruction accuracies rely
largely on the quality and availability of the MODIS data.
Our method reconstructed the contaminated images with better
spatial consistency and clearer details. In terms of quantitative
analysis (Table I), the reconstruction results from our method
showed better performances compared with those of GNSPI
and S-NMF-EC in each indicator from band 2 to 5. Overall,
our method reconstructed cloud/cloud shadow contaminated
regions with the best accuracy under distinctive environmental
conditions with various land cover types.

2) Reconstruction Results for Simulated Cloud Cover
Over a Large Area: Under common circumstances, large
clouds/cloud shadows often appear on remote sensing data
over large heterogeneous regions. Because the S-NMF-EC

TABLE II

QUANTITATIVE ANALYSIS LARGE AREA RECONSTRUCTION RESULTS

FROM GNSPI AND OUR METHOD FOR BANDS 2–5

method produced lower accuracies than the other two methods
for the five small subsets, we only conducted the comparison
between GNSPI and our method for the large subset (Fig.
7). Clear edges can be spotted in the reconstruction results
from GNSPI [Fig. 7(c)] since this method operates by a unit
of a square block with a certain size (block size = 2000 for
this test). Moreover, dark spots have appeared throughout the
reconstructed area. The reconstructed image from the proposed
method appeared to be more consistent spatially and less likely
to generate underestimations. Moreover, Table II indicates
that even though the reconstruction results from our method
produced slightly higher MAE and RMSE in band 2, it has
a much lower MAE and RMSE in the other bands and a
higher R2 over all bands. In addition, our method required
approximately 1 h to complete the whole constructing process,
while GNSPI took a much longer time of approximately 8 h.

IV. DISCUSSION

This study demonstrated the capability of the proposed
method in reconstructing missing information contaminated by
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large and thick clouds/cloud shadows. The proposed method
efficiently achieved satisfactory reconstruction results on small
subsets covered with various land cover types under distinctive
environmental conditions, as well as over large images with
heterogeneous land cover. In this section, some factors related
to the proposed method will be discussed, including the
number of dictionary atoms K , the number of classes C ,
the number of reference images, the improvement of the
proposed method in eliminating reconstruction edges, and the
limitations of reference images.

A. Number of Dictionary Atoms K and Number of Classes C

The reconstruction results from different values of dictio-
nary atoms (K ) and land cover classes (C) were evaluated
in the first study area to discuss how K or C influences the
reconstruction accuracy. Fig. 8 shows the MAE values under
different values of K and C . The black dotted lines in the
graphs denote the MAE of the reconstruction result from the
GNSPI method for each subset. The blue, green, and cyan lines
show the changes in MAE values with C increasing from 4 to
30 when K is 40, 100, and 150, respectively. In Fig. 8(a),
most MAE values vary within the range of 60–65 (×10−4).
An overall tendency of decreasing MAE with increasing C can
be found. Also, with increasing K , the reconstruction accuracy
and stability can be slightly improved. For subset B, good
reconstruction accuracy can be achieved with small values for
K and C . For subset C, where the spectral characteristics have
more complexity compared with the other two subsets, greater
values for K and C are efficient in reducing the reconstruction
errors. Since land cover of subset C is more heterogeneous,
greater values of C and K are needed to capture the spectral
characteristics. For all three subsets, only a few sets of
parameters (low values of C and K for subset C) produce
higher MAE values than that of GNSPI, which provides
more evidence that the proposed method outperforms GNSPI.
Generally, with increasing K or C , there is a greater chance
to achieve better reconstruction accuracy. However, greater
K or C also increases computation complexity, which means
more time is needed to fulfill the reconstruction process. Thus,
the balance between reconstruction accuracy and computa-
tional complexity needs to be achieved. Moreover, unsuper-
vised classification is also an important influencing factor for
the final reconstruction accuracy. Better classification results
can lead to higher reconstruction accuracy and improve the
stability of our method.

B. Number of Reference Images

Our method is designed to utilize multiple reference images.
Therefore, based on the previous three subsets in the first study
area on September 28, 2017, a total of six images were selected
as reference images to test how the number of reference
images would affect reconstruction accuracies (Fig. 9). The six
reference images were acquired on September 12, October 30,
November 15, July 10, May 23, and May 7, 2017, from the
closest date to the farthest. It can be inferred from Fig. 9
that for all three subsets, the application of two reference
images could achieve the best reconstruction accuracy. Since

Fig. 8. MAEs of reconstruction results for different C and K values over
(a) subset A, (b) subset B, and (c) subset C.

Fig. 9. Relationship between the number of reference images used and the
MAE of the reconstruction results for subsets A, B, and C.

more reference images introduce longer time intervals between
the acquisition dates among the images, potential land cover
change might occur. In addition, since the missing infor-
mation is recovered using the compressed information from
reference images, the reconstruction accuracies mainly rely
on the similarity between the reference and target images.
Therefore, the accuracy of the reconstruction results does not
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Fig. 10. Results of missing information reconstruction of the simulated missing areas over the LGC subset (R = band 4, G = band 3, and B = band 2).
(a) Actual image. (b) Simulated target image (actual image overlaid with simulated cloud mask). (c) Reconstruction results from WLR. (d) Reconstruction
results from GNSPI. (e) Reconstruction results from S-NMF-EC. (f) Reconstruction results from our method.

necessarily increase with the increasing number of reference
images. When choosing reference images, the time interval
between the reference and target images should also be taken
into consideration.

C. Comparisons With Other Methods
According to Section III, our method achieved better

performances than the GNSPI and S-NMF-EC methods
in the abovementioned cases. To reinforce the statement,
we also carried out comparisons on datasets used for
the development of S-NMF-EC method [49]. The data were
produced by Emelyanova et al. [56], which provided matching
pairs of Landsat and MODIS imageries for comparing the
performances of fusion methods. The data over identical
subset with Li et al. [49] at the size of 300 × 300 pixels and
three spectral bands (R = band 2, G = band 3, and B = band
4 for the Landsat TM images) were generated in the study
site of Lower Gwydir Catchment (LGC), located in northern
New South Wales, Australia. The target and reference images
were obtained from Landsat TM images on October 25, 2004
and August 22, 2004, respectively. A MODIS image on
August 22, 2004, was adopted for the S-NMF-EC method.
The contaminated area was manually created and accounted
for 41.28% of the total image (37 149 pixels). The original
datasets of Landsat–MODIS pairs can be downloaded from
https://data.csiro.au/collections/collection/CIcsiro:5847v003.
Apart from the above three methods, we also carried out
the weighted linear regression (WLR) [25], a popular
multitemporal missing data reconstruction method, and the
reconstruction results from the four methods were compared.

Fig. 10 and Table III show the reconstruction results
and their accuracies for WLR, GNSPI, S-NMF-EC, and our
method. Among the four methods, our method achieved the
best reconstruction accuracy. WLR, GNSPI, and S-NMF-EC
methods produced red patches marked by the yellow circles
shown in Fig. 10. Our method reconstructed the contaminated
regions with better spatial consistency and clearer details.
The overall reconstruction accuracies of our method also
outperformed the other methods. The reconstruction accuracies
may still be improved if multiple reference images are adopted.

These experiments indicated that our method was stable
under different environmental conditions and land cover types.
Both WLR and GNSPI methods were developed based on
predicting missing information using selected similar pixels
with the reference of multitemporal images. WLR performs

TABLE III

QUANTITATIVE ANALYSIS LARGE AREA RECONSTRUCTION RESULTS

FROM WLR, GNSPI, S-NMF-EC, AND OUR METHOD FOR BAND 2,
BAND 3, AND BAND 4

well in reconstructing missing remote sensing data under
many circumstances [11], [25], [49]. WLR determines the
similar pixels and their corresponding weights based on the
spectral and spatial differences to the target pixel. However,
when the contaminated region is large, the number of similar
pixels may be limited, which will reduce its reconstruction
accuracy. The GNSPI method was also capable of recovering
cloud/cloud shadow contaminated areas with good accuracy,
especially when dealing with simple ground features [11].
However, GNSPI may generate unexpected dark or bright
patches, i.e., GNSPI may over or underestimate a group of
pixels in some cases [Fig. 6(c)]. The GNSPI estimates a target
pixel value using its similar pixels which are selected based on
several conditions. First, they belong to the same land cover
class as the target pixel. Second, the RMSE between the target
and each similar pixel is lesser than the “similar threshold.”
Third, they are spatially adjacent to the target pixel. If the three
requirements cannot be met at the same time, the algorithm
selects the adjacent pixels belonging to the same class with
the target pixel as similar pixels. For the pixels belonging to
the abovementioned unexpected patches, there is no available
pixel that satisfies all three requirements. They only have
one or two adjacent pixels with the same land cover class.
Therefore, there is a higher chance of producing abnormal
values from the limited number of similar pixels. However, our
method reconstructs missing information based on extracted
dictionary atoms and sparse matrices of reference images,
which depends more on spectral similarity between pixels
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and their relationships, rather than spatial adjacency. This may
explain why our method achieved better performances and the
GNSPI produced the unexpected patches.

The S-NMF-EC method is a newly developed method
based on dictionary learning. The main differences between
S-NMF-EC and our method are as follows. First, our method
does not require auxiliary data from other sensors. However,
the S-NMF-EC method requires both MODIS and Landsat
data to produce the reference image using the spatial and tem-
poral nonlocal filter-based fusion model (STNLFFM). Thus,
the quality of the reference image will largely rely on the
availability and quality of MODIS data. Also, the employment
of MODIS data will introduce uncertainties resulted from the
scale effects and time intervals between MODIS and Land-
sat data. Second, in the previous dictionary learning-based
methods, the data over the uncontaminated region in the result
are changed in the algorithms [49]. Both S-NMF-EC and our
method employed an error correction step to deal with this
problem. However, the error correction steps in these two
methods are different. S-NMF-EC calculates errors between
the target and reconstructed data over uncontaminated regions
and then applies the least square fitting to establish relation-
ships between the reconstructed data and the errors, providing
estimations of the errors for each pixel over the entire image.
The estimated errors are then added to the corresponding
reconstructed data to obtain the final reconstruction result. Our
method, as previously discussed, determines the error for each
class and carries out correction only over the uncontaminated
regions. Therefore, compared to S-NMF-EC, our method
has significantly improved the reconstruction accuracies over
cloud contaminated regions.

D. Limitations of the Reference Images
In reality, finding a total cloud/cloud shadow-free reference

image is a strict limitation. As stated by Xu et al. [46],
dictionary atoms are fundamental components of an image,
which reveal the representative spectral characteristics of an
image. Since our method reconstructs missing data based
on extracted dictionary atoms from multitemporal reference
images, the reconstruction results depend largely on the quality
of the extracted dictionary atoms. Therefore, when reference
images are partly covered with clouds, dictionary atoms
extracted based on uncontaminated pixels from multitemporal
reference images can be integrated. The condition should be
met so that the clouds/cloud shadows in each multitemporal
reference image do not cover the same area. In other words,
each pixel should have at least one available value among all
the multitemporal reference images to ensure that the relation-
ship between a pixel and the other pixels can be established
based on complete dictionary atoms and sparse matrix. Under
this condition, the dictionary atoms extracted from cloud-free
parts of all the reference images are capable of compensating
for each other in providing a complete estimation of area �+
in the target image. Thus, the requirement of reference images
became less strict and more practical in reconstructing missing
data in reality.

As it is believed that remote sensing data acquired at closer
times would have greater similarity, reference images with

acquisition dates closer to that of the target image can be
selected. The reconstruction results could be improved by
useful information acquired at a closer time. Therefore, our
method does not always require a certain number of cloud-free
reference images to fulfill the reconstruction process as long
as clouds/cloud shadows cover different areas in different
reference images, and can make the most use of available
information with acquisition dates closer to that of the target
image to improve the reconstruction results.

V. CONCLUSION

In this article, an improved method based on MDL
to reconstruct missing information of remote sensing data
contaminated by clouds/cloud shadows was proposed. The
method is capable of accurately reconstructing remote sensing
data contaminated by large and thick clouds while greatly
improving computation efficiency. Moreover, by applying the
weighted average to the reconstruction results from multitem-
poral reference images and error correction to the preliminary
reconstructed results, our method can achieve satisfactory
reconstruction accuracy without the application of multisensor
remote sensing data. In addition, data within the cloud/cloud
shadow-free areas remain unchanged, and no obvious recon-
struction boundaries can be spotted. Although only Landsat
8 OLI data were used in the case study, data acquired
by other sensors are also applicable. Our method has great
potential in reconstructing time-series surface reflectance data
at high spatial resolutions, and has a great potential for further
generating long-sequence spatially complete land cover classi-
fication maps and land surface parameters including fractional
vegetation cover (FVC), leaf area index (LAI), etc. In addition,
by integrating proper fusion methods, the temporal resolution
of the spatially complete land surface parameters can also be
improved. This can increase the capability of the current land
surface parameters in capturing rapid land surface changes,
especially for crops. Moreover, the employment of multisource
data for missing data reconstruction and the production of land
surface parameters over large regions will also be considered
for further studies when consecutive time series of data are
unavailable from a single sensor.
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