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A B S T R A C T   

Surface downward longwave radiation (SDLR) plays an important role in understanding the greenhouse effect 
and global warming. The simulated SDLR from 47 coupled models in the Coupled Model Intercomparison Project 
(CMIP6) general circulation models (GCMs) was evaluated by comparing them with ground measurements and 
CMIP5 results. The estimated SDLR using all CMIP6 GCMs based on the multimodel ensemble (MME) methods 
was validated as well. The bias values of the SDLR simulations from individual CMIP6 GCMs averaged over the 
selected 183 sites around the world varied from − 10 to 10 W m− 2, while the root mean squared error (RMSE) 
values ranged from 20 to 26 W m− 2. Compared to CMIP5 models, the CMIP6 GCMs did not show a significant 
tendency to underestimate SDLR. However, the SDLR from CMIP6 GCMs exhibited the relatively better precision 
at low altitude and low latitude sites compared to that at high altitude and high latitude sites. Moreover, the 
Bayesian model averaging (BMA) method increased the correlation coefficient (R) by approximately 0.02 and 
reduced the RMSE by approximately 5 W m− 2 on average compared to the individual CMIP6 GCMs. The trend in 
SDLR was also investigated in this study, which has been related to the changes in air temperature (SAT), and 
water vapor pressure (WVP).   

1. Introduction 

The surface radiation budget plays a vital role in atmospheric and 
oceanic general circulations and fundamentally influences radiation 
fluxes within the Earth’s climate system and its internal distributions 
(Cheng et al., 2019; Stephens et al., 2012a; Wild, 2020). It is a main 
component of the radiative energy exchange between the land/ocean 
surface and atmosphere and consists of upward and downward fluxes of 
longwave and shortwave radiation (Gupta et al., 1999; Qin et al., 
2020a). Surface downward longwave radiation (SDLR) is not only an 
essential variable in energy balances, meteorological and climatic 
studies (Ahmed et al., 2020; Cheng et al., 2020; Guo et al., 2019) but also 
affects the carbon, water and energy cycles. Additionally, SDLR has been 
related to global warming and greenhouse effects (Ma et al., 2014; 

Philipona et al., 2004). 
SDLR can be obtained from ground measurements (Augustine et al., 

2000; Delia Garcia et al., 2019; Ohmura et al., 1998), reanalysis data 
(Flynn et al., 2019; Hinkelman, 2019; Wang and Dickinson, 2013), 
remote sensing (Loeb et al., 2013; Wang et al., 2020; Zhou et al., 2019), 
and general circulation models (GCMs) (Ma et al., 2014; Wild, 2020; 
Wild et al., 1998). Among them, GCMs, which are tools primary used to 
investigate past and future climate changes (Kim et al., 2020; Perez 
et al., 2014), have the advantage of producing long-term global or 
regional energy budget components (Zhang et al., 2019b). To support an 
activity proposed through the World Climate Research Programme 
(WCRP), the Working Group on Coupled Modeling (WGCM) organized 
the 5th phase of the Coupled Model Intercomparison Project (CMIP5) as 
common protocols to be applied in experiments with the same 
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parameters by different GCMs (Guilyardi et al., 2013). A series of ex
periments completed during CMIP5 contributed to the Intergovern
mental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) as 
the basis for researching the responses of the climate to external forcings 
(Kusunoki and Arakawa, 2015; Taylor et al., 2012). Currently, the latest 
generation of GCMs conducted for the 6th phase of the Coupled Model 
Intercomparison Project (CMIP6) experiments (Eyring et al., 2016) has 
become available with improvements in its dynamical processes and 
higher spatial resolution (Kim et al., 2020; Marotzke et al., 2017). It 
focuses on examining changes under climate extremes and under
standing the associated physical processes (Kim et al., 2020) and pro
vides opportunities to evaluate how well SDLR is simulated by CMIP6 
GCMs compares to that of accessible ground observations. 

Previous studies have comprehensively validated the abilities of 
GCMs to simulate SDLR (Li et al., 2016; Ma et al., 2014; Wild, 2008; Wild 
et al., 2013; Wild et al., 2019). For instance, Bodas-Salcedo et al. (2008) 
reported that the Hadley Centre Global Environmental Model version 1 
(HadGEM1) underestimated SDLR at Baseline Surface Radiation 
Network (BSRN) sites by 6 W m− 2. It was also found that the monthly 
SDLR simulations from 44 CMIP5 GCMs showed negative average biases 
of 1.2 W m− 2 and 5.4 W m− 2 by comparing ground measurements from 
the BSRN and buoy, respectively (Ma et al., 2014). Wild et al. (2015) 
validated 43 CMIP5 GCMs in simulating annual SDLR at 41 BSRN sites 
with a negative average bias of 3 W m− 2. In comparison with the Clouds 
and the Earth’s Radiant Energy System, Energy Balanced and Filled 
(CERES EBAF), the SDLR simulations from the CMIP5 GCMs were 
significantly underestimated in most land regions, especially during the 
summer season (JJA) (Li et al., 2016). Negative biases of the Coupled 
Earth System Model version 1 with the Coupled Atmosphere Model 
version 5 (CESM1-CAM5) SDLR against CERES EBAF within a range of 
58–70◦ S and 60–90◦ N over the ocean for each calendar month were 
found by Li et al. (2017) and Li et al. (2019). Based on these studies, it is 
obvious that the GCMs showed a tendency to underestimate SDLR, 
which has been a long-standing issue over several decades and evolu
tions of GCMs (Bodas-Salcedo et al., 2008; Wild, 2020; Wild et al., 
2015). The Earth System Grid Federation (ESGF) has recently released 
CMIP6 GCMs using common formats and metadata (Eyring et al., 2016). 
Wild (2020) demonstrated that a global mean SDLR of 343.8 W m− 2 

estimated by 38 CMIP6 GCMs from 2000 to 2014, was higher than that 
obtained based on 22 CMIP5 GCMs (342.3 W m− 2) (Wild et al., 2013) 
and 43 CMIP5 GCMs (341.5 W m− 2) (Wild et al., 2015) from 2000 to 
2004. These results indicated that CMIP6 GCMs have substantially 
improved the long-standing underestimation of SDLR. However, the 
SDLR simulations from the CMIP6 GCMs have not yet been evaluated 
with ground measurements. 

SDLR began being observed in the early 1990s at far fewer BSRN 
sites. Worldwide ground-measured SDLR has been used to detect long- 
term SDLR variability (Nyeki et al., 2019; Prata, 2010; Stephens et al., 
2012b; Wacker et al., 2011; Wang and Liang, 2009). For example, 
Wacker et al. (2011) reported that the clear-sky SDLR showed an 
increasing trend of 3.5 W m− 2 per decade from 1996 to 2007 at four sites 
from the Swiss Alpine Surface Radiation Budget Network (ASRB). Ste
phens et al. (2012b) demonstrated that the clear-sky SDLR over the 
global oceans increased by 1.8 W m− 2 per decade using observations of 
sea surface temperature and oceanic-wide precipitable water collecting 
during 1988–2005. In addition to the ground measurements, consider
able effort has been made in tracking long-term SDLR variabilities using 
SDLR simulations from GCMs (Kim et al., 2013; Ma et al., 2014; Wild, 
2016; Wild et al., 2008). Wild et al. (2008) illustrated that the SDLR 
increased at a rate of 2.6 W m− 2 per decade at the 12 earliest sites 
collected from the BSRN during 1992–2000. This was consistent with 
the respective change (+2.4 W m− 2 per decade) based on a transient 
GCM experiment. In a later study, an increasing trend in SDLR of 2.0 W 
m− 2 per decade at 25 BSRN sites since the early 1990s was identified, 
which agreed with that obtained from the SDLR simulations from CMIP5 
GCMs (Wild, 2016). An increase in the global mean SDLR of 1.5 W m− 2 

per decade over the period of 1979–2005 was found using 44 CMIP5 
GCMs by Ma et al. (2014). Although considerable effort has been made 
on identifying long-term variabilities in SDLR, it is still of great impor
tance to assess the trends of SDLR in CMIP6 GCMs. 

Individual GCMs have merits and shortcomings in simulating SDLR, 
which suggests that the uncertainty of SDLR estimations may be ignored 
and underestimated when only considering and implementing a single 
model (Bhat et al., 2011; Zhang et al., 2019a). The multimodel ensemble 
(MME) method, which is a promising approach that utilizes advantage 
of different GCMs, has been effectively applied in hydrologic and cli
matic variable estimations (Duan et al., 2007; Yao et al., 2016; Zhang 
et al., 2019a). Many studies have indicated that even a simple MME 
method is more consistent with ground measurements than single model 
estimations, such as the simple model averaging (SMA) method (Duan 
et al., 2007; Wu et al., 2012; Yao et al., 2016; Zhang et al., 2019b). In 
addition to the SMA method, more complicated MME methods have 
been developed that assign weights based on the ability of the models 
during a training period (Bhat et al., 2011). For example, the Bayesian 
model averaging (BMA) method proposed by Raftery et al. (2005) is a 
postprocessing approach to estimate climatic variables using simula
tions from multiple models (Jia et al., 2020). It has been widely used in a 
series of scientific studies, such as energy budget estimation (Wu et al., 
2012; Zhang et al., 2019b), climate changes (Bhat et al., 2011; Min et al., 
2007; Smith et al., 2009) and hydrological simulation (Duan et al., 
2007). Those studies demonstrated that the BMA method was excellent 
for incorporating the strengths of different models (Duan et al., 2007; 
Fang and Li, 2016; Jia et al., 2020). 

Therefore, the object of the present research is to evaluate the per
formance and applicability of the MME methods to estimate SDLR with 
simulations from the CMIP6 GCMs. This study first validated the SDLR 
simulations from 47 CMIP6 GCMs with ground measurements and 
investigated how well the SMA and BMA methods perform in the esti
mation of SDLR using CMIP6 GCMs. Second, the ability of CMIP6 GCMs 
to simulate SDLR was compared with that of CMIP5 GCMs with respect 
to SDLR observations. Finally, we explored the temporal evolutions of 
both ground-measured SDLR and CMIP6 GCM SDLR simulations. 

2. Data 

2.1. CMIP5 and CMIP6 GCMs 

The available simulations on monthly SDLR from 93 GCMs, which 
include 46 GCMs from CMIP5 and 47 GCMs from CMIP6, were used in 
this study. Tables A1 and A2 summarize the names of the models as well 
as the institutions to which they are associated, their time period and 
their spatial resolution.The SDLR simulations in the 46 CMIP5 GCMs 
under ensemble ‘r1i1p1’ during 1861–2005 are from “historical” ex
periments (https://esgf-node.llnl.gov/search/cmip5/). For the 47 
CMIP6 GCMs, “historical” experiments under ensemble ‘r1i1p1f1’ 
employed in this study cover the period from 1850 to 2014 (https://esg 
f-node.llnl.gov/search/cmip6/). The “historical” experiments mainly 
considered anthropogenic and natural forcings, such as solar radiation, 
aerosols, greenhouse gases, and land use (Eyring et al., 2016). Both 
CMIP5 and CMIP6 GCMs were resampled to 1◦ × 1◦ with bilinear 
interpolation before evaluation and comparison. 

2.2. Ground-measured data 

Ground-measured SDLR at 183 sites across the world were collected 
in this study, which included 61 BSRN sites, 7 Surface Radiation Budget 
Network (SURFRAD) sites, and 115 FLUXNET2015 (FLUXNET) sites. 
These stations are globally located in different climatic zones, with 
latitudes ranging from 82.490◦ N to 89.983◦ S and longitudes ranging 
from 156.607◦ W to 169.689◦ E. The sites encompass an altitude ranging 
from − 9 m to 4319 m and include cropland, grassland, forest, bare land, 
desert and other land types. A list of the sites utilized in the present 
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research is given in Table A3. The locations of all 183 sites are exhibited 
in Fig. 1. 

BSRN is a global observation network established by the WCRP in 
1992 to measure surface radiation with a high temporal resolution and a 
high accuracy (Ohmura et al., 1998; Wild, 2017; Zhang et al., 2016). 
These samples, with a channel frequency of 1 Hz, are recorded as 1-min 
values (Ohmura et al., 1998). The uncertainty of monthly SDLR mea
surements was within 10 W m− 2 after the BSRN standard was estab
lished in the early 1990s (Ma et al., 2014). At present, there are 68 BSRN 
stations in various climate zones (Hatzianastassiou et al., 2020) 
(https://bsrn.awi.de/), wherein the SDLR observations at 61 BSRN sites 
from 1992 to 2014 were used to evaluate the performance of CMIP6 
GCMs to simulate SDLR. 

SURFRAD has been maintained by the National Oceanic and Atmo
spheric Administration (NOAA) since 1993 to supply long-term and 
continuous radiation measurements (Cheng et al., 2020; Guo et al., 
2020), which has contributed to American climate research (Liang et al., 
2010). Twenty years (1995–2014) of SDLR measurements at seven 
operational SURFRAD sites (Sekertekin et al., 2020) were downloaded 
and applied in this study (https://www.esrl.noaa.gov/gmd/grad 
/surfrad/). These SDLR measurements, with frequencies of 1 Hz for all 
instruments, were recorded every 3 min (Augustine et al., 2000; Verma 
et al., 2016) and have been aggregated to 1-min averages since 2009 
(Qin et al., 2020a). The measurement uncertainty is approximately ±9 
W m− 2 (Augustine et al., 2000). 

FLUXNET is a worldwide network that provides micrometeorological 
measurements (Winter et al., 2009), which is composed of AmeriFlux, 
AsiaFlux, CarboEuropeIP, ChinaFlux and other regional networks (Liang 
et al., 2010). The FLUXNET tower sites measure the surface radiation 
budget with frequencies ranging from 10 to 20 Hz using eddy covariance 
methods and record samples every 30 min (Carrer et al., 2012; Pastor
ello et al., 2020; Verma et al., 2016). The SDLR accuracy exceeds 10 W 
m− 2 for certain FLUXNET stations (Liang et al., 2010). FLUXNET2015, 
which is the third-generation dataset (Pastorello et al., 2020) with 166 
sites in the CC-BY-4.0 dataset, was created as a global eddy covariance 
dataset to improve consistency and comparability across sites (https 
://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). The measured 
SDLR used in this study was collected from 115 CC-BY-4.0 sites during 
1998–2014. 

The SDLR measurements provided by BSRN and SURFRAD are 
instantaneous values and need to be processed critically to obtain ac
curate monthly SDLR values. First, the missing values were filled using 
linear interpolation when there were at least 80% effective values 
collected in a day. Then, the daily mean SDLR was estimated from the 
instantaneous values through integration. Finally, the monthly mean 
SDLR was obtained using the daily mean SDLR values collected over a 
month. Only the daily mean SDLR values were missing within 10 days in 
a month, the values for that month were used for research. 

2.3. ERA5 

ERA5, which was developed by the European Centre for Medium- 
Range Weather Forecasts (ECMWF) in 2017, is the 5th generation 
reanalysis (Graham et al., 2019). It was conducted for the global climate 
to replace ERA-Interim with data available from 1979 to present (Hamal 
et al., 2020). ERA5 assimilates ground measurements using the 4D-Var 
method (Chen et al., 2020). The monthly mean SDLR data on single 
levels with a spatial resolution of 0.25◦ × 0.25◦ (Flynn et al., 2019) 
during 1979–2014 from ERA5 were used in this study (https://cds.cli 
mate.copernicus.eu/), which were resampled to the same spatial reso
lution as that of GCMs at 1◦ × 1◦. 

2.4. CERES EBAF 

CERES EBAF is produced by the National Aeronautics and Space 
Administration (NASA) for evaluating climate models and estimating 
the surface energy budget, with data ranging from 2000 to the present 
(Hinkelman, 2019; Zhang et al., 2016). The data is obtained from in
struments on the Aqua, Terra, Suomi National Polar-orbiting Partner
ship (S-NPP) (Loeb et al., 2018; Smith et al., 2014) and Joint Polar 
Satellite System 1 (JPSS-1) satellites (Smith et al., 2018). The estimates 
of SDLR are improved by the Cloud-Aerosol Lidar and Infrared Path
finder Satellite Observations (CALIPSO) and CloudSat (Verma et al., 
2016). The SDLR data applied in this research included the monthly 
estimates provided by the CERES EBAF Ed4.1 dataset with a spatial 
resolution of 1◦ × 1◦ (Loeb et al., 2013) from 2000 to 2014 (https://c 
eres.larc.nasa.gov/). 

Fig. 1. Geographical distributions of the observation sites.  
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3. Methods 

3.1. The Multimodel ensemble (MME) methods 

In this study, two common MME methods were evaluated for SDLR 
estimation using simulations from GCMs based on the following equa
tions. For the SMA method, the weights of the different GCMs are equal 
and set to 1/K, wherein K denotes the number of GCMs. The SDLR 
estimated by the SMA method is calculated by weighted averaging the 
individual models. The BMA method is applied to calculate the relative 
weights of individual models and the deterministic result based on the 
Bayesian theory (Fang and Li, 2016). The weights are the posterior 
probability of each participating model, which are nonnegative values 
that add up to one (Jia et al., 2020). They can be acquired through a 
maximum likelihood function from the training data (Guo et al., 2019; 
Medina and Tian, 2020). To ensure the numerical stability and simpli
fication of the training procedure, Raftery et al. (2005) introduced the 
expectation maximization (EM) algorithm to maximize the log- 
likelihood function rather than the likelihood function itself. The 
deterministic result is estimated by weighted averaging the simulations 
from multiple models, which are obtained from the bias-correction 
process (Fang and Li, 2016). Raftery et al. (2005) comprehensively 
introduced more descriptions of the BMA method. In the present 
research, these SDLR measurements during the period of 1992–2014 at 
183 sites spread across the world were applied for the BMA analysis. 

3.2. Statistical metrics 

Five statistical metrics were utilized in this study: the root mean 
square error (RMSE), relative root mean square error (RRMSE), mean 
bias error (bias), relative mean bias error (Rbias) and correlation coef
ficient (R) values. These selected statistical metrics are calculated using 
the following equations: 

RMSE =
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where n denotes the number of data; ei and oi are the simulated and 
observed SDLR values, respectively; and o denotes the average observed 
SDLR values. 

The accuracy of the simulated SDLR values was analyzed using five 
statistical metrics; however, individual metrics could not indicate the 
overall accuracy. Thus, the global performance indicator (GPI) (Qin 
et al., 2020b) was applied in this study to validate the overall accuracy of 
the individual GCMs, which can be calculated as follows: 

GPIk =
∑m

j=1
Xj
(
Ỹ j − Ykj

)
(6)  

where Ỹj and Ykj denote the median of the absolute values of metric j and 

the absolute value of metric j for model k, respectively, and m is the 
number of metrics. Xj is − 1 for R and 1 for other metrics. For the GPI, a 
higher value suggests a better performance of model k. 

4. Results and analysis 

This study used the ground-measured SDLR as a major reference 
dataset to validate the SDLR simulations from CMIP6 and CMIP5 GCMs. 
We compared the GCM gridded SDLR simulations with the SDLR mea
surements within the grids. Since both CMIP5 and CMIP6 GCMs applied 
in this study had different spatial resolutions, which ranged from 3.75◦

× 3.75◦ to 0.56◦ × 0.56◦ and from 2.81◦ × 2.81◦ to 0.70◦ × 0.70◦, 
respectively, all GCMs were resampled to 1◦ × 1◦ with bilinear inter
polation before evaluation and comparison. 

4.1. Evaluation with ground measurements 

4.1.1. CMIP6 GCMs SDLR evaluation 
SDLR ground measurements (17,625 samples) collected at 183 sites 

during 1992–2014 were applied to evaluate the performance of monthly 
SDLR simulations from 47 CMIP6 GCMs. Fig. 2 indicate the evaluation 
results of the SDLR simulations at the sites from BSRN, SURFRAD and 
FLUXNET. The CMIP6 GCMs reported RMSE (RRMSE) values in the 
range of 17–26 W m− 2 (5.5%–8.2%) with respect to the seven SURFRAD 
sites within twenty years (1995–2014) of SDLR records, with an average 
RMSE (RRMSE) value of 20 W m− 2 (6.5%). The RMSE (RRMSE) values 
for over half (27 GCMs) of the CMIP6 GCMs were less than 20 W m− 2 

(6.5%). The biases (Rbias) of the individual GCMs ranged from − 16 to 7 
W m− 2 (− 5.0% to 2.3%). It was found that SDLR was underestimated at 
37 out of the 47 GCMs with the average bias (Rbias) amounting to − 5 W 
m− 2 (− 1.5%). The R values at the seven SURFRAD sites for the indi
vidual GCMs varied from 0.89 to 0.95, with an average R value of 0.93. 
No individual GCM had an R value greater than 0.95. The GPI values at 
the SURFRAD sites were higher than − 5 for 31 out of the 47 GCMs, and 
the average GPI value was − 3. Among the 47 CMIP6 GCMs, BCC-ESM1 
had the best performance with an RMSE of 18.01 W m− 2, a bias of 0.81 
W m− 2, an R of 0.926 and a maximum GPI value of 6.563 for the seven 
SURFRAD sites, followed by NorESM2-LM, FIO-ESM-2-0, MIROC6 and 
AWI-ESM-1-1-LR. NorCPM1 demonstrated the poorest ability to simu
late SDLR at the SURFRAD sites, which had an RMSE of 24.22 W m− 2, a 
bias of 15.19 W m− 2, an R of 0.928 and a minimum GPI value of 
− 20.679, followed by EC-Earth3-Veg-LR and CAMS-CSM1–0. 

We also validated the SDLR simulations from CMIP6 GCMs using 61 
sites from the BSRN, which has a worldwide distribution and is 
considered one of the most qualified ground measurements. The RMSE 
(RRMSE) values averaged over 61 sites from the BSRN for the SDLR 
simulations ranged from 18 to 25 W m− 2 (5.9% to 8.1%), and the 
average RMSE (RRMSE) value was 21 W m− 2 (6.7%). 15 out of the 47 
GCMs had RMSE (RRMSE) values less than 20 W m− 2 (6.5%). The biases 
(Rbias) at the BSRN sites for the individual GCMs varied from − 13 to 9 
W m− 2 (− 4.1% to 2.7%). The SDLR simulations were underestimated by 
only 27 GCMs, and they agreed well with ground measurements with a 
lower negative average bias (Rbias) of 2 W m− 2 (0.6%). The SDLR 
simulations showed R values ranging from 0.95 to 0.98 at the BSRN 
sites, which were typically higher than those at the SURFRAD sites. The 
R values exceeded 0.95 at all 47 GCMs, with a higher average R value of 
0.97. With respect to the BSRN sites, the majority of the GCMs (37 
GCMs) had GPI values above − 5, and the average GPI value was − 1. 
AWI-ESM-1-1-LR, which also performed better at the seven sites from 
SURFRAD, was the best model for 61 BSRN sites compared to other 
individual GCMs, with an RMSE of 19.56 W m− 2, a bias of 0.80 W m− 2, 
an R of 0.967 and a maximum GPI value of 4.475, followed by FIO-ESM- 
2-0 and MPI-ESM1–2-HR. Consistent with the evaluation results for 
SURFRAD sites, the NorCPM1 SDLR simulations showed the poorest 
performance at the BSRN sites, which had an RMSE of 24.89 W m− 2, a 
bias of 12.66 W m− 2, an R of 0.964 and a minimum GPI value of 
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Fig. 2. Comparison of RMSE (a), Bias (b), RRMSE (c), RBias (d), R (e) and GPI (f) histograms of three observation networks for monthly downward longwave 
radiation (SDLR) simulations from the 47 CMIP6 GCMs. 
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− 18.256, followed by EC-Earth3-Veg-LR and CAMS-CSM1–0. 
To further evaluate the influence of site selection and record quality 

on the GCMs in SDLR, the above analysis was also repeated at 115 
FLUXNET sites. For the selected sites, the RMSE (RRMSE) values varied 
between 22 and 29 W m− 2 (7.0% and 8.9%). No individual GCM had an 
RMSE (RRMSE) value within 20 W m− 2 (6.5%). The biases (Rbias) of the 
SDLR simulations at the 115 sites ranged from − 8 to 12 W m− 2 (− 2.3% 
to 3.5%), which were positive for most GCMs (31 GCMs). The CMIP6 
GCMs showed an average RMSE (RRMSE) of 24 W m− 2 (7.7%) and 
absolute average bias (Rbias) of 2 W m− 2 (0.7%) at the 115 FLUXNET 
sites, which were higher than those at the 61 BSRN sites. This may be 
because FLUXNET has a lower temporal resolution of 30 min, while the 
SDLR observations are recorded as 1-min values at the BSRN sites. The R 
values at the FLUXENT sites were obviously lower, in the range of 
0.82–0.89, with an average R value of 0.87. There was no individual 
GCM with an R value greater than 0.95. The GPI values for the majority 
of the GCMs (40 GCMs) at the FLUXNET sites were greater than − 5, with 
an average GPI value of 0.5. Among all of the CMIP6 GCMs, GFDL-ESM4 
agreed best with the FLUXNET measurements, which showed an RMSE 
of 22.53 W m− 2, a bias of 0.30 W m− 2, an R of 0.887 and a maximum GPI 
value of 8.982, followed by MRI-ESM2–0, E3SM-1-1-ECA, CMCC-CM2- 
HR4 and MPI-ESM1–2-HR. The performance of MPI-ESM1–2-HR was 
better for both the BSRN and FLUXNET sites. GISS-E2–1-H performed 
the worst in simulating SDLR at the FLUXNET sites, with an RMSE of 
27.23 W m− 2, a bias of 11.05 W m− 2, an R of 0.863 and a minimum GPI 
value of − 9.791. 

Fig. 3 show the statistical metrics representing the model perfor
mance at all 183 sites from SURFRAD, BSRN, and FLUXNET. The results 
illustrated that the RMSE (RRMSE) values of the individual GCMs with 
respect to the 183 sites varied between 20 and 26 W m− 2 (6.4% and 
8.3%), with an average RMSE (RRMSE) value of 22 W m− 2 (7.2%). 
There was no individual GCM with an RMSE (RRMSE) value within 20 
W m− 2 (6.5%). The biases (Rbias) averaged over 183 sites for the various 
GCMs varied from − 10 to 10 W m− 2 (− 3.1% to 2.9%). Only 24 out of the 
47 CMIP6 GCMs underestimated SDLR. Overall, the CMIP6 GCMs did 
not exhibit a significant tendency to underestimate SDLR at the selected 
183 sites, which had a lower positive average bias (Rbias) of 0.18 W m− 2 

(0.06%). The CMIP6 GCMs had R values between 0.92 and 0.95 at all 
183 sites, and the average R value amounted to 0.94. No individual GCM 
had an R value above 0.95. 39 out of the 47 GCMs displayed GPI values 
over − 5, with an average GPI value of − 1. Among the 47 CMIP6 GCMs, 
the lowest simulation deviation was found in MPI-ESM1–2-HR which 
reported an RMSE of 21.02 W m− 2, a bias of 0.33 W m− 2, an R of 0.944 
and a maximum GPI value of 5.797 for all 183 sites, followed by 
TaiESM1, E3SM-1-0 and GFDL-ESM4, which had higher spatial resolu
tions. At all 183 sites, the largest model error was found in NorCPM1, 
with an RMSE of 25.67 W m− 2, a bias of 9.47 W m− 2, an R of 0.931 and a 
minimum GPI value of − 12.412, which had a lower spatial resolution, 
followed by GISS-E2–1-H and EC-Earth3-Veg-LR. However, the CMIP6 
GCMs with higher spatial resolutions did not always show greater GPI 
values than those that have lower spatial resolutions, such as EC-Earth3, 
EC-Earth3-Veg and EC-Earth3-AerChem. 

We also used the SMA and BMA methods to estimate SDLR by 
merging the 47 CMIP6 GCMs. The weights of single GCMs acquired by 
the BMA method, shown in Fig. 4, ranged from 0.019 to 0.024, and 39 
out of the 47 GCMs showed weights between 0.020 and 0.022. EC- 
Earth3-Veg, with a maximum weight of 0.0231, which was approxi
mately 8% higher than the mean value (0.0213), made a greater 
contribution to the SDLR ensemble, followed by EC-Earth3-AerChem 
and EC-Earth3, with weights of 0.0227 and 0.0226, respectively. The 
weight of NorCPM1 was 0.0198, which was approximately 7% lower 
than the mean value, followed by FGOALS-g3 with a weight of 0.0200. 
The RMSE exhibited a negative correlation with the weight, with a 
correlation coefficient of − 0.51. R was positively correlated with 
weight, with a correlation coefficient of 0.64. 

Taylor diagrams (Taylor, 2001), which are particularly useful to 

evaluate the relative performance of numerous models, were applied to 
assess the abilities of the 47 CMIP6 GCMs and the MME methods to 
simulate SDLR with respect to the ground measurements. Fig. 5 illus
trates the comparison results between the monthly SDLR estimates and 
the ground-measured SDLR for the BSRN, SURFRAD, FLUXNET and all 
sites. According to Fig. 5, the MME methods always showed a better 
performance than the individual GCMs. The evaluation results of the 
estimated SDLR by the SMA and BMA methods at all 183 sites are also 
given in Fig. 3. It was obvious that the SDLR obtained by the SMA and 
BMA methods exhibited lower RMSE (RRMSE) and bias (Rbias) and 
higher R values with respect to the individual GCMs at all 183 sites; 
specifically, the RMSE, bias, RRMSE, Rbias and R values reported by the 
SMA results were 17.35 W m− 2, − 0.18 W m− 2, 5.55%, − 0.06% and 0.96, 
respectively, while these values were 17.33 W m− 2, 0 W m− 2, 5.54%, 0% 
and 0.96, respectively, for the BMA results. The statistical metrics 
derived from the BMA results were close to those of the SMA results. The 
MME methods reduced the RMSE (RRMSE) by approximately 5 W m− 2 

(1.7%) and increased the R by approximately 0.02 on average compared 
to the individual GCMs. The uncertainty of the CMIP6 GCMs was 
reduced by the MME methods by incorporating multiple models. 

4.1.2. Comparison with CMIP5 
The majority of the SDLR simulations from CMIP5 and CMIP6 GCMs 

cover the periods 1861–2005 and 1850–2014, respectively, while the 
SDLR measurements begin in 1992. Therefore, SDLR observations (6097 
samples) from 1992 to 2005 at 101 sites were used to compare the 
performance of the 47 CMIP6 GCMs to simulate SDLR with that of the 46 
CMIP5 GCMs. Table 1 illustrates a comparison of statistical metrics 
between CMIP6 and CMIP5 GCMs at 42 BSRN sites, 7 SURFRAD sites, 52 
FLUXNET sites and all 101 sites. For the seven SURFRAD sites, the 
CMIP5 GCMs showed RMSE (RRMSE) values in the range of 16–27 W 
m− 2 (5.4%–8.7%), with an average RMSE (RRMSE) value of 21 W m− 2 

(6.7%) and a median RMSE (RRMSE) value of 21 W m− 2 (6.7%). The 
RMSE (RRMSE) values for 20 out of the 46 CMIP5 GCMs were less than 
20 W m− 2 (6.5%). The biases (Rbias) in the individual CMIP5 GCMs 
ranged from − 20 to 5 W m− 2 (− 6.3% to 1.5%). SDLR was under
estimated at 42 out of the 46 CMIP5 GCMs with an average bias (Rbias) 
of − 8 W m− 2 (− 2.5%) and a median bias (Rbias) of − 6 W m− 2 (− 2.1%). 
The R values for the individual CMIP5 GCMs varied from 0.89 to 0.95, 
with an average R value of 0.93 and a median R value of 0.93. There was 
no individual CMIP5 GCM with an R value greater than 0.95. The RMSE 
(RRMSE) values for the SDLR simulations from individual CMIP6 GCMs 
ranged from 16 to 27 W m− 2 (5.3% to 8.5%). The average RMSE 
(RRMSE) value was 20 W m− 2 (6.6%), and the median RMSE (RRMSE) 
value amounted to 20 W m− 2 (6.4%), which were slightly lower than 
those of CMIP5 GCMs. 27 out of the 47 CMIP6 GCMs had RMSE 
(RRMSE) values less than 20 W m− 2 (6.5%). The biases (Rbias) for the 
individual CMIP6 GCMs varied from − 18 to 7 W m− 2 (− 5.7% to 2.2%). 
The SDLR simulations were underestimated by 40 out of the 47 CMIP6 
GCMs, with a negative average bias (Rbias) of 6 W m− 2 (1.9%) and a 
negative median bias (Rbias) of 5 W m− 2 (1.6%), which were typically 
smaller than those of the CMIP5 GCMs. The SDLR simulations from the 
CMIP6 GCMs showed R values ranging from 0.90 to 0.95, which were 
somewhat higher than those of the CMIP5 GCMs. The R values exceeded 
0.95 at one out of the 47 CMIP6 GCMs, with an average R value of 0.93 
and a median R value of 0.93. 

For 42 sites in the BSRN, the RMSE (RRMSE) values of the individual 
CMIP5 GCMs varied between 18 and 29 W m− 2 (6.0% and 9.4%). Three 
out of the 46 CMIP5 GCMs showed RMSE (RRMSE) values within 20 W 
m− 2 (6.5%), with an average RMSE (RRMSE) value of 22 W m− 2 (7.1%) 
and a median RMSE (RRMSE) value of 21 W m− 2 (6.9%). The biases 
(Rbias) for the various CMIP5 GCMs varied from − 21 to 4 W m− 2 

(− 6.5% to 1.3%). The majority of the CMIP5 GCMs (41 GCMs) under
estimated SDLR, with an average bias (Rbias) of − 6 W m− 2 (− 1.9%) and 
a median bias (Rbias) of − 5 W m− 2 (− 1.6%). The CMIP5 GCMs had R 
values between 0.95 and 0.97, which were above 0.95 for all 46 CMIP5 
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Fig. 3. Scatterplots of the monthly SDLR observations from 183 sites and the corresponding SDLR simulations from the 47 CMIP6 GCMs and the multimodel 
ensemble (MME) methods (in units of W m− 2). 
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Fig. 4. Relative weights of the 47 CMIP6 GCMs acquired by the Bayesian model averaging (BMA) method.  

Fig. 5. Taylor diagrams of the monthly SDLR measurements and MME estimates for BSRN (a), SURFRAD (b), FLUXNET (c) and all 183 sites (d). The 47 CMIP6 GCMs, 
the simple model averaging (SMA) method and the BMA method are represented by black, green and red dots, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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GCMs. The average R value amounted to 0.96, and the median R value 
was 0.97. The RMSE (RRMSE) values of the various CMIP6 GCMs ranged 
from 19 to 27 W m− 2 (6.1% to 8.6%). Six out of the 47 CMIP6 GCMs had 
RMSE (RRMSE) values within 20 W m− 2 (6.5%), with an average RMSE 
(RRMSE) value of 21 W m− 2 (6.9%) and a median RMSE (RRMSE) value 
of 21 W m− 2 (6.8%), which were lower than those of the CMIP5 GCMs. 
The biases (Rbias) of the SDLR simulations from the individual CMIP6 
GCMs varied between − 15 and 7 W m− 2 (− 4.7% and 2.3%), which were 
negative for 31 out of the 47 CMIP6 GCMs. The SDLR from the CMIP6 
GCMs had a lower negative average bias (Rbias) of 3 W m− 2 (1.0%) and 
a lower negative median bias (Rbias) of 3 W m− 2 (1.0%). It was clear 
that the CMIP6 GCMs have obviously improved the underestimation of 
SDLR in comparison with the CMIP5 GCMs. The R values for the CMIP6 
GCMs were close to those for the CMIP5 GCMs, with an average R value 
of 0.96 and a median R value of 0.96, which were in the range of 
0.95–0.97, and all 47 CMIP6 GCMs had R values greater than 0.95. 

For the 52 FLUXNET sites, the RMSE (RRMSE) values for the indi
vidual CMIP5 GCMs ranged between 21 and 31 W m− 2 (7.0% and 9.9%), 
with an average RMSE (RRMSE) value of 25 W m− 2 (7.9%) and a median 
RMSE (RRMSE) value of 24 W m− 2 (7.8%). There was no individual 
GCM with an RMSE (RRMSE) value within 20 W m− 2 (6.5%). The CMIP5 
GCMs showed biases (Rbias) ranging from − 14 to 10 W m− 2 (− 4.5% to 
3.0%), and 28 out of the 46 CMIP5 GCMs overestimated SDLR. The 
average bias (Rbias) was 1 W m− 2 (0.2%), and the median bias (Rbias) 
amounted to 2 W m− 2 (0.8%). The R values of the various CMIP5 GCMs 
varied between 0.87 and 0.93, with an average R value of 0.90 and a 
median R value of 0.90. No individual CMIP5 GCM had an R value 
greater than 0.95. Compared with the CMIP5 GCMs, the CMIP6 GCMs 
exhibited lower RMSE (RRMSE) values, which ranged from 21 to 29 W 
m− 2 (6.9% to 9.1%), with an average RMSE (RRMSE) value of 24 W m− 2 

(7.8%) and a median RMSE (RRMSE) value of 24 W m− 2 (7.6%). No 
individual CMIP6 GCM reported an RMSE (RRMSE) value within 20 W 
m− 2 (6.5%). The SDLR simulations from the various CMIP6 GCMs pro
duced biases (Rbias) in the range of − 8-13 W m− 2 (− 2.4%–4.1%), which 
were positive at most CMIP6 GCMs (33 GCMs), with an average bias 
(Rbias) of 3 W m− 2 (1.0%) and a median bias (Rbias) of 3 W m− 2 (1.0%). 
The R values of the individual CMIP6 GCMs varied from 0.87 to 0.92. 
There was no individual CMIP6 GCM with an R value above 0.95. The 
SDLR simulations from the CMIP6 GCMs correlated well with the SDLR 
observations with a higher average R value of 0.91 and a higher median 
R value of 0.91 than the CMIP5 GCMs. 

A comparison of statistical metrics between CMIP6 and CMIP5 GCMs 
at all 101 sites is also shown in Table 1. The CMIP5 GCMs had an average 
RMSE (RRMSE) of 23 W m− 2 (7.3%), a negative average bias (Rbias) of 
4 W m− 2 (1.4%), and an average R of 0.95. The SDLR simulations from 
the CMIP6 GCMs agreed well with the SDLR observations with an 
average RMSE (RRMSE) of 22 W m− 2 (7.1%) and a negative average bias 
(Rbias) of 2 W m− 2 (0.5%), which were lower than those of the CMIP5 
GCMs. Similar to the CMIP5 GCMs, the average R for the CMIP6 GCMs 

amounted to 0.95. The histograms of the statistical metrics for the 47 
CMIP6 GCMs and the 46 CMIP5 GCMs at all 101 sites are shown in Fig. 6. 
The RMSE values for the SDLR simulations from the individual CMIP5 
GCMs ranged from 19 to 29 W m− 2. 25 out of the 46 CMIP5 GCMs had 
RMSE values in the range of 21–23 W m− 2. The RMSE values were less 
than 21 W m− 2 at six CMIP5 GCMs. 15 CMIP5 GCMs showed RMSE 
values greater than 23 W m− 2. The CMIP6 GCMs had RMSE values be
tween 19 and 27 W m− 2. The RMSE values for 31 out of the 47 CMIP6 
GCMs varied between 21 and 23 W m− 2. Eight CMIP6 GCMs showed 
RMSE values within 21 W m− 2. The RMSE values were above 23 W m− 2 

at only eight CMIP6 GCMs, and no individual CMIP6 GCM had an RMSE 
value greater than 27 W m− 2. The biases for the individual CMIP5 GCMs 
varied from − 20 to 10 W m− 2 and were negative for 38 out of the 46 
CMIP5 GCMs. 28 CMIP5 GCMs reported absolute biases within 5 W m− 2. 
The biases of 17 CMIP5 GCMs were less than − 5 W m− 2. Only one 
CMIP5 GCM had a bias above 5 W m− 2. The biases of the individual 
CMIP6 GCMs ranged from − 15 to 10 W m− 2, and the SDLR simulations 
were underestimated by only 27 out of the 47 CMIP6 GCMs. The abso
lute biases of 32 CMIP6 GCMs were within 5 W m− 2. 12 CMIP6 GCMs 
showed biases less than − 5 W m− 2, and there was no individual CMIP6 
GCM with a bias less than − 15 W m− 2. The biases of the three CMIP6 
GCMs were above 5 W m− 2. Overall, the CMIP6 GCMs exhibited better 
performance in simulating SDLR than the CMIP5 GCMs. 

4.2. Spatial distribution 

The monthly mean SDLR records derived from ERA5 and CERES 
EBAF begin 1979 and 2000, respectively, while the majority of the SDLR 
simulations from the CMIP5 GCMs end in 2005. Thus, the BMA method, 
which showed better performance in estimating SDLR, was applied to 
produce a gridded global SDLR dataset (1◦ × 1◦) during 2000–2005 
using the CMIP6 and CMIP5 GCMs. Fig. 7 (a) indicate the spatial vari
ation in the SDLR estimations of the CMIP6 GCMs using the BMA 
method in 2000–2005 worldwide. The variation pattern of SDLR shows 
a higher correlation with the variation in surface air temperature 
(Bodas-Salcedo et al., 2008). Thus, lower SDLR values were found in 
Antarctica, amounting to approximately 80–210 W m− 2 in the local 
winter season (JJA) and 120–280 W m− 2 in the local summer season 
(DJF). Lower SDLR values also occurred in the Arctic, which were equal 
to approximately 140–190 W m− 2 in the local winter season (DJF) and 
220–320 W m− 2 in the local summer season (JJA). Tropical regions have 
always been areas with greater SDLR. In addition to the ocean surface 
regions, some land surface areas showed greater SDLR values, such as 
Indonesia, Malaysia, the Philippines, the Congo Basin and the Amazon 
rainforest, which was consistent with other studies (Bodas-Salcedo et al., 
2008; Wang and Dickinson, 2013; Wild et al., 2015). Overall, there was a 
gradual SDLR decrease from low latitude areas towards polar areas. 

The spatial variation of the different values in the global annual 
mean SDLR values obtained by the BMA method between the CMIP6 and 

Table 1 
Comparison of statistical metrics for monthly SDLR simulations from the CMIP6 and CMIP5 GCMs.    

BSRN SURFRAD FLUXNET All Sites   

CMIP6 CMIP5 CMIP6 CMIP5 CMIP6 CMIP5 CMIP6 CMIP5 

RMSE 

Mean 21.37 21.93 20.37 20.71 24.24 24.53 22.08 22.55 
Median 21.01 21.46 19.82 20.63 23.71 24.34 21.92 22.25 
Min 19.13 18.72 16.54 16.96 21.57 21.80 20.00 19.72 
Max 26.37 28.88 26.10 26.84 28.07 30.52 26.69 28.86 

Bias 

Mean − 2.94 − 5.95 − 5.80 − 7.74 3.03 0.55 − 1.68 − 4.43 
Median − 3.15 − 4.98 − 4.92 − 6.36 3.07 2.36 − 1.46 − 2.99 
Min − 14.31 − 20.08 − 17.56 − 19.25 − 7.39 − 13.94 − 12.85 − 18.16 
Max 6.84 3.73 6.71 4.58 12.66 9.21 7.79 5.29 

R 

Mean 0.96 0.96 0.93 0.93 0.91 0.90 0.95 0.95 
Median 0.96 0.97 0.93 0.93 0.91 0.90 0.95 0.95 
Min 0.95 0.95 0.90 0.89 0.87 0.87 0.94 0.94 
Max 0.97 0.97 0.95 0.95 0.92 0.93 0.96 0.96  
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Fig. 6. RMSE and Bias histograms for monthly SDLR simulations from the 47 CMIP6 GCMs and the 46 CMIP5 GCMs.  

Fig. 7. Spatial variation of the CMIP6 GCM SDLR estimations using the BMA method (a), and the biases between CMIP6 and CMIP5 GCMs (b), between CMIP6 GCMs 
and ERA5 (c), and between CMIP6 GCMs and CERES EBAF (d) from 2000 to 2005 (in units of W m− 2). 
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CMIP5 GCMs, which ranged from − 22 to 11 W m− 2, are shown in Fig. 7 
(b). The annual mean SDLR values estimated by the CMIP6 GCMs using 
the BMA method were significantly higher in the southern Himalayas, 
eastern Andes, north Asia and the oceans in the high latitude regions 
than those from the CMIP5 GCMs, which had a maximum positive bias 
of 11.11 W m− 2. The BMA estimations from the CMIP6 GCMs had lower 
annual mean SDLR values in the western Andes, with a maximum 
negative bias of − 22.04 W m− 2. Overall, the BMA estimations from the 
CMIP6 GCMs showed higher global annual mean SDLR compared to 
CMIP5 GCMs, which indicated that the CMIP6 GCMs have improved the 
underestimation problem in SDLR in comparison with CMIP5 GCMs. The 
spatial differences between the BMA estimations of CMIP6 GCMs and 
ERA5 are exhibited in Fig. 7 (c) and varied between − 10 and 20 W m− 2 

in most areas. The BMA estimations of CMIP6 GCMs showed negative 
biases in the southern Himalayas and the eastern Andes, and the largest 
negative bias was − 36.67 W m− 2. Positive biases were found over much 
of the Earth’s surface, especially in the oceans near Antarctica in the 
high latitude regions, northern Himalayas, Kunlun Mountains, Altun 
Mountains, Qilian Mountains, Cascade Mountains, Sierra Nevada and 
western Andes, and the maximum positive bias amounted to 59.83 W 
m− 2. Fig. 7 (d) illustrates the spatial dissimilarities between the BMA 
estimations from the CMIP6 GCMs and the CERES EBAF, which varied 
from − 20 to 10 W m− 2 in most areas. Negative biases were found in the 
southern Himalayas, Kunlun Mountains, Altun Mountains, Qilian 
Mountains, eastern Andes and other high altitude areas, where the 
maximum negative bias was approximately − 89.70 W m− 2. The BMA 
estimations from the CMIP6 GCMs had positive biases in the oceans near 
Antarctica in the high latitude regions, northern Himalayas, Cascade 
Mountains, Sierra Nevada and western Andes, with a maximum positive 
bias of approximately 65.92 W m− 2. 

4.3. Annual mean and long-term trend 

There are 37 sites (including 27 BSRN sites, 6 SURFRAD sites and 4 
FLUXNET sites) with long-term SDLR measurements from 1995 to 2014, 
while only 10 sites record ground-measured SDLR from 1992 to 1994. 
Therefore, to analyze the temporal evolutions of both ground-measured 
SDLR and SDLR simulations from GCMs, we calculated the annual mean 
SDLR of 37 sites and the corresponding MME results of the CMIP6 GCMs 
from 1995 to 2014, as shown in Fig. 8. The mean SDLR of 37 sites 
increased at a rate of 2.3 W m− 2 per decade (P > 0.05) during 
1995–2014. It was also found that SDLR showed an increasing trend 
from 1995 to 2014 under the BMA (3.9 W m− 2 per decade, P < 0.05) and 

SMA results of the CMIP6 GCMs (4.1 W m− 2 per decade, P < 0.05). Both 
the ground-measured SDLR and the MME SDLR estimates showed a 
similar increasing trend in SDLR from 1995 to 2014 but with different 
magnitudes. In general, the annual mean SDLR trend based on the BMA 
method were closer to those from the ground measurements compared 
to the SMA results. 

Therefore, the BMA method was used to esitimate the global annual 
mean SDLR of the CMIP6 GCMs, as shown in Table 2. The SDLR values 
obtained by the BMA method using the CMIP6 GCMs were similar to the 
estimates found in other studies. For instance, Ma et al. (2014) estimated 
a global annual mean SDLR of 341 W m− 2 based on 44 CMIP5 GCMs 
from 1992 to 2005, supporting a value consistent with the estimation 
(340.5 W m− 2) derived by the BMA method from the 47 CMIP6 GCMs 
used in the present research. The estimate in Wild et al. (2013) of 342 W 
m− 2 acquired by 22 CMIP5 GCMs in 2000–2004 were in line with the 
value (341.6 W m− 2) estimated by the BMA method using the 47 CMIP6 
GCMs here. L’Ecuyer et al. (2015) determined the global annual mean 
SDLR from satellite observations at 341 W m− 2 during 2000–2009, 
which is close to the estimate (341.9 W m− 2) made from the 47 CMIP6 
GCMs using the BMA method in this study. The estimate reported by 
Wang et al. (2013) was 342 W m− 2 in 2003–2010, which was in 
agreement with that (342.1 W m− 2) calculated by the BMA method with 
the 47 CMIP6 GCMs. The global annual mean SDLR found by Wild 
(2020) of 344 W m− 2 from 38 CMIP6 GCMs during 2000–2014, was 
close to that (342.2 W m− 2) obtained by the BMA method using the 47 
CMIP6 GCMs here. Overall, the BMA method performed better in the 
estimation of global annual mean SDLR using the CMIP6 GCMs. For the 
global annual mean SDLR, the best estimation of 342 W m− 2 in 
2000–2014 obtained by the BMA method using the CMIP6 GCMs was 
applied in this study. 

5. Discussion 

5.1. Uncertainties of evaluation 

Validating and merging the SDLR simulations from the CMIP6 GCMs 
with only ground measurements from the BSRN, SURFRAD and FLUX
NET cause large uncertainties, which are discussed as follows. First, the 
uncertainty of SDLR measurements impacts the evaluation and fusion of 
SDLR simulations from the CMIP6 GCMs. Although SDLR measurements 
are relatively accurate, there are still missing values and measured er
rors, within approximately 10 W m− 2 (Augustine et al., 2000; Liang 
et al., 2010; Ma et al., 2014). Linear interpolation was applied to supply 

Fig. 8. The annual variations in anomalous mean SDLR of the ground measurements and the MME results of the CMIP6 GCMs.  
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the missing data in the present study, but these interpolations still 
increased the uncertainty of the SDLR measurements. In addition, 
different evaluation datasets might show a systematic bias and result in 
different validation results. This results in substantial degree of uncer
tainty in the evaluation and fusion of the CMIP6 GCMs. 

Second, the observation site footprints are not consistent with the 
CMIP6 GCM gridded footprints at the spatial scale. Generally, the 
footprints of the observation sites cover an area of several hundred 
meters, whereas the CMIP6 GCMs have a spatial resolution exceeding 
100 km. Therefore, the CMIP6 GCM gridded SDLR cannot be repre
sented by the SDLR values of the observation stations. Nevertheless, the 
SDLR measurements were applied to denote the “true” value to validate 
and merge CMIP6 GCMs in the present research. This inaccurate deno
tation will cause large discrepancies between the SDLR measurements 
and the SDLR simulations from the CMIP6 GCMs. 

Third, it is noteworthy that the deviations of the SDLR simulations 
from the CMIP6 GCMs as well as biases produced by the resampling 
procedure also result in the uncertainty of SDLR estimation using the 
BMA method. For example, the deviations of SDLR simulations from the 
CMIP6 GCMs lead to the input errors of the SDLR estimated by the BMA 
method. Moreover, in terms of various CMIP6 GCMs with different 
spatial resolutions, the biases of the merged SDLR that propagated 
through the resampling procedure are highlighted. It was found that the 
RMSE values for multiple gridded SDLR datasets were variable at 
various scales. Although it shows small impacts by improving the spatial 
resolution of the GCMs, it still impacts the SDLR fusion (Ma et al., 2014; 
Yao et al., 2016). This resampling procedure could increase the uncer
tainty of the SDLR obtained by the BMA method. 

5.2. Altitudinal and latitudinal dependency of SDLR estimation 

The altitude of the selected 183 sites during 1992–2014 varies from 
− 9 m to 4319 m, which allowed us to validate the performance of the 
CMIP6 GCMs in simulating SDLR at different altitudes. Significant dif
ferences between the CMIP6 GCMs and ERA5, CERES EBAF, and CMIP5 

GCMs were found in high altitude areas, such as the Himalayas, Kunlun 
Mountains, Altun Mountains, Qilian Mountains and Andes. Therefore, 
the SDLR ground measurements were grouped into 154 sites with alti
tudes below 1000 m and 29 sites with altitudes above 1000 m to eval
uate the altitudinal dependency of SDLR estimations. The evaluation 
results indicated that the RMSE values of the SDLR estimations for all 47 
CMIP6 GCMs increased with increasing elevation. 29 out of the 47 
CMIP6 GCMs had higher absolute biases at sites with altitudes above 
1000 m than at sites with altitudes below 1000 m. Among the 47 CMIP6 
GCMs, FGOALS-g3 demonstrated the poorest ability to simulate SDLR at 
sites with altitudes above 1000 m, which had a maximum RMSE of 
34.52 W m− 2 and an absolute bias of 18.06 W m− 2. It was also found that 
the RMSE and bias values for the MME methods increased with 
increasing elevation. To further validate the performance of SDLR sim
ulations from the CMIP6 GCMs at different altitudes, the SDLR obser
vations were also divided into 500 m altitudinal zones. Fig. 9 shows the 
evaluation results of the SDLR simulations from the CMIP6 GCMs and 
the MME results for different altitudinal zones. It was obvious that the 
RMSE values at the sites with altitudes above 1500 m were higher than 
those at the sites with altitudes below 1500 m. 33 out of the 47 CMIP6 
GCMs tended to show a significant altitudinal dependency of the RMSE, 
which had positive slope values (p < 0.05). The SDLR at sites with al
titudes above 2000 m were in worse agreement with higher biases, 
especially in FGOALS-g3, BCC-ESM1, IITM-ESM and MIROC6. Overall, 
the CMIP6 GCMs performed worse in simulating SDLR in high altitude 
areas. 

Since water vapor is a key greenhouse gas that influences SDLR (Li 
et al., 2020; Shi and Liang, 2013; Vaquero-Martínez et al., 2020), we 
tried to investigate whether the altitudinal dependency of the SDLR 
estimates are caused by total column water vapor (TCWV). However, the 
TCWV are not provided by the 183 sites selected in this study. Therefore, 
the TCWV simulations from the CMIP6 GCMs were assessed with the 
TCWV observations at 169 sites collected from Suominet (Ware et al., 
2000) in different altitudinal zones around the world. The elevation of 
the selected Suominet sites ranges from 3 m to 3657 m. The validation 

Table 2 
The averaged global annual mean SDLR of the CMIP6 GCMs, CMIP5 GCMs, ERA5, CERES EBAF and reference estimates (in units of W m− 2).  

Period CMIP6 GCMs CMIP5 GCMs ERA5 CERES EBAF Reference Estimates 

SMA BMA SMA BMA 

1992–2005 342.0 340.5 339.0 341.1 338.6 – 341 (Ma et al., 2014) 
2000–2004 343.2 341.6 340.0 342.1 339.0 345.5 342 (Wild et al., 2013) 
2000–2009 343.5 341.9 – – 339.3 345.2 341 (L’Ecuyer et al., 2015) 
2003–2010 343.8 342.1 – – 339.6 345.2 342 (Wang and Dickinson, 2013) 
2000–2014 343.9 342.2 – – 339.5 345.2 344 (Wild, 2020)  

Fig. 9. Comparison of the RMSE (a) and absolute Bias (b) values at the sites in different altitudinal zones for the monthly SDLR simulations from the 47 CMIP6 GCMs 
and the MME results. 

J. Xu et al.                                                                                                                                                                                                                                       



Atmospheric Research 270 (2022) 106056

13

results of the TCWV simulations from the CMIP6 GCMs are showed in 
Fig. 10. Similar to the SDLR simulations, the TCWV simulations from 
CMIP6 GCMs showed higher RMSE and absolute biases at sites with the 
altitudes above 1500 m than that with the altitudes below 1500 m. 
Therefore, the large uncertainties existed in CMIP6 GCM SDLR simula
tions at high altitudinal sites may be partially related to the lower TCWV 
precision at those sites. 

The ability of the CMIP6 GCMs to simulate SDLR at different lati
tudes was also evaluated in this study. The ground-measured SDLR were 
grouped into 30◦ latitudinal bands. The comparison results of the SDLR 
simulations from the CMIP6 GCMs and the MME results for different 
latitudinal bands are shown in Fig. 11. Overall, the majority of the 
CMIP6 GCMs showed lower RMSE values at the sites located in the 
relatively lower latitudinal bands. The RMSE values at the sites located 
in the higher latitudinal bands were higher than the lower latitudinal 
bands for most CMIP6 GCMs models, especially in FGOALS-g3, 
NorCPM1 and CESM2-FV2. In general, the CMIP6 GCMs showed poor 
ability to simulate SDLR in the high latitudinal bands. Most of the CMIP6 
GCM SDLR simulations exhibited a latitudinal dependency. 

5.3. Relations between SDLR, SDSR, SAT, RH, and WVP 

Both the ground-measured SDLR and the MME SDLR estimates 
showed an increasing trend in SDLR during the period of 1995–2014 
(Fig. 8). To fully explore the causes of the variables influencing SDLR, 
the correlation coefficient between the trends in SDLR and the corre
sponding trends in downward shortwave radiation (SDSR), air temper
ature (SAT), relative humidity (RH) and water vapor pressure (WVP) in 
GCM simulations were investigated (Fig. 12). An obvious positive cor
relation was observed between the trends in SDLR and SAT, with an R 
value of 0.64. As it is known to all, SAT is an important parameter in 
estimating SDLR (Swinbank, 1963). The trend in RH was negatively 
correlated with the trend in SAT, with an R value of − 0.19. WVP is also 
considered a main contributor to SDLR because water vapor is a key 
greenhouse gas that influences SDLR (Li et al., 2020; Shi and Liang, 
2013). Figure 12 shows that the increases in SAT and atmospheric WVP 
were the most important factors controlling the long-term variation of 
SDLR. The trend in SDSR was negatively correlated with the trend in 
SDLR. This might be explained by the fact that the existence of clouds 
impedes SDSR from reaching the Earth’s surface, whereas clouds are 
vital radiators of SDLR (Shi and Liang, 2013). The relationship between 
SDLR, SDSR, SAT, RH, and WVP was analyzed with only the GCM 
simulations, which may result in errors, it is necessary to use ground- 
based measurements for a further analysis in the future. 

6. Conclusions 

This study validated SDLR simulations from 47 CMIP6 GCMs in 
comparison to globally distributed ground measurements and then 
investigated how well the SMA and BMA methods performed in the 
estimation of SDLR using CMIP6 GCMs. The evaluation data sets consist 
of 183 sites (17,625 samples) from BSRN, SURFRAD and FLUXNET over 
a period covering 1992–2014. A comparison between the SDLR simu
lations from the CMIP6 GCMs versus the ground measurements indi
cated large differences in the ability of the individual CMIP6 GCMs to 
simulate SDLR. Individual GCMs with higher spatial resolutions did not 
always perform better than those with lower spatial resolutions. The 
RMSE (RRMSE), bias (Rbias), R and GPI values from the SDLR simula
tions from the individual CMIP6 GCMs averaged over 183 sites varied 
from 20 to 26 W m− 2 (6.4% to 8.3%), − 10 to 10 W m− 2 (− 3.1% to 
2.9%), 0.92 to 0.95 and − 13 to 6, respectively. The CMIP6 GCMs did not 
show a significant tendency to underestimate SDLR. Only 24 out of the 
47 CMIP6 GCMs underestimated SDLR and showed negative biases for 
all 183 sites. Among the CMIP6 GCMs, NorCPM1 had the worst per
formance with the lowest GPI value and weight at 183 sites, and its SDLR 
simulations exhibited a poor predictive ability for both the BSRN and 
SURFRAD sites. It was also found that the CMIP6 GCMs performed worse 
in simulating SDLR in high altitude and high latitude areas. The BMA 
method always had a better performance in estimating SDLR than that of 
the individual CMIP6 GCMs, with an RMSE (RRMSE) of 17.33 W m− 2 

(5.54%), a bias (Rbias) of 0 W m− 2 (0%), and an R of 0.96 with respect to 
the 183 sites. It reduced the RMSE (RRMSE) by approximately 5 W m− 2 

(1.7%) and increased the R by approximately 0.02 on average compared 
to the individual GCMs. The ability of the CMIP6 GCMs to simulate SDLR 
was compared with that of the CMIP5 GCMs with respect to the SDLR 
observations collected at 101 sites (6097 samples) from 1992 to 2005. 
The results demonstrated that the CMIP6 GCMs exhibited a better ability 
to simulate SDLR with an average RMSE (RRMSE) of 22 W m− 2 (7.1%) 
and a negative average bias (Rbias) of 2 W m− 2 (0.5%) for the 101 sites, 
which were lower than those of the CMIP5 GCMs. This indicated that the 
CMIP6 GCMs obviously improved the underestimation of SDLR in 
comparison with the CMIP5 GCMs. 

We applied the BMA method to produce a gridded global SDLR 
dataset (1◦ × 1◦) during 2000–2005 using the CMIP6 GCMs. The spatial 
distributions in SDLR values worldwide were discussed using the SDLR 
dataset produced in this research. Overall, there was a gradual decrease 
in SDLR from low latitude areas to the polar areas. Significant differ
ences between the CMIP6 GCMs and ERA5, CERES EBAF, and CMIP5 
GCMs were found in high altitude areas, such as the Himalayas, Kunlun 

Fig. 10. Comparison of the RMSE (a) and absolute Bias (b) values at the sites in different altitudinal zones for the monthly total column water vapor (TCWV) 
simulations from the 44 CMIP6 GCMs. 
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Mountains, Altun Mountains, Qilian Mountains and Andes. The tem
poral evolutions of both ground-measured SDLR and SDLR simulations 
from GCMs were also analyzed in this study. In general, the annual mean 
SDLR based on the BMA method were closer to those from the ground 
measurements compared to the SMA results. In terms of the global 
annual mean SDLR, the SDLR estimated by the BMA method based on 
the 47 CMIP6 GCMs agreed with the results of other studies. The best 
estimation at 342 W m− 2 in 2000–2014 obtained by the BMA method 
using the CMIP6 GCMs was applied in this study. SDLR showed an 

increasing trend during the period of 1995–2014.This increase may be 
caused by changes in SAT and WVP related to global warming. 

Data availability 

The SDLR simulations from CMIP5 and CMIP6 GCMs were available 
at https://esgf-node.llnl.gov/search/cmip5/ and https://esgf-node.llnl. 
gov/search/cmip6/. The ground-measured data of surface downward 
longwave radiation was downloaded from BSRN (https://bsrn.awi.de/), 

Fig. 11. Comparison of the RMSE values at the sites in different latitudinal bands for the monthly SDLR simulations from the 47 CMIP6 GCMs and the MME results.  

Fig. 12. Scatterplots of the trends in SDLR (in units of W m− 2 per year) and the corresponding trends in downward shortwave radiation (SDSR, in units of W m− 2 per 
year), air temperature (SAT, in units of K per year), relative humidity (RH, in units of % per year), and water vapor pressure (WVP, in units of hPa per year) in GCM 
simulations. 
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SURFRAD (https://www.esrl.noaa.gov/gmd/grad/surfrad/), and 
FLUXNET (https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). 
The TCWV observations from the Suominet were available at https:// 
www.unidata.ucar.edu/data/suominet/. The ERA5 data utilized in the 
present research was obtained from https://cds.climate.copernicus.eu/. 
The CERES EBAF data was downloaded from the NASA Langley 
Research Center (https://ceres.larc.nasa.gov/). 
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Appendix  

Table A1 
Detailed information on the 5th phase of the Coupled Model Intercomparison Project (CMIP5) general circulation models (GCMs) used in this 
study.  

ID Model Name Institute ID Time Resolution 

1 ACCESS1–0 CSIRO-BOM 185001–200512 1.88◦ × 1.24◦

2 ACCESS1–3 CSIRO-BOM 185001–200512 1.88◦ × 1.24◦

3 BNU-ESM GCESS 185001–200512 2.81◦ × 2.81◦

4 CCSM4 NCAR 185001–200512 1.25◦ × 0.94◦

5 CESM1-BGC NSF-DOE-NCAR 185001–200512 1.25◦ × 0.94◦

6 CESM1-CAM5 NSF-DOE-NCAR 185001–200512 1.25◦ × 0.94◦

7 CESM1-FASTCHEM NSF-DOE-NCAR 185001–200512 1.25◦ × 0.94◦

8 CESM1-WACCM NSF-DOE-NCAR 185001–200512 2.50◦ × 1.88◦

9 CMCC-CESM CMCC 185001–200512 3.75◦ × 3.75◦

10 CMCC-CMS CMCC 185001–200512 1.88◦ × 1.88◦

11 CMCC-CM CMCC 185001–200512 0.75◦ × 0.75◦

12 CNRM-CM5–2 CNRM-CERFACS 185001–200512 1.41◦ × 1.41◦

13 CNRM-CM5 CNRM-CERFACS 185001–200512 1.41◦ × 1.41◦

14 CSIRO-Mk3–6-0 CSIRO-QCCCE 185001–200512 1.88◦ × 1.88◦

15 CanCM4 CCCMA 196101–200512 2.81◦ × 2.81◦

16 CanESM2 CCCMA 185001–200512 2.81◦ × 2.81◦

17 FGOALS-g2 LASG-CESS 185001–200512 2.81◦ × 3.00◦

18 GFDL-CM2p1 NOAA GFDL 186101–200512 2.50◦ × 2.00◦

19 GFDL-CM3 NOAA GFDL 186001–200512 2.50◦ × 2.00◦

20 GFDL-ESM2G NOAA GFDL 186101–200512 2.50◦ × 2.00◦

21 GFDL-ESM2M NOAA GFDL 186101–200512 2.50◦ × 2.00◦

22 GISS-E2-H-CC NOAA GISS 185001–201012 2.50◦ × 2.00◦

23 GISS-E2-H NOAA GISS 185001–200512 2.50◦ × 2.00◦

24 GISS-E2-R-CC NOAA GISS 185001–201012 2.50◦ × 2.00◦

25 GISS-E2-R NOAA GISS 185001–200512 2.50◦ × 2.00◦

26 HadCM3 MOHC 185912–200512 3.75◦ × 3.47◦

27 HadGEM2-AO NIMR/KMA 186001–200512 1.88◦ × 1.24◦

28 HadGEM2-CC MOHC 185912–200511 1.88◦ × 1.24◦

29 HadGEM2-ES MOHC 185912–200511 1.88◦ × 1.24◦

30 IPSL-CM5A-LR IPSL 185001–200512 3.75◦ × 1.88◦

31 IPSL-CM5A-MR IPSL 185001–200512 2.50◦ × 1.26◦

32 IPSL-CM5B-LR IPSL 185001–200512 3.75◦ × 1.88◦

33 MIROC-ESM-CHEM MIROC 185001–200512 2.81◦ × 2.81◦

34 MIROC-ESM MIROC 185001–200512 2.81◦ × 2.81◦

35 MIROC4h MIROC 195001–200512 0.56◦ × 0.56◦

36 MIROC5 MIROC 185001–201212 1.41◦ × 1.41◦

37 MPI-ESM-LR MPI-M 185001–200512 1.88◦ × 1.88◦

38 MPI-ESM-MR MPI-M 185001–200512 1.88◦ × 1.88◦

39 MPI-ESM-P MPI-M 185001–200512 1.88◦ × 1.88◦

40 MRI-CGCM3 MRI 185001–200512 1.13◦ × 1.13◦

41 MRI-ESM1 NCC 185101–200512 1.13◦ × 1.13◦

42 NorESM1-ME NCC 185001–200512 2.50◦ × 1.88◦

43 NorESM1-M NCC 185001–200512 2.50◦ × 1.88◦

44 bcc-csm1–1-m BCC 185001–201212 1.13◦ × 1.13◦

45 bcc-csm1–1 BCC 185001–201212 1.13◦ × 1.13◦

46 inmcm4 UNM 185001–200512 2.00◦ × 1.50◦
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Table A2 
Detailed information on the 6th phase of the Coupled Model Intercomparison Project (CMIP6) general circulation models (GCMs) used in this study.  

ID Model Name Institute ID Time Resolution 

1 ACCESS-CM2 CSIRO-ARCCSS 185001–201412 1.88◦ × 1.25◦

2 ACCESS-ESM1–5 CSIRO 185001–201412 1.88◦ × 1.24◦

3 AWI-CM-1-1-MR AWI 185001–201412 0.94◦ × 0.94◦

4 AWI-ESM-1-1-LR AWI 185001–201412 1.88◦ × 1.88◦

5 BCC-CSM2-MR BCC 185,001–201,412 1.13◦ × 1.13◦

6 BCC-ESM1 BCC 185001–201412 2.81◦ × 2.81◦

7 CAMS-CSM1–0 CAMS 185001–201412 1.13◦ × 1.13◦

8 CAS-ESM2–0 CAS 185001–201412 1.41◦ × 1.41◦

9 CESM2-FV2 NCAR 185001–201412 2.50◦ × 1.88◦

10 CESM2-WACCM-FV2 NCAR 185001–201412 2.50◦ × 1.88◦

11 CESM2-WACCM NCAR 185001–201412 1.25◦ × 0.94◦

12 CESM2 NCAR 185001–201412 1.25◦ × 0.94◦

13 CIESM THU 185001–201412 1.25◦ × 0.94◦

14 CMCC-CM2-HR4 CMCC 185001–201412 1.25◦ × 0.94◦

15 CMCC-CM2-SR5 CMCC 185001–201412 1.25◦ × 0.94◦

16 CanESM5 CCCma 185001–201412 2.81◦ × 2.81◦

17 E3SM-1-0 E3SM-Project 185001–201412 1.00◦ × 1.00◦

18 E3SM-1-1-ECA E3SM-Project 185001–201412 1.00◦ × 1.00◦

19 E3SM-1-1 E3SM-Project 185001–201, 1.00◦ × 1.00◦

20 EC-Earth3-AerChem EC-Earth-Consortium 185001–201412 0.70◦ × 0.70◦

21 EC-Earth3-Veg-LR EC-Earth-Consortium 185001–201412 1.13◦ × 1.13◦

22 EC-Earth3-Veg EC-Earth-Consortium 185001–201412 0.70◦ × 0.70◦

23 EC-Earth3 EC-Earth-Consortium 185001–201412 0.70◦ × 0.70◦

24 FGOALS-f3-L CAS 185001–201412 1.25◦ × 1.00◦

25 FGOALS-g3 CAS 185001–201612 2.00◦ × 2.25◦

26 FIO-ESM-2-0 FIO-QLNM 185001–201412 1.25◦ × 0.94◦

27 GFDL-ESM4 NOAA-GFDL 185001–201412 1.25◦ × 1.00◦

28 GISS-E2–1-G-CC NASA-GISS 185001–201412 2.50◦ × 2.00◦

29 GISS-E2–1-G NASA-GISS 185001–201412 2.50◦ × 2.00◦

30 GISS-E2–1-H NASA-GISS 185001–201412 2.50◦ × 2.00◦

31 IITM-ESM CCCR-IITM 185001–201412 1.88◦ × 1.91◦

32 INM-CM4–8 INM 185001–201412 2.00◦ × 1.50◦

33 INM-CM5–0 INM 185001–201,412 2.00◦ × 1.50◦

34 IPSL-CM6A-LR IPSL 185,001–201412 2.50◦ × 1.26◦

35 KACE-1-0-G NIMS-KMA 185001–201412 1.88◦ × 1.25◦

36 KIOST-ESM KIOST 185001–201412 1.88◦ × 1.88◦

37 MIROC6 MIROC 185001–201412 1.41◦ × 1.41◦

38 MPI-ESM-1-2-HAM HAMMOZ-Consortium 185001–201412 1.88◦ × 1.88◦

39 MPI-ESM1–2-HR MPI-M 185001–201412 0.94◦ × 0.94◦

40 MPI-ESM1–2-LR MPI-M 185001–201412 1.88◦ × 1.88◦

41 MRI-ESM2–0 MRI 185001–201412 1.13◦ × 1.13◦

42 NESM3 NUIST 185001–201412 1.88◦ × 1.88◦

43 NorCPM1 NCC 185001–202912 2.50◦ × 1.88◦

44 NorESM2-LM NCC 185001–201412 2.50◦ × 1.88◦

45 NorESM2-MM NCC 185001–201412 1.25◦ × 0.94◦

46 SAM0-UNICON SNU 185001–201412 1.25◦ × 0.94◦

47 TaiESM1 AS-RCEC 185001–201412 1.25◦ × 0.94◦

Table A3 
Information of the sites from BSRN, SURFRAD, and FLUXNET used in this study.  

Network Site ID Latitude Longitude Network Site ID Latitude Longitude 

BSRN ALE 82.49◦ N 62.42◦ W FLUXNET BE-Bra 51.31◦ N 4.52◦ E 
BSRN ASP 23.80◦ S 133.89◦ E FLUXNET BE-Lon 50.55◦ N 4.75◦ E 
BSRN BAR 71.32◦ N 156.61◦ W FLUXNET BR-Sa3 3.02◦ S 54.97◦ W 
BSRN BER 32.27◦ N 64.67◦ W FLUXNET CA-Qfo 49.69◦ N 74.34◦ W 
BSRN BIL 36.61◦ N 97.52◦ W FLUXNET CA-SF1 54.49◦ N 105.82◦ W 
BSRN BON 40.07◦ N 88.37◦ W FLUXNET CA-SF2 54.25◦ N 105.88◦ W 
BSRN BOS 40.13◦ N 105.24◦ W FLUXNET CA-SF3 54.09◦ N 106.01◦ W 
BSRN BOU 40.05◦ N 105.01◦ W FLUXNET CH-Cha 47.21◦ N 8.41◦ E 
BSRN BRB 15.60◦ S 47.71◦ W FLUXNET CH-Dav 46.82◦ N 9.86◦ E 
BSRN CAB 51.97◦ N 4.93◦ E FLUXNET CH-Fru 47.12◦ N 8.54◦ E 
BSRN CAM 50.22◦ N 5.32◦ W FLUXNET CH-Lae 47.48◦ N 8.37◦ E 
BSRN CAR 44.08◦ N 5.06◦ E FLUXNET CH-Oe1 47.29◦ N 7.73◦ E 
BSRN CLH 36.91◦ N 75.71◦ W FLUXNET CH-Oe2 47.29◦ N 7.73◦ E 
BSRN CNR 42.82◦ N 1.60◦ W FLUXNET CN-Cha 42.40◦ N 128.10◦ E 
BSRN COC 12.19◦ S 96.84◦ E FLUXNET CN-Cng 44.59◦ N 123.51◦ E 
BSRN DAA 30.67◦ S 23.99◦ E FLUXNET CN-Dan 30.50◦ N 91.07◦ E 
BSRN DAR 12.43◦ S 130.89◦ E FLUXNET CN-Din 23.17◦ N 112.54◦ E 
BSRN DOM 75.10◦ S 123.38◦ E FLUXNET CN-Ha2 37.61◦ N 101.33◦ E 
BSRN DRA 36.63◦ N 116.02◦ W FLUXNET CN-Qia 26.74◦ N 115.06◦ E 

(continued on next page) 
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Table A3 (continued ) 

Network Site ID Latitude Longitude Network Site ID Latitude Longitude 

BSRN DWN 12.42◦ S 130.89◦ E FLUXNET CZ-BK1 49.50◦ N 18.54◦ E 
BSRN E13 36.61◦ N 97.49◦ W FLUXNET CZ-BK2 49.49◦ N 18.54◦ E 
BSRN ENA 39.09◦ N 28.03◦ W FLUXNET CZ-wet 49.02◦ N 14.77◦ E 
BSRN EUR 79.99◦ N 85.94◦ W FLUXNET DE-Akm 53.87◦ N 13.68◦ E 
BSRN FLO 27.60◦ S 48.52◦ W FLUXNET DE-Geb 51.10◦ N 10.91◦ E 
BSRN FPE 48.32◦ N 105.10◦ W FLUXNET DE-Gri 50.95◦ N 13.51◦ E 
BSRN FUA 33.58◦ N 130.38◦ E FLUXNET DE-Hai 51.08◦ N 10.45◦ E 
BSRN GAN 23.11◦ N 72.63◦ E FLUXNET DE-Kli 50.89◦ N 13.52◦ E 
BSRN GCR 34.25◦ N 89.87◦ W FLUXNET DE-Lkb 49.10◦ N 13.30◦ E 
BSRN GOB 23.56◦ S 15.04◦ E FLUXNET DE-Obe 50.79◦ N 13.72◦ E 
BSRN GUR 28.42◦ N 77.16◦ E FLUXNET DE-RuR 50.62◦ N 6.30◦ E 
BSRN GVN 70.65◦ S 8.25◦ W FLUXNET DE-RuS 50.87◦ N 6.45◦ E 
BSRN HOW 22.55◦ N 88.31◦ E FLUXNET DE-SfN 47.81◦ N 11.33◦ E 
BSRN ILO 8.53◦ N 4.57◦ E FLUXNET DE-Spw 51.89◦ N 14.03◦ E 
BSRN ISH 24.34◦ N 124.16◦ E FLUXNET DE-Tha 50.96◦ N 13.57◦ E 
BSRN KWA 8.72◦ N 167.73◦ E FLUXNET DK-Sor 55.49◦ N 11.64◦ E 
BSRN LAU 45.05◦ S 169.69◦ E FLUXNET FI-Hyy 61.85◦ N 24.29◦ E 
BSRN LER 60.14◦ N 1.18◦ W FLUXNET FI-Lom 68.00◦ N 24.21◦ E 
BSRN LIN 52.21◦ N 14.12◦ E FLUXNET FR-Gri 48.84◦ N 1.95◦ E 
BSRN MAN 2.06◦ S 147.43◦ E FLUXNET FR-LBr 44.72◦ N 0.77◦ W 
BSRN MNM 24.29◦ N 153.98◦ E FLUXNET FR-Pue 43.74◦ N 3.60◦ E 
BSRN NAU 0.52◦ S 166.92◦ E FLUXNET GF-Guy 5.28◦ N 52.92◦ W 
BSRN NYA 78.93◦ N 11.93◦ E FLUXNET IT-BCi 40.52◦ N 14.96◦ E 
BSRN PAL 48.71◦ N 2.21◦ E FLUXNET IT-CA1 42.38◦ N 12.03◦ E 
BSRN PAY 46.82◦ N 6.94◦ E FLUXNET IT-CA2 42.38◦ N 12.03◦ E 
BSRN PSU 40.72◦ N 77.93◦ W FLUXNET IT-CA3 42.38◦ N 12.02◦ E 
BSRN PTR 9.07◦ S 40.32◦ W FLUXNET IT-Col 41.85◦ N 13.59◦ E 
BSRN REG 50.21◦ N 104.71◦ W FLUXNET IT-Isp 45.81◦ N 8.63◦ E 
BSRN SAP 43.06◦ N 141.33◦ E FLUXNET IT-La2 45.95◦ N 11.29◦ E 
BSRN SBO 30.86◦ N 34.78◦ E FLUXNET IT-Lav 45.96◦ N 11.28◦ E 
BSRN SMS 29.44◦ S 53.82◦ W FLUXNET IT-MBo 46.01◦ N 11.05◦ E 
BSRN SON 47.05◦ N 12.96◦ E FLUXNET IT-NOE 40.61◦ N 8.15◦ E 
BSRN SOV 24.91◦ N 46.41◦ E FLUXNET IT-Ren 46.59◦ N 11.43◦ E 
BSRN SPO 89.98◦ S 24.80◦ W FLUXNET IT-Ro1 42.41◦ N 11.93◦ E 
BSRN SXF 43.73◦ N 96.62◦ W FLUXNET IT-Ro2 42.39◦ N 11.92◦ E 
BSRN SYO 69.01◦ S 39.59◦ E FLUXNET IT-SR2 43.73◦ N 10.29◦ E 
BSRN TAM 22.79◦ N 5.53◦ E FLUXNET IT-SRo 43.73◦ N 10.28◦ E 
BSRN TAT 36.06◦ N 140.13◦ E FLUXNET IT-Tor 45.84◦ N 7.58◦ E 
BSRN TIK 71.59◦ N 128.92◦ E FLUXNET JP-MBF 44.39◦ N 142.32◦ E 
BSRN TIR 13.09◦ N 79.97◦ E FLUXNET JP-SMF 35.26◦ N 137.08◦ E 
BSRN TOR 58.25◦ N 26.46◦ E FLUXNET NL-Hor 52.24◦ N 5.07◦ E 
BSRN XIA 39.75◦ N 116.96◦ E FLUXNET NL-Loo 52.17◦ N 5.74◦ E 
SURFRAD BND 40.05◦ N 88.37◦ W FLUXNET RU-Fyo 56.46◦ N 32.92◦ E 
SURFRAD TBL 40.12◦ N 105.24◦ W FLUXNET SJ-Adv 78.19◦ N 15.92◦ E 
SURFRAD DRA 36.62◦ N 116.02◦ W FLUXNET SJ-Blv 78.92◦ N 11.83◦ E 
SURFRAD FPK 48.31◦ N 105.10◦ W FLUXNET US-AR1 36.43◦ N 99.42◦ W 
SURFRAD GWN 34.25◦ N 89.87◦ W FLUXNET US-AR2 36.64◦ N 99.60◦ W 
SURFRAD PSU 40.72◦ N 77.93◦ W FLUXNET US-GBT 41.37◦ N 106.24◦ W 
SURFRAD SXF 43.73◦ N 96.62◦ W FLUXNET US-GLE 41.37◦ N 106.24◦ W 
FLUXNET AT-Neu 47.12◦ N 11.32◦ E FLUXNET US-Los 46.08◦ N 89.98◦ W 
FLUXNET AU-Ade 13.08◦ S 131.12◦ E FLUXNET US-Me2 44.45◦ N 121.56◦ W 
FLUXNET AU-ASM 22.28◦ S 133.25◦ E FLUXNET US-Me6 44.32◦ N 121.61◦ W 
FLUXNET AU-Cpr 34.00◦ S 140.59◦ E FLUXNET US-MMS 39.32◦ N 86.41◦ W 
FLUXNET AU-Cum 33.62◦ S 150.72◦ E FLUXNET US-Ne1 41.17◦ N 96.48◦ W 
FLUXNET AU-DaP 14.06◦ S 131.32◦ E FLUXNET US-Ne2 41.16◦ N 96.47◦ W 
FLUXNET AU-DaS 14.16◦ S 131.39◦ E FLUXNET US-Ne3 41.18◦ N 96.44◦ W 
FLUXNET AU-Dry 15.26◦ S 132.37◦ E FLUXNET US-ORv 40.02◦ N 83.02◦ W 
FLUXNET AU-Emr 23.86◦ S 148.47◦ E FLUXNET US-Prr 65.12◦ N 147.49◦ W 
FLUXNET AU-Fog 12.55◦ S 131.31◦ E FLUXNET US-SRG 31.79◦ N 110.83◦ W 
FLUXNET AU-Gin 31.38◦ S 115.71◦ E FLUXNET US-SRM 31.82 N 110.87◦ W 
FLUXNET AU-GWW 30.19◦ S 120.65◦ E FLUXNET US-Syv 46.24◦ N 89.35◦ W 
FLUXNET AU-How 12.49◦ S 131.15◦ E FLUXNET US-Tw1 38.11◦ N 121.65◦ W 
FLUXNET AU-Lox 34.47◦ S 140.66◦ E FLUXNET US-Tw2 38.10◦ N 121.64◦ W 
FLUXNET AU-RDF 14.56◦ S 132.48◦ E FLUXNET US-Tw3 38.12◦ N 121.65◦ W 
FLUXNET AU-Rig 36.65◦ S 145.58◦ E FLUXNET US-Tw4 38.10◦ N 121.64◦ W 
FLUXNET AU-Rob 17.12◦ S 145.63◦ E FLUXNET US-UMB 45.56◦ N 84.71◦ W 
FLUXNET AU-Stp 17.15◦ S 133.35◦ E FLUXNET US-UMd 45.56◦ N 84.70◦ W 
FLUXNET AU-TTE 22.29◦ S 133.64◦ E FLUXNET US-Var 38.41◦ N 120.95◦ W 
FLUXNET AU-Tum 35.66◦ S 148.15◦ E FLUXNET US-WCr 45.81◦ N 90.08◦ W 
FLUXNET AU-Wac 37.43◦ S 145.19◦ E FLUXNET US-Whs 31.74◦ N 110.05◦ W 
FLUXNET AU-Whr 36.67◦ S 145.03◦ E FLUXNET US-Wkg 31.74◦ N 109.94◦ W 
FLUXNET AU-Wom 37.42◦ S 144.09◦ E FLUXNET ZA-Kru 25.02◦ S 31.50◦ E 
FLUXNET AU-Ync 34.99◦ S 146.29◦ E      
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