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A B S T R A C T   

Accurate crop phenology information is essential for precision farming and agricultural productivity improve
ment. In recent years, in-situ equipment on crop phenology observation has been boosted, which generates high- 
quality real-time pictures on capturing vegetation phenological changes. However, due to the limited number of 
ground sites, it is impossible to measure large-scale crop phenology with local observations. Complementary, the 
freely available Sentinel satellites with high revisit frequency provide an opportunity to map accurate crop 
phenology at an unprecedented fine spatial scale. Because of the differences in viewing angle and range, the 
consistency of crop phenological stages varies between satellite and ground observations. To fill the gap between 
satellite and ground observations, we developed a spatial-aware scheme to integrate SAR and optical time-series 
data for accurate crop phenology tracking. To be specific, we propose a new deep learning model called Deep- 
CroP framework to improve the alignment between satellite and ground observations on crop phenology. The 
experiment results on selected ground sites demonstrate that the proposed Deep-CroP is able to accurately 
identify crops phenology and narrow the discrepancies from 30+ days to as high as several days. In addition, we 
applied the Deep-CroP to large-scale Sentinel time-series to map spatial patterns of phenology at fine resolution 
imagery on two study areas (i.e., TA1 and TA2). In general, the potential of satellites time-series for ground-level 
crop phenology observation is verified. Also, the consistency between satellite and PhenoCam observations is 
expected to be further improved.   

1. Introduction 

Crop phenology, also known as crop growth stages, refers to the 
biophysical development of crop plants from planting to harvest. 
Phenological parameters are the key indicators for dynamic crop 
monitoring (Richardson et al., 2013). Accurate crop phenology infor
mation retrieval is important for precision farming (Gao et al., 2017; 
Jentsch et al., 2009), crop yields estimation (Yuan et al., 2016), and 
agricultural productivity improvement (Jung et al., 2021; Thenkabail 
et al., 2010; Weiss et al., 2020). In this context, the efficient crop 
phenology extraction method is urgently needed. 

The conventional approach for crop phenology information extrac
tion is to record the timing of specific changing events through frequent 

observations by well-trained personnel (Schnelle and Volkert, 1964). An 
alternative approach is to use fixed-position digital cameras with a high 
temporal resolution that repeatedly captures phenology information 
over a given area by multiple times per day. This type of digital camera 
has been widely implemented in phenology observation projects, 
including the European Phenology Network (Wingate et al., 2015), the 
Phenological Eyes Network (Nasahara and Nagai, 2015), and PhenoCam 
Network (Klosterman et al., 2014). Among them, the PhenoCam 
Network, with hundreds of web-enabled digital cameras, is designed to 
capture time-lapse photography on vegetation phenological changes 
(such as green-up and senescence) with various landscapes across North 
America and Europe since 2000 (Richardson et al., 2009). The dense 
time-series Green Chromatic Coordinate (GCC) data derived from daily 
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PhenoCam images is one of the most reliable indicators for local crop 
phenology modeling and phenological parameter validation (Richard
son et al., 2018). Currently, several software applications and packages 
have been developed to facilitate the extraction and processing of data 
from PhenoCam imagery, including xROI and Phenocamr (Hufkens 
et al., 2018; Seyednasrollah et al., 2019). Based on PhenoCam obser
vations, it is now possible to establish site-based crop phenology models 
with localized threshold and key parameter settings. Still, the potential 
of large-scale crop phenology prediction with scattered ground sites 
remains unexploited. 

Remote sensing technology has the advantages of large-scale moni
toring, low cost, with short revisit periods. It provides a cost-effective 
and reliable approach for crop dynamic monitoring (Jiao et al., 2014; 
Qu et al., 2020). Multi-temporal remote sensing data can be used to 
derive phenology descriptors of vegetation growth dynamics termed 
‘land surface phenology’ (LSP) (De Beurs and Henebry, 2005; Ganguly 
et al., 2010). The LSP parameters are typically associated with Spatio- 
temporal changes from satellite images on vegetated land surfaces, 
such as the start of greening/season (SOS) and the onset of senescence or 
end of the season (EOS). Traditionally, remote sensing data-based 
phenology studies primarily rely on medium- to coarse-resolution 
(250 m to 8 km) optical imagery (Justice et al., 2002; Justice et al., 
1985), including the Advanced Very High-Resolution Radiometer 
(AVHRR) and Moderate Resolution Imaging Spectrometer (MODIS). 
These medium-resolution sensors can effectively capture large-scale and 
even global LSP parameters, but low spatial resolution mixed crop fields 
with complex backgrounds thus may not properly represent the actual 
crop phenology. Meanwhile, the new generation earth observation sat
ellites provide higher spatial resolution imagery with shorter revisit 
intervals such as Sentinel-2 (S2), which ignited further study on fine- 
scale crop phenology mapping. Now, it is possible to resolve individ
ual farmland parcels from finer-scale satellite data and estimate the 
crop-specific phenology. 

Recently, satellite-based LSP researches are based on the dense time- 
series data acquired by the S2 satellite (Marzialetti et al., 2019; Misra 
et al., 2020) or the multi-optical harmonized Landsat 8 and S2 time- 
series (Bolton et al., 2020; Burke and Rundquist, 2021; Zhou et al., 
2019), which obtained satisfying results on large-scale phenology 
tracking. However, some studies demonstrated that the phenological 
parameters estimates from the digital camera are quite different from 
those observed by satellite. For example, Vrieling et al. (2018) found 
that EOS estimates from camera GCC series are on average almost two 
months ahead of NDVI-based estimates. The main reason is due to dif
ferences in viewing frequency and viewing coverage area between the 
satellite and in-situ cameras. To tackle the above challenges, for one 
thing, how to combine multiple satellite observations with different 
viewing dimensions to boost crop observation frequency is urgently 
needed; for another, how to alleviate the mismatch of spatial coverage 
between satellite and ground observations (i.e., in-situ camera with few 
hundreds detection range while remote sensing image with 10 m indi
vidual pixels). 

For the purpose of boosting the viewing dimension of satellite data, a 
possible solution is to provide synthetic aperture radar (SAR) imagery as 
additional information for crop phenology monitoring. Since SAR 
backscatter is significantly related to the vegetation biomass, thus it is 
sensitive to vegetation structure and ground conditions which also 
correlated with crop phenological indicators (McNairn and Brisco, 
2004). The recent freely accessible Sentinel-1 (S1) provides both high 
revisit frequency and fine-scale spatial resolution imagery, which boosts 
the research of dynamic agricultural monitoring with SAR time-series 
data, such as crop type mapping (Ajadi et al., 2021; Inglada et al., 
2016). The integrated backscatter signal in S1 imagery is the combina
tion of the backscatter directly reflected from the canopy, the ground 
backscatter attenuated by the canopy layer, and the vegetation-ground 
interaction induced backscatters (Ulaby, 1982). These three scattering 
components are related to vegetation structure, water content, the 

physical properties of the surface (such as soil moisture, surface 
roughness, and terrain topography) (Ferrazzoli et al., 1992), respec
tively. In the case of crop monitoring, the relative importance of these 
three scattering components depends on the phenological stages. To be 
specific, the backscattering from the ground dominates at the early and 
late crop phenology stages, and the significance of vegetation back
scatter varies during crop development. Based on the evolving charac
teristics of backscatter variation, S1 has been used to detect crop 
phenology stages. In this scope, intensive studies have focused on fusing 
optical and SAR data to monitor crop phenology. Veloso et al. (2017) 
show the potential of using S1 data in crop growth monitoring and 
verified the temporal correlation between S1 and S2 by a thorough 
analysis of VV and VH, CR, and NDVI temporal profile. Although this 
study highlighted the correlation between S1 and S2 in the temporal 
domain, the question of integrating SAR and optical data to predict crop 
phenology stages remains unsolved. Stendardi et al. (2019) analyzed the 
correlation of S1 VH backscatter with respect to S2 NDVI in alpine 
meadows area and compared the retrieved LSP parameters extracted 
from both sources. Jin et al. (2015) focus on the joint utilization of 
vegetation indices derived from the Huanjing-1A/B optical satellite and 
polarimetric indicators derived from RADARSAT-2 to estimate the LAI 
and biomass of winter wheat. The highest correlations can be found 
when jointly utilizing the optical and SAR data. Mercier et al. (2020) 
evaluate the potential S1 and S2 data to retrieve wheat and rapeseed 
phenological stages with a classification approach over a limited set of 
fields in northern France. The study reveals that the joint use of S1 and 
S2 extracted features improved the accuracy in identifying crop 
phenology compared with the single utilization of S2 data. Meanwhile, 
Harfenmeister et al. (2021) also proven that correlation between dual- 
polarimetric parameters and crop biophysical parameters can be 
formulated. In general, most studies aim to stack SAR and optical data 
for crop phenology identification directly. Although the overall corre
lation of S1 and S2 time-series features in crop growth trend and turning 
point can be recognized, still, the extracted features (such as VV, NDVI) 
demonstrated a weak correlation in the temporal domain. In other 
words, instead of the simple linear correlations, the SAR-optical time- 
series share a complex non-linear response on crop phenology in the 
temporal domain. Thus, the direct feature stacking failed to explore the 
non-linear complementary relationship between the two data (Ienco 
et al., 2019). The precise formulation of such a non-linear relationship is 
becoming the bottleneck of SAR-optical satellite data utilization and 
crop phenology tracking. 

Over the past few years, deep learning models have achieved sig
nificant progress in a variety of remote sensing tasks. Among them, the 
most commonly used deep learning models are Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), which can be 
applied to extract spatial and temporal representative features from 
satellite imagery, respectively (Huang et al., 2017; Mou et al., 2018; 
Zhao et al., 2016). Meanwhile, several deep learning methods have been 
proposed to establish the non-linear relationships between multi-source 
satellite data fusion. For example, Shao et al. (2019) developed an 
extended super-resolution convolutional neural network (ESRCNN) that 
integrates the deep spatial features of Landsat-8 and S2 imagery to 
improve image quality. Although CNNs are efficient in extracting robust 
spatial features, it also requires accurate extraction of contextual fea
tures in the temporal dimension for the task of phenological parameter 
retrieval. In contrast, RNN is more suitable for temporal feature 
extraction, and it has been proven (Lyu et al., 2016; Rußwurm and 
Korner, 2017) effectively change point identification with respect to 
remote sensing sequence imagery. Nevertheless, crop phenological 
patterns often present with long-range correlations with a similar trend 
can be observed from both SAR and optical time-series data. But RNNs 
are usually with weak ability in long-range feature formulation. 
Recently, the transformer demonstrates its superiority in the long-range 
contextual feature capturing with the help of a multi-head attention 
mechanism (Dosovitskiy et al., 2020). Compared with the conventional 
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RNNs, it can process the whole sequence data in parallel and focus on 
long-range dependencies of critical information for sequential pattern 
identification (Vaswani et al., 2017). This could be a promising solution 
for crop phenology identification by formulating SAR and optical long- 
range contextual dependencies. 

Still, the discrepancies between satellite and ground observations 
remain unsolved. Currently, most crop phenology studies focus solely on 
temporal feature formulation (Zeng et al., 2020), while neglecting the 
importance of spatial features. Moreover, there are still significant dif
ferences between satellite observations and ground cameras (i.e., the 
mismatch between satellite and ground observations) (Tian et al., 2021). 
To be specific, the accurate phenological information acquired by digital 
cameras represent a certain interest of regions (e.g., 50-100 m) in a 
specific direction, while individual pixel of S2 or S1 only covers a small 
area (e.g., 10 m*10 m) which inevitably reduces the consistency be
tween satellite and ground observations. The integration of crop features 
from both the spatial and temporal dimensions is also needed. 

The purpose of this research is to integrate optical and SAR data to 
improve the accuracy of crop phenological parameter extraction. Spe
cifically, we combine SAR and optical satellite observations to create 
spatial-aware deep learning models for crop phenology identifying with 
the help of ground observations. To serve this purpose, we first extract 
multi-source satellite images on small areas around the ground sites (e.g, 
PhenoCam) to capture the growth information on the crop that is 
consistent with the camera observation range. Then, the spatial- 

temporal aware deep learning-based crop phenology model (Deep- 
CroP) is trained to extract crop spatial-temporal evolving features with 
ground phenological labels acquired by PhenoCam. Finally, the timing 
of phenological changes is extracted from the long time-series features 
over a large-scale area with a previous well-trained deep learning model. 
Therefore, this paper offers a new approach to combine the advantages 
of multi-source satellites and ground observations for crop phenological 
retrieval, which is potentially valuable for future phenology studies. In 
general, the contributions of this work are:  

(1) it explores a new crop phenology tracking mechanism by 
combining the advantages of optical and SAR time-series.  

(2) it proposes an effective crop phenological parameter extraction 
strategy with spatial-aware deep features and long-range time- 
series dependency. 

The paper is organized as follows: Section 2 starts with the intro
duction of study areas and data collection for both PhenoCam time- 
series and satellite time-series. Section 3 presents the proposed Deep
CroP model. Then, Section 4 analyzes the accuracies on phenology 
retrieval. Limitations of the model are discussed in Section 5. And, the 
conclusion is illustrated in Section 6. 

Fig. 1. Illustration of PhenoCam sites and the selected study areas. (b) TA1 S2 satellite image dated on 2018/06/24 with true-color composite, and (c) TA2 satellite 
image dated on 2018/10/18 with true-color composite. 
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2. Study area and data 

2.1. Study areas 

The first test area (TA1) is situated in an agricultural district 
stretching over Solano and Yolo counties of California, Northern Cali
fornia, around 38◦N and 121◦30′W, covering a region about 40 km × 10 
km, as shown in Fig. 1 (left). The area has a Mediterranean climate with 
dry, hot summers and wet, cool winters. This region has plain terrain, 
and it is one of the most productive agricultural areas with a complex 
agricultural system in the United States. The main crop types for this 
area include corn, rice, winter wheat, and tomatoes with significant 
phenology variations. Annual precipitation of about 750 mm, concen
trated in the spring and winter seasons. 

The second test area (TA2) is also located in the agricultural area of 
northeast Arkansas, around 35◦55′ N and 90◦W, covering an area of 
about 40 km × 10 km, as shown in Fig. 1 (right). Arkansas has a humid 
subtropical climate, generally with humid summers and mild, slightly 
drier winters. In this area, most vegetations reach full bloom by early 
April. The area is one of the largest sources for rice production as well as 
soybeans, corn, cotton, wheat, and grain sorghum. 

2.2. Data collection and preparation 

2.2.1. In-situ phenology observation sites 
The technique of near-surface remote sensing for vegetation 

phenology monitoring has advanced greatly over the past decade. In this 
context, the PhenoCam Network has deployed more than 500 web- 
enabled cameras across the globe (Brown et al., 2016). The PhenoCam 
repeatedly acquires photography to capture color information and 
measure variations in vegetation phenology across diverse ecosystems. 

The indicator GCC_c (i.e., the GCC data calculated by the camera 
photography) was acquired by calculating the ratio of the green channel 
digital numbers to the total brightness in RGB camera images as 
described in Richardson et al. (2018). Due to the constant degradation of 
PhenoCams, the quality of GCC_c time-series signal varies (e.g., without 
significant seasonal patterns, large temporal gaps, and limited available 
observations) and thus requires intensive manual screening (Liu and 
Wu, 2020). Given such conditions, we selected 60 PhenoCam agricul
tural sites to carry out our studies (Fig. 2). Among them, 5 test sites were 
selected to quantitatively analyze the performance of the model. And, 
Fig. 3 provides representative photos captured by the PhenoCam 
camera. 

2.2.2. Optical-SAR satellite time-series 
The available Sentinel-1 satellite images in GRD mode and Sentinel-2 

satellite images were obtained from Google Earth Engine (GEE) 

Fig. 2. The illustration of 60 PhenoCam sites with crop phenology observations.  

Fig. 3. Images acquired by the PhenoCam. The red polygon indicates the area of interest used for the extraction of the GCC series. (a) cafcookwestlar01 site, (b) 
mead2 site, (c)mead3 site, (d) NEOND06DP100042 site, (e)ufs6 site. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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platform. The processing steps of Sentinel-1 include: (1) thermal noise 
removal, (2) applying orbit file, (3) radiometrically calibrated to 
sigma0, (4) geocoding, and (5) backscatter images (δ) transform to the 
logarithmic dB scale. And we calculated NDVI and GCC_s (subscript s 
means satellite) with the spectral bands 2, 3, 4, and 8 of Sentinel-2 
imagery, as shown in Table 1. 

Fig. 4a. and Fig. 4b. demonstrate the temporal distribution of 
Sentinel-1 and Sentinel-2 images collected in the two test areas. In total, 
we downloaded all available (partially) cloud-free Sentinel-2 imagery 
over two test areas from Jan. 2018 to Jan. 2019, with 42 and 32 scenes, 
respectively. And 28 scenes of Sentinel-1A images from Jan. 2018 to 
Jan. 2019 were collected for both TA1 and TA2. 

In order to build the relationship between in-situ- and satellite- 
derived LSP, we also downloaded corresponding S2 and S1 data for all 
60-study sites. As we mentioned, the PhenoCam is designed to observe 
the local region of interest (ROI) given the orientation direction, and the 
spatial coverage of each ROI is larger than individual pixels in high- 
resolution imagery of the satellite. To tackle the mismatch between 
the ROI coverage (i.e., improve the correlation of PhenoCam GCC_c and 
satellite VI time-series curves), we segmented a fixed-size (18×18) 
square patch from S1 and S2 imagery where the center pixel is the 
location of the local camera site, as shown in Fig. 5. 

2.3. SOS/EOS extraction 

Currently, a number of LSP extraction methods were proposed to 
identify the timing of SOS and EOS, which could be broadly divided into 
two categories: the inflection point category and the threshold category 
(Beck et al., 2006; Meroni et al., 2021; White et al., 2009; Zhang et al., 
2003). Among them, the inflection point category uses a fixed definition 
to determine SOS and EOS timing, and the threshold category select a 
threshold of seasonal amplitude to define the SOS and EOS timing, and 

the latter has been widely used in studies of vegetation phenology 
tracking. In this study, a local polynomial function (i.e., adaptive 
Savitzky-Golay) is introduced for time-series curve fitting with the 
TIMESAT (Jönsson and Eklundh, 2004) software package to reconstruct 
the continuous seasonal trajectories from irregular and noisy GCC_c time 
series. To construct the reference labels of PhenoCam time-series 
induced SOS/EOS, we chose 20% and 50% fractions of seasonal 
amplitude to derive SOS and EOS, respectively, as shown in Fig. 6. 

3. Methodology 

The overall framework of the proposed crop phenology retrieval 
scheme is shown in Fig. 7. For the complete phenology detection, there 
are four steps before crop phenological parameters can be determined, 
that are, 1) Ground and optical-SAR satellite data acquiring; 2) Time- 
series index calculation, including NDVI, GCC_s, VV, VH, GCC_c; 3) 
Training spatial-aware deep learning (Deep-CroP) model for satellite 
phenology extraction with the reference phenological parameters (such 
as SOS, EOS) extracted from PhenoCam. Finally, the fine-scale crop 
phenology tracking and mapping with the well-trained Deep-CroP 
model. In addition, we quantitatively validate the Deep-CroP model 
derived EOS and SOS timing to PhenoCam observations over different 
test sites. 

Fig. 8 shows a visual representation of the proposed Deep-Crop ar
chitecture. The model takes S1 and S2 satellite images as input that to be 
fed into two streams. Then, the proposed architecture extracts feature 
from both SAR and optical time-series imagery with separate streams 
and spatio-temporal features concatenated by an elaborated multi-level 
fusion module. Finally, phenological parameters are identified with the 
help of multi-head attention modular. In the following, we will provide a 
detailed description of the spatial-aware time-series feature extraction 
and multi-modular deep feature fusion. 

3.1. Spatial-aware optical-SAR time-series feature fusion 

In this scope, we designed the integrated model based on two-stream 
architecture to extract features from SAR and optical images with 
different branches. Specifically, each branch contains a three convolu
tional layer CNN framework with the input image sizes of 18 × 18. The 
first Conv2D layer has 32 features, the second Conv2D layer has 64 

Table 1 
Vegetation indices calculated from Sentinel-2 images. B=Blue, G = Green, R =
Red, NIR = Near-infrared.  

Index Equation S2 bands used 

NDVI NDVI = (NIR − R)/(NIR + R) NDVI = (B7 − B4)/(B7 + B4) 
GCC_s GCC_s = G/(B + G + R) GCC_s = B3/(B2 + B3 + B4)  

Fig. 4. The temporal distribution of Sentinel 1 and 2 over the TA1 (a) and TA2(b).  
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features with a max-pooling operation, and the last Conv2D layer con
tains 128 features, where both Conv2D layers share the filter sizes of 5 ×
5. In the convolutional phase, each convolution operation is delivered to 
a nonlinear activation function, such as the rectified linear activation 
function (ReLU). This phase is as follows: 

y(j) = ReLU

(

bisa(j) +
∑

i
W(i)(j)⊛x(i)

)

, (1)  

where x(i) and y(j) are the input feature map and output feature map of 
the i-th and j-th convolution layers, and j = i + 1, respectively. W and 
bisa are parameters learned by the neural network model, and ⊛ is the 
convolution operator. In the pooling phase, a pooling function 

Fig. 5. The illustration of the spatial-patches from satellite time-series. (a) NDVI; (b) GCC_s; (c) VH; (d) VV images around PhenoCam location.  

Fig. 6. Crop phenology (i.e., SOS/EOS) timing point derived from GCC_c time-series on 6 representative sites.  

W. Zhao et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 276 (2022) 113046

7

configured is adopted to perform local averaging, and sub-sampling, 
contribute to local translation invariance, and reducing the number of 
parameters and computational complexity of the model, as follows: 

yp,q = max
m,n∈{− R,⋯,R}

(
xp+m,q+n

)
(2)  

where yp, q is the neuron value at (p,q) in the output layer, and m, n 
indicate the pixel location around the center neuron, and the window 
half-length as R. 

Convolution operation has a strong non-linear fitting capacity, still it 
cannot maintain the integrity of its multi-source input data (Huang 
et al., 2017). Therefore, the final output feature of two-streams may lose 
some complementary information between the two data. Based on this, 
we construct a fusion block in the process of feature extraction of two- 
stream. The fusion block can maintain the feature maps obtained at 
each CNN branch of the two-stream framework and concatenate the 
output to an integrated feature vector. The concatenation result of two- 
streams is a feature sequence that summarizes the extracted feature from 

optical and SAR time-series imagery, including Fs1 ∈ {y1
S1,y2

S1,⋯,yT1
S1} 

and Fs2 ∈ {y1
S2,y2

S2,⋯,yT2
S2} where single output feature has the dimension 

of Fs1 ∈ ℝT1, d1,H, W, for each y has the dimension of Conv2D output 
feature d1, and yT1

S1 is used to indicate the output feature map of the last 
convolution layer in T1-th temporal step of S1 branch. Also, for the S2 
branch, yT2

S2 has the dimension of d2 × H × W in terms of Conv2D output 
features. Meanwhile, the fusion operator accepts the mid-level features 
from both S1 and S2 CNN branches and generates Ffusion features. 

Ffusion = sigmoid
(
f conv

(
concat

[
Fmids1 ,Fmids2

] ) )
, (3) 

Where concat is the concatenation operation that stacks deep features 
from multi-sources. Fs1

mid and Fs2
mid are the mid-level features acquired by 

CNN branches. fconv represents the 1D-CNN framework that deeply in
tegrates mid-level features. Lastly, we concatenate all the extracted 
feature sequences (including Fs1, Fs2, Ffusion) in the temporal and spatial 
dimensions, as X ∈ℝT1+2, d1×(H×W)+d2, shown in Fig. 8 (a). In this way, for 
multi-source satellite imagery, the seasonal variation information in 
both the temporal and spatial domain can be efficiently represented. 

Fig. 7. The overall framework of the calibration process. (1) PhenoCam time-series SOS/EOS labeling; (2) Satellite time-series imagery acquiring with spatial patch 
extraction; (3) DeepCroP model training and crop phenology mapping. 
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3.2. Multi-modular deep feature for phenology identification 

To capture the phenology changes for crop fields, the transformer 
that exclusively relies on the self-attention mechanism is able to capture 
global dependencies has become the model of choice in natural language 
processing (NLP). Therefore, for multi-source phenological feature 
extraction, we apply transformer encoder, including Multi-Head Self- 
Attention module (MHSA), Feed-forward module (FFN), and Multi- 
Layer Perceptron (MLP) to perform feature formulation and phenolog
ical parameter extraction. Initially, the input size of MHSA is 30 with 30 
multi-heads. Then, FFN with 900 units is designed to compact the multi- 
branch features. Lastly, a 4-layer MLP with the configuration of 10,000, 
5000, 1000, and 500 units is applied to the final phenological parameter 

estimation. Suppose the combined feature x = [Fs1,Fs2,Ffusion] in 
sequence is input into the encoder of the transformer. The overall pro
cess can be summarized as: 

x′l = MHSA(LN(xl− 1)+ xl− 1 ), (4)  

xl = LN
(
FFN

(
x
′

l

)
+ x

′

l , (5)  

y = LN(xL), (6)  

MHSA = Concat(head1,⋯, headh)W0, (7)  

head1 = softmax
(
QKT

/ ̅̅̅̅̅
dk

√ )
V, (8) 

Fig. 8. The flowchart of the Deep-CroP model. (a) Two branches are designated to extract spatial-aware time-series feature and fuse multi-modular deep feature; (b) 
Transformer encoder with SOS/EOS prediction. 

Table 2 
The Mean Absolute Error (MAE) for the satellite-based SOS/EOS timing based on NDVI and Deep-CroP model derived crop phenological parameters compared to the 
PhenoCam observations at 5 test sites.  

Site NDVI Deep-CroP 

SOS20 EOS20 SOS50 EOS50 SOS20 EOS20 SOS50 EOS50 

cafcookwestltar01 66.3 1.7 16.3 8.3 11.0 5.6 8.3 11.0 
mead2 33.3 9.7 14.3 17.0 5.0 3.3 10.0 7.7 
mead3 37.0 8.8 15.3 17.5 4.0 7.5 10.0 2.0 
NEOND06DP100042 35.0 3.3 15.0 23.3 6.7 15.0 15.0 8.3 
usof6 47.5 30.0 25.0 25.0 12.5 2.0 10.0 5.0  
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Where xl− 1, xl are the input and output of the l-th layers, respectively. 
xl

′ is the output of the l-th multi-head self-attention sub-layers, and y 
represent the output of the transformer encoder, l ∈ (1,L). 

P(Y = i|y) =
eyi

1 + eyi
, (9) 

With the deep feature descriptor y, crop phenological stages can be 
further assigned using the logistic regression. The final probability P 
denotes the potential location of crop phenological stages at i-th tem
poral point. In this way, crop phenological parameters can be identified. 

Fig. 9. Temporal profiles of NDVI, GCC_c, and the (a)SOS20/EOS20, (b)SOS50/EOS50 date derived from the fitted curves with TIMESAT at Camera_Site1.  

Fig. 10. Temporal profiles of NDVI, GCC_c, VV, and VH. The (a)SOS20/EOS20, (b)SOS50/EOS50 dates derived from the fitted curves with TIMESAT and Deep-CroP 
model at Camera_Site1. 
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Table 3 
The discrepancies between phenological parameters retrieved from the satellite NDVI-derived, Deep-CroP predictions with PhenoCam observations at Camera_Site1. 
Best results are shown in bold.*The crop type information comes from the NASS Cropland Data Layer.  

Year Crop type SOS20 SOS50 EOS20 EOS50 

NDVI Deep-CroP NDVI Deep-CroP NDVI Deep-CroP NDVI Deep-CroP 

2018 Dry beans 17 ¡5 7 ¡3 − 2 − 2 5 − 8 
2019 Winter wheat 157 25 27 22 0 − 10 10 − 18 
2020 Spring wheat 25 3 15 0 ¡3 − 5 10 ¡7  

Fig. 11. Temporal profiles of NDVI, GCC_c, VV, and VH. The EOS/SOS date derived from the curve fitting with TIMESAT and Deep-CroP model at Camera_Site2.  
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4. Experiments and results 

4.1. Experiments designs 

In this section, the detailed experiment design is explained. For the 
two-stream Conv2D framework, a 3-layer CNN framework was trained 
separately based on SAR and optical time series data. The sizes of input 
samples were set to 30 × 18 × 18 × 2 and 10 × 18 × 18 × 2 for Sentinel- 
2 and Sentinel-1 branches, respectively. In order to get a better grasp of 
the complementary information of the two data, the output of each 
convolution layer for the two branches was combined and input into the 
fusion block. Then, the output of the two CNN branches, the output of 

the fusion block, and the time-series signal of the site location were 
concatenated with global and local awareness. Finally, the resulting 
feature was fed into the transformer to detect the crop phenological 
parameters in the temporal domain. 

To generate crop phenological reference labels, we applied the time- 
series curve fitting technique to extract phenology timing points in the 
PhenoCam time-series with the TIMESAT software. To be specific, we set 
the threshold to 20% and 50% for phenology parameter extraction 
under different standards. For the Deep-CroP-based phenology tracking, 
we set the reference label as the nearest date of available satellite im
agery (i.e., cloud-free optical image or SAR image), due to the limited 
temporal resolution of satellite imagery. Once the reference label was 

Table 4 
The discrepancies between phenological parameters retrieved from satellite NDVI-derived, Deep-CroP predictions with PhenoCam observations at Camera_Site2. Best 
results are shown in bold. *The crop type information comes from the NASS Cropland Data Layer.  

Year Crop type SOS20 SOS50 EOS20 EOS50 

NDVI Deep-CroP NDVI Deep-CroP NDVI Deep-CroP NDVI Deep-CroP 

2017 Corn / / / / 0 0 25 0 
2018 Soybeans 35 ¡10 18 ¡15 2 5 27 ¡3 
2019 Corn 38 ¡2 15 ¡8 − 18 ¡5 10 ¡5 
2020 Soybeans 38 0 13 ¡7 ¡15 − 20 8 0  

Fig. 12. Crop phenology mapping on (a)SOS20, (b)EOS20, (c)SOS50, and (d)EOS50 from Sentinel-2 NDVI time-series (based on the fitted curves with TIMESAT) for 
the TA1. 
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constructed, we can train and validate the Deep-CroP model efficiently. 
During the training stage, the learning rate was set to 0.0001, and the 
mini-batch size was set to 50. The spatial size of extracted image patches 
is fixed to 18. And the temporal window widths of optical and SAR were 
set into 30 and 10, respectively. For the competitive NDVI-based 
phenology calculation (without nearest date modification), we also 
utilized TIMESAT software to predict SOS/EOS from optical satellite 
time-series data with 20% and 50% threshold settings. 

4.2. Phenological retrievals from camera vs. satellite 

To evaluate the consistency of phenological parameters retrieved 
with satellites by the NDVI-based method and the proposed multi-source 
Deep-CroP model with standard ground site observations (PhenoCam). 
We calculated the Mean Absolute Error (MAE) for each crop pheno
logical parameter compared to the PhenoCam phenology baselines. In 
this experimental design, we aimed to demonstrate the phenology 
timing consistency between the PhenoCam observations and the Deep- 
CroP model predictions compared to the conventional satellite-based 
models. To serve this purpose, we analyzed five test stations in terms 
of quantitative evaluation on crop phenological parameters, as shown in 
Table 2. Based on the PhenoCam-derived crop phenological SOS/EOS 
parameters, we compared them with the NDVI and Deep-CroP-derived 
results. For the conventional NDVI-based phenology identification, 
under the threshold of 20%, large discrepancies can be found in SOS 

with a minimum absolute value of 33.3 for five tested sites. However, 
smaller differences can be observed in EOS20 for the first four sites, 
while significant variations worsen the prediction results. Similarly, for 
the threshold of 50%, both SOS and EOS witnessed large discrepancies 
compared to PhenoCam phenological parameters. For the Deep-CroP 
model trained with PhenoCam phenology labels, under the threshold 
of 20, the predicted SOS and EOS are much more accurate compared to 
the NDVI-based method with MAE values ranging from 4 to 15. Also, 
given the reference labels with threshold 50, the Deep-CroP model 
predicts crop phenological parameters with similar accuracies for five 
test sites. To validate the spatial consistency of the Deep-CroP model, 
both the mead2 and mead3 share similar performances and are adjacent 
PhenoCam sites. In the following study, we selected two representative 
sites, cafcookwestltar01, and mead3 as Camera_site1 and Camera_site2 
for the detailed analysis on phenological parameter extraction. 

4.2.1. Camera_Site1 
Temporal profiles of PhenoCam-derived GCC_c (GCC with cameras) 

and optical satellite-derived NDVI time-series curves are displayed in 
Fig. 9a. Together with the extracted phenological parameters (i.e., SOS 
and EOS) for GCC_c and NDVI are plotted against each other. The GCC_c 
is displayed with the secondary y-axis as it has smaller values than NDVI. 

The Fig. 9. shows that the GCC_c and NDVI time-series data both 
demonstrated distinct seasonality and exhibit similar temporal 
behavior. It is worth noting that GCC_c series generally display an earlier 

Fig. 13. Crop phenology mapping on (a)SOS20, (b)EOS20, (c)SOS50, and (d)EOS50 from Sentinel-1 and Sentinel-2 series with Deep-CroP for the TA1.  
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and faster decrease in greenness than the satellite NDVI time-series. One 
possible reason is that non-photosynthetic elements dominate (such as 
flowers, grass stems, and seed heads) the camera view but are less 
sensitive to the satellite observations (e.g., vertical elongation with 
lower leaf indexes)(Vrieling et al., 2018). Therefore, it is easy to find 
that the EOS retrieved from GCC_c precedes that retrieved from the 
NDVI, either with the threshold of 20% or 50%. For SOS, NDVI-based 
predictions are generally earlier than GCC_c-based retrievals, around 
10 days. Specifically, in 2019, we found that GCC_c-based SOS20 is 
significantly earlier than NDVI based retrieval almost 66 days prior. As 
the GCC_c-based phenology observation, the winter wheat enters the 
growing season at the end of 2018, which is difficult to detect when 
using optical satellite data alone. 

Fig. 10 shows Deep-CroP derived crop growth parameters in terms of 
SOS and EOS. Compared to the NDVI-derived phenological parameters, 
it is highly consistent with the phenological timing derived by the 
PhenoCam within 10 days of discrepancies. Therefore, it indicates that 
the information of S2 and S1 are efficiently combined by the Deep-CroP 
model, and the timing of the key growth stages is correctly determined. 
According to Cropland Data Layer (CDL), this site planted dry beans, 
winter wheat, and spring wheat in 2018, 2019, and 2020, respectively. 
However, the Deep-CroP model identified the beginning of crop growth 
for winter wheat (i.e., SOS20) in late 2018, but it was significantly later 
than the camera-based approach, as shown in Table 3. This is probably 
because the initial crop growth is quite sparse, with a much shorter plant 
height than the usual year. Thus, the crop growth has less impact on the 
SAR backscatter variation, which makes it difficult for the Deep-CroP 
model to use additional information for EOS timing prediction. On 
average, the optical-SAR combined framework may be earlier than 
PhenoCam observations, which is possibly due to strong response to 
crop structural changes of SAR time-series. 

4.2.2. Camera_Site2 
Fig. 11 illustrates the vegetation index trajectories of crop 

development at the mead3 site. It can be observed that the temporal 
profiles of GCC_c and NDVI are highly consistent with each other, which 
demonstrated the growing and senescence period for crops. As a result, 
the derived crop phenology (including EOS and SOS) is very close. 
Among them, PhenoCam retrievals were earlier than satellite retrievals 
for EOS50 in 2017 (25 days) and 2018 (27 days), as shown in Table 4. It 
can be seen that there are certain differences in their temporal profiles 
over these two periods. To be specific, GCC responds quickly to crop 
harvest with a sudden drop in the curve, while NDVI remains stable and 
begins to decline after a curve fitting window. 

Complementary, the key crop phenological parameters derived from 
S1 and S2 data are shown in Fig. 12. Compared with the phenological 
timing derived from S2 alone, the Deep-CroP model combined the merits 
of S1 and S2 data to obtain phenological parameters that are close to 
GCC_c retrieval. For the EOS50 retrieved in 2017 and 2018, we found 
that phenology differences are greatly corrected by adding S1 data with 
the Deep-Crop model, and a more accurate timing was obtained (0 days 
and − 5 days, respectively). This indicates the ability of the S1 satellite 
with the C band is able to penetrate crops and acquire structural infor
mation. However, it can be observed that the discrepancy in EOS20 
retrieved by the proposed model in 2020 is increased compared to the 
NDVI-based method. As Veloso et al. (2017) mentioned, the reason for 
this phenomenon is that the height of soybean and the number of soy
bean stems per surface unit are low, which resulted in a significant 
surface scattering from the soil and produced a poor attenuation of the 
backscattered signal. This makes the Deep-CroP model more sensitive to 
crop senescence and harvest, leading to the early determination of EOS. 

4.3. Mapping large-scale crop phenology on EOS and SOS 

Fig. 12 and Fig. 13 illustrate the results of applying the conventional 
phenological retrieval approach with optical S2 NDVI time-series for the 
test areas TA1 and TA2. Due to the limited seasonal variations on alfalfa, 
there are 50% of the total pixels with detected SOS and EOS. While, for 

Fig. 14. Difference (in days) between phenology stages derived from curve fitting (Sentinel-2 NDVI series) and Deep-CroP (Sentinel-2 and Sentinel-1 series) for (a) 
SOS20, (b)EOS20, (c)SOS50, (d)EOS50, (e)2018 CDL data in TA1. Negative values mean that the Deep-CroP-derived resulting in earlier dates than the NDVI- 
based method. 
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rice and corn-dominated area TA2, there are 80% of the available pixels 
are detected with SOS and EOS predictions. 

Specifically, for the TA1, there is a large spatial variability in both 
within and between crop fields. In general, most pixels reach SOS20 
before the end of April, and the senescence process begins in October. 
However, for the threshold of 50% setting, the SOS50 starts in June, and 
the EOS50 steps in September. The average dates for SOS in TA1 grad
ually increase from the high latitude to the low latitude. In contrast, the 
average dates for EOS are slowly decreased from higher latitudes to 
lower latitudes. Cornfields have relative uniform dates for SOS and EOS, 
due to the ripening and harvest in early October and green-up in mid- 
May. As a consequence, cornfields are clearly visible in the upper left 
corner of Fig. 13. 

Deep-CroP model was also applied in crop phenology mapping over 
the TA1 and TA2, and the phenological retrieval results were shown in 
Fig. 17 and Fig. 20. From Fig. 13, it can be seen that the Deep-CroP 
model successfully retrieves more available pixels (over 75% for both 
SOS and EOS) than the NDVI-based curve fitting method. For the rest of 
the unidentified pixels, there are mainly non-agricultural land (such as 
water) and the confusing alfalfa. In addition, Deep-CroP derived EOS is 
earlier than that of the NDVI-based method, while SOS timing is similar. 
This proves that the Deep-CroP derived results to be consistent with 
GCC_c (i.e., the EOS timing of GCC_c retrieval is usually earlier than the 
NDVI-based retrieval). 

The discrepancies between NDVI and Deep-CroP (combined with S1 
and S2 data) derived phenology retrievals in the TA 1 are shown in 
Fig. 14. The difference maps confirm earlier findings that SOS, EOS is a 
few days earlier for Deep-CroP retrievals. From the discrepancy map of 
SOS20 and SOS50, it can be seen that the date difference between NDVI 
and Deep-CroP method decreased from high latitude to low latitude 
(The differences range from 10 to 30) for the same type of crop (e.g., 
corn). Specifically, the difference is near a month at high latitudes, while 
at low latitudes, it is only within 10 days. In contrast, the differences in 
EOS20 and EOS50 increase with higher latitudes. It is worth mentioning 
that the Deep-CroP model is able to predict fine-scale phenological maps 
over agricultural areas, regardless of various crop types. 

Compared with TA1, the study area of TA2 has fewer crop types with 
limited spatial variations in SOS and EOS. On average, for most crop 
fields, the SOS20 starts on 5th June, EOS20 begins with 28th September, 
also SOS50, EOS50 on 10th June on and 13th September, respectively. 
As can be seen from Fig. 19, the timing of SOS crops at high-altitude is 
earlier than that of low latitude crops, while EOS with the opposite 
phenomenon. 

As for the TA2, the results of phenological retrieval based on Deep- 
CroP are significantly different from the NDVI-based curve fitting 
method, which can be seen in Figs. 15 and 16. Among them, the NDVI- 
based SOS20 begins on 16 May, and SOS50 starts on 5 June, while 
EOS20 and EOS50 are initials in September. In contrast, for Deep-CroP- 

Fig. 15. Crop phenology mapping on (a)SOS20, (b)EOS20, (c)SOS50, and (d)EOS50 from Sentinel-2 NDVI time-series (based on the fitted curves with TIMESAT) for 
the TA2. 
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based retrievals, the timing of SOS20 ahead of NDVIs-based retrievals by 
almost 20 days. 

Fig. 17 shows the differences between NDVI-based and Deep-CroP 
phenology retrievals in TA2. It can be seen that the differences in 
phenology date (the timing of SOS and EOS) between the two methods 
are mainly concentrated at high latitudes with − 10 to − 30 days. While 
the differences at low latitudes are generally within 10 days. The 
exception is that the date differences of SOS20 range from-10 to 30 in 
both high and low dimensions. From the CDL data, it is obvious that rice 
is the main crop around the high latitudes of the TA2, while soybean is 
the dominant crop in other regions, which may trigger unevenly 
distributed variations. 

5. Discussion 

5.1. Agreement between GCC_c- and Deep-CroP derived phenology 

The feasibility of phenological retrieval with satellite time-series and 
PhenoCam observations has been proved with previous experimental 
results. However, due to the differences between PhenoCam and satel
lites in terms of viewing angle and range, there are certain differences 
between these two data sets (Vrieling et al., 2018). Therefore, the GCC 
calculated by the camera to be more sensitive to biomass and able to 
stabilize earlier in the decay phase, as compared to the satellite-based 
NDVI time-series filtering curves. The discrepancies of NDVI-based 

retrievals are on average within 17 days with in-situ GCC_c retrievals on 
SOS50, and EOS50, while early green-up (SOS20) and senescence 
(EOS20) had a mean difference value of 11.0 and 45.0 days, respec
tively. Two factors weigh heavily for inaccurate crop phenology tracking 
of traditional NDVI-based method, 1) limited observation frequency; 2) 
curve fitting introduces additional uncertainty, as shown in Fig. 18. 

Despite differences between NDVI and PhenoCam-based phenolog
ical retrievals, we introduced S1 SAR data to add additional descriptions 
of crop information. The experiment results show that the accurate 
retrieval of crop phenology at fine spatial resolution is possible by 
combining Sentinel-2 and S1 imagery without curve fitting, as shown in 
Fig. 19. The detected phenology timing is more consistent with the 
ground observation network, thanks to the capture of additional infor
mation about physiology from S2 and geometry from S1. This obser
vation agrees with Mercier et al. (2020), who found that by combining 
the S1 and S2 series data, the phenological stages of some crops can be 
more accurately identified. Nonetheless, there are still some errors, 
which are related to contradictory crop ripening and decay stages on 
various crop types. For most cases, the GCC_c-derived EOS timing is 
earlier than that model-derived, because the decline of GCC_c stabilizes 
earlier in the decay phase than that of satellite signals. However, the 
GCC_c-derived EOS timing is later than satellite observations occasion
ally, the Deep-CroP model will mistakenly judge crop senescence in 
advance, resulting in the earlier detection. This is partially attributed to 
the backscatter variations of the S1 time series during crop ripening and 

Fig. 16. Crop phenology mapping on (a)SOS20, (b)EOS20, (c)SOS50, and (d)EOS50 from Sentinel-1 and Sentinel-2 time-series with Deep-CroP for the TA2.  
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decay stages which confuse the Deep-CroP model inaccurate phenology 
identification. 

5.2. Contribution of opitcal-SAR multi-modular scheme 

In this study, a spatial-aware deep learning method was used to 
combine SAR and optical data for phenological retrieval. This reduces 
the differences in the phenological stages observed by the ground sites 
and satellites, making it possible to establish a physical co-relation be
tween ground sites and satellite time series over crop areas. Compared to 
the optical-based crop phenology retrieval, the fusion of multi-source 
satellite achieved better consistency with site GCC_c data (as shown 

Fig. 22). This suggests that the additional S1 features provide an 
important contribution to the phenological stages retrieval. However, 
we found that in some cases, the model showed poorer performance than 
the conventional method. In order to further explore the contribution of 
SAR time-series to the Deep-CroP model, we designed additional ex
periments with a different configuration of input data (i.e., the single 
optical data v.s. Optical-SAR data) in this section. For the model with 
single optical data input, we modified the Deep-CroP model to remove 
the branch of SAR data processing, which it was simply denoted as Deep- 
CroP_optic, and the rest setting of the model keeps unchanged. 

Fig. 20 and Fig. 21 demonstrate the differences between Deep-CroP 
and Deep-CroP_optic over the four test sites. It can be found that SAR 

Fig. 17. Difference (in days) between phenology stages derived from curve fitting (Sentinel-2 NDVI series) and Deep-CroP (Sentinel-2 and Sentinel-1 series) for (a) 
SOS20, (b)EOS20, (c)SOS50, (d)EOS50, (e)2018 CDL data in TA2. Negatives mean that the Deep-CroP-derived resulting in earlier dates than NDVI-based method. 

Fig. 18. The Discrepancies of crop phenology stages derived from the traditional curve fitting method (a) and Deep-CroP (b, and c) on SOS20, EOS20. (d) the SOS/ 
EOS prediction with Savitzky-Golay (S-G) NDVI time-series filtering. Compare to the reference label (a), the Deep-CroP is more accurate than curve fitting method. 

W. Zhao et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 276 (2022) 113046

17

information makes an important contribution to the retrieval of EOS20 
and SOS20, which helps the model accurately identify phenological 
stages over different crops. It’s worth noting that the timing of SOS20 
derived from single optical data is later than that of Deep-CroP retrieval 

in the second phenological cycle on site 1. This verified the previous 
assumption that the information provided by SAR data could help the 
model capture abrupt phenological events. In the results of EOS50 and 
SOS50, it is found that SAR can still help the model to identify 

Fig. 19. MAE between GCC_c- and Deep-CroP/NDVI-derived LSP in sites, including cafcookwestlar01, mead3, NEOND06DP100042, and usof6. The bar for each site 
is listed from left to right in the order SOS20, EOS20, SOS50, and EOS50. 

Fig. 20. Comparison of SOS20 and EOS20 derived from GCC_c, Deep-CroP(with SAR-optical fusion), and Deep-CroP _optic (with optical alone)on 4 test sites.  

Fig. 21. Comparison of SOS50 and EOS50 derived from GCC_c, Deep-CroP (with SAR-optical fusion), and Deep-CroP _optic (with optical alone) on 4 test sites.  
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phenological stages, but sometimes it may lead to a slight deviation. 
Also, to validate the impact of Deep-CroP integration architecture, the 
crop phenological parameter extraction with the CNN and transformer 
architecture were conducted, respectively. From Table 5, we can 
conclude that the spatial-aware CNN architecture outperforms the 
transformer architecture in terms of SOS and EOS extraction. The reason 
is mainly that spatial-aware features extract from image patches are 
much more robust than single pixel-values that used in transformer ar
chitecture. Although, the transformer has the ability to find recurrent 
patterns in time-series data, still, the random noises in both spectral- 
backscatter domains result in worse predictions. Therefore, the inte
gration of the CNN and transformer architecture is essential to the 
precise prediction of crop phenological parameters. 

In addition, we note that the performance of the proposed model 
deteriorates, confirming the earlier idea that SAR information may 
confuse crop phenology stages occasionally with complex backscatter 
information. Polarimetric decomposition can discriminate useful crop- 
related components from complex backscatter signals. In this scope, 
polarimetric parameters have proven to be effective in crop biophysical 
condition retrieving. Although, the correlation between polarimetric 
parameters and crop biophysical indicators is generally weak, still, it is 
worth noting that polarimetric parameters in time-series could be 
another breakthrough in future studies (Harfenmeister et al., 2021). 
Moreover, the performance of the Deep-CroP model relies on the 
availability of optical remote sensing, since the training labels are 
matched by finding adjacent observations. 

5.3. Impact of crop types on phenology identification 

For optical satellite data, it combines biophysical parameters 
including canopy cover, biomass amount, and leaf chlorophyll 

concentration, while SAR backscatter is affected by factors related to 
crop biomass, structure, and ground conditions. Additionally, Sentinel-1 
with C-band is a combination of the ground backscatter attenuated by 
the canopy layer and the backscatter from the canopy. Thus, the 
contribution of SAR time-series is not only dependent on the complexity 
of background information, the crop types also significantly impact the 
performance of accurate crop phenology retrieval. 

The differences in crop timing of greening, water content, and 
structure may result in poor temporal consistency even with Sentinel-1 
and Sentinel-2 time-series. For example, NDVI is sensitive to initial 
green leaf development, whereas the height of crops is not significant at 
this time, resulting in the flat curves of the SAR backscatter time series 
signal. This means that the NDVI of some crops responds to crop growth 
earlier than that of the SAR. Still, SAR is beneficial to improve the 
consistency between satellite and camera observations, as past studies 
demonstrated that the EOS timing of NDVI based phenological retrieval 
is earlier than that of PhenoCam in most cases. The reason for this 
phenomenon is that the presence of a non-green top layer will inevitably 
reduce the visibility of green vegetation to the camera in the greening 
stage. The introduction of SAR helps to correct the premature response 
of NDVI. Similarly, at the end of the crop cycle, due to the decrease of 
chlorophyll content and water content, both the NDVI and the SAR are 
characterized by a steady decrease until harvest, as a consequence of the 
decreasing chlorophyll and water content. Combining physiology from 
S2 and additional geometry information from S1, it increases the accu
racy of identifying the crop senescence. However, NDVI decreased 
rapidly during the senescence or harvest of some crops, while SAR 
would still respond to the standing structure of standing green residues 
remaining on the field and then decreased gradually until the green 
residues dried out. Nevertheless, the scattering mechanisms are in 
general much more complex, and experimental observations are needed 
to provide insights into the scattering behavior of each crop type. 

To further dive into this issue, we analyzed the differences between 
the same crops in terms of the phenological retrieval results with Deep- 
CroP and NDVI in TA1 (Fig. 22). We noted that for most crop types, 
Deep-CroP derived EOS20 was earlier than NDVI, which confirmed the 
expected timing differences. In addition, differences in SOS timing are 
related to crop types. For example, for rice, the Deep-CroP derived SOS 
timing is later than that of NDVI, and the average time for corn is similar, 
while for other crops, it is earlier than that of NDVI. 

Fig. 22. Crop phenology (SOS20 and EOS20) variations acquired from curve fitting (based on NDVI) and Deep-CroP model for the TA1 with main crop types. The 
selection of pixels is based on the CDL data, and the pixels that are successfully retrieved by both curve fitting (based on NDVI) and Deep-CroP are selected. 

Table 5 
The Mean Absolute Error (MAE) for the satellite-based SOS/EOS timing based on 
CNN and Transformer model derived crop phenological parameters compared to 
the PhenoCam observations at cafcookwestltar01 test sites.  

Methods SOS20 EOS20 SOS50 EOS50 

CNN 34 6.6 10 13.3 
Transformer 45 9.3 11 10.6 
Deep-CroP 11.0 5.6 8.3 11.0  
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6. Conclusion 

In this work, we proposed the Deep-CroP model to retrieve crop 
phenology parameters providing new opportunities for fine-scale 
phenology research. Aiming to match satellites and ground observa
tions, we developed the spatial-aware mechanism to overcome the 
discrepancy between the viewing angle and range of the two. To be 
specific, we integrate Sentinel SAR and optical time-series data by 
introducing additional vegetation structural information to improve the 
consistency between satellite and ground observations. The results on 
test sites show that the method we proposed can accurately identify crop 
phenology stages and achieve high consistency with GCC_c time-series. 
Then, we applied the Deep-CroP model on two large-scale study sites 
and found that the crop phenology obtained by the proposed model has 
satisfying results compared to ground observations. In general, the deep 
fusion of optics and SAR time-series greatly improves the observation 
consistency of satellites and phenological cameras, which are expected 
to help improve existing crop monitoring systems. 

Also, some limitations of the proposed approach must be stressed, 
such as the prediction accuracy of the Deep-CroP model is limited due to 
the available size of PhenoCam samples. To be specific, both the time 
span and data quality of the PhenoCam site limited the performance of 
the model. Another weakness of the proposed method is its high 
computational cost, which may take more time when calculating long 
time series given a large-scale area. 

Credit statement 

Wenzhi Zhao: Conceptualization, Investigation, Methodology, Result 
Analysis, Funding acquisition; 

Yang Qu: Data labeling, Experiment design, Result Analysis; 
Liqiang Zhang: Methodology, Result Analysis, Writing- Reviewing 

and Editing. 
Kaiyuan Li: Data acquiring, Data labeling. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

This research was supported by the National Natural Science Foun
dation of China Major Program under Grant (42192580, 42192584), the 
GF Project (31-Y30B09-9001-20/22-04, 31-Y30F09-9001-20/22-13, 31- 
Y30F09-9001-20/22-14) and the Natural Science Foundation of Beijing 
Municipality under Grant 4214065. Also, we appreciate two anonymous 
reviewers that have substantially improved this paper in terms of sci
entific contributions and results analysis. 

References 

Ajadi, O.A., Barr, J., Liang, S.-Z., Ferreira, R., Kumpatla, S.P., Patel, R., Swatantran, A., 
2021. Large-scale crop type and crop area mapping across Brazil using synthetic 
aperture radar and optical imagery. Int. J. Appl. Earth Obs. Geoinf. 97, 102294. 

Beck, P.S., Atzberger, C., Høgda, K.A., Johansen, B., Skidmore, A.K., 2006. Improved 
monitoring of vegetation dynamics at very high latitudes: a new method using 
MODIS NDVI. Remote Sens. Environ. 100, 321–334. 

Bolton, D.K., Gray, J.M., Melaas, E.K., Moon, M., Eklundh, L., Friedl, M.A., 2020. 
Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 
imagery. Remote Sens. Environ. 240, 111685. 

Brown, T.B., Hultine, K.R., Steltzer, H., Denny, E.G., Denslow, M.W., Granados, J., 
Henderson, S., Moore, D., Nagai, S., SanClements, M., 2016. Using phenocams to 
monitor our changing earth: toward a global phenocam network. Front. Ecol. 
Environ. 14, 84–93. 

Burke, M.W., Rundquist, B.C., 2021. Scaling Phenocam GCC, NDVI, and EVI2 with 
harmonized Landsat-sentinel using Gaussian processes. Agric. For. Meteorol. 300, 
108316. 

De Beurs, K.M., Henebry, G.M., 2005. Land surface phenology and temperature variation 
in the International Geosphere–Biosphere Program high-latitude transects. Glob. 
Chang. Biol. 11, 779–790. 

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., 
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., 2020. An Image is Worth 16x16 
Words: Transformers for Image Recognition at Scale arXiv preprint arXiv: 
2010.11929.  

Ferrazzoli, P., Paloscia, S., Pampaloni, P., Schiavon, G., Solimini, D., Coppo, P., 1992. 
Sensitivity of microwave measurements to vegetation biomass and soil moisture 
content: a case study. IEEE Trans. Geosci. Remote Sens. 30, 750–756. 

Ganguly, S., Friedl, M.A., Tan, B., Zhang, X., Verma, M., 2010. Land surface phenology 
from MODIS: characterization of the collection 5 global land cover dynamics 
product. Remote Sens. Environ. 114, 1805–1816. 

Gao, F., Anderson, M.C., Zhang, X., Yang, Z., Alfieri, J.G., Kustas, W.P., Mueller, R., 
Johnson, D.M., Prueger, J.H., 2017. Toward mapping crop progress at field scales 
through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 188, 9–25. 

Harfenmeister, K., Itzerott, S., Weltzien, C., Spengler, D., 2021. Agricultural monitoring 
using polarimetric decomposition parameters of sentinel-1 data. Remote Sens. 13, 
575. 

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected 
convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 4700–4708. 

Hufkens, K., Basler, D., Milliman, T., Melaas, E.K., Richardson, A.D., 2018. An integrated 
phenology modelling framework in R. Methods Ecol. Evol. 9, 1276–1285. 

Ienco, D., Interdonato, R., Gaetano, R., Minh, D.H.T., 2019. Combining Sentinel-1 and 
Sentinel-2 satellite image time series for land cover mapping via a multi-source deep 
learning architecture. ISPRS J. Photogramm. Remote Sens. 158, 11–22. 

Inglada, J., Vincent, A., Arias, M., Marais-Sicre, C., 2016. Improved early crop type 
identification by joint use of high temporal resolution SAR and optical image time 
series. Remote Sens. 8, 362. 

Jentsch, A., Kreyling, J., Boettcher-Treschkow, J., Beierkuhnlein, C., 2009. Beyond 
gradual warming: extreme weather events alter flower phenology of European 
grassland and heath species. Glob. Chang. Biol. 15, 837–849. 

Jiao, X., Kovacs, J.M., Shang, J., McNairn, H., Walters, D., Ma, B., Geng, X., 2014. Object- 
oriented crop mapping and monitoring using multi-temporal polarimetric 
RADARSAT-2 data. ISPRS J. Photogramm. Remote Sens. 96, 38–46. 

Jin, X., Yang, G., Xu, X., Yang, H., Feng, H., Li, Z., Shen, J., Lan, Y., Zhao, C., 2015. 
Combined multi-temporal optical and radar parameters for estimating LAI and 
biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 7, 
13251–13272. 

Jönsson, P., Eklundh, L., 2004. TIMESAT—a program for analyzing time-series of 
satellite sensor data. Comput. Geosci. 30, 833–845. 

Jung, J., Maeda, M., Chang, A., Bhandari, M., Ashapure, A., Landivar-Bowles, J., 2021. 
The potential of remote sensing and artificial intelligence as tools to improve the 
resilience of agriculture production systems. Curr. Opin. Biotechnol. 70, 15–22. 

Justice, C.O., Townshend, J., Holben, B., Tucker, e.C., 1985. Analysis of the phenology of 
global vegetation using meteorological satellite data. Int. J. Remote Sens. 6, 
1271–1318. 

Justice, C., Townshend, J., Vermote, E., Masuoka, E., Wolfe, R., Saleous, N., Roy, D., 
Morisette, J., 2002. An overview of MODIS land data processing and product status. 
Remote Sens. Environ. 83, 3–15. 

Klosterman, S., Hufkens, K., Gray, J., Melaas, E., Sonnentag, O., Lavine, I., Mitchell, L., 
Norman, R., Friedl, M., Richardson, A., 2014. Evaluating remote sensing of 
deciduous forest phenology at multiple spatial scales using PhenoCam imagery. 
Biogeosciences 11, 4305–4320. 

Liu, Y., Wu, C., 2020. Understanding the role of phenology and summer physiology in 
controlling net ecosystem production: a multiscale comparison of satellite, 
PhenoCam and eddy covariance data. Environ. Res. Lett. 15, 104086. 

Lyu, H., Lu, H., Mou, L., 2016. Learning a transferable change rule from a recurrent 
neural network for land cover change detection. Remote Sens. 8, 506. 

Marzialetti, F., Giulio, S., Malavasi, M., Sperandii, M.G., Acosta, A.T.R., Carranza, M.L., 
2019. Capturing coastal dune natural vegetation types using a phenology-based 
mapping approach: the potential of Sentinel-2. Remote Sens. 11, 1506. 

McNairn, H., Brisco, B., 2004. The application of C-band polarimetric SAR for 
agriculture: a review. Can. J. Remote. Sens. 30, 525–542. 

Mercier, A., Betbeder, J., Baudry, J., Le Roux, V., Spicher, F., Lacoux, J., Roger, D., 
Hubert-Moy, L., 2020. Evaluation of Sentinel-1 & 2 time series for predicting wheat 
and rapeseed phenological stages. ISPRS J. Photogramm. Remote Sens. 163, 
231–256. 

Meroni, M., d’Andrimont, R., Vrieling, A., Fasbender, D., Lemoine, G., Rembold, F., 
Seguini, L., Verhegghen, A., 2021. Comparing land surface phenology of major 
European crops as derived from SAR and multispectral data of Sentinel-1 and-2. 
Remote Sens. Environ. 253, 112232. 

Misra, G., Cawkwell, F., Wingler, A., 2020. Status of phenological research using 
Sentinel-2 data: a review. Remote Sens. 12, 2760. 

Mou, L., Bruzzone, L., Zhu, X.X., 2018. Learning spectral-spatial-temporal features via a 
recurrent convolutional neural network for change detection in multispectral 
imagery. IEEE Trans. Geosci. Remote Sens. 57, 924–935. 

Nasahara, K.N., Nagai, S., 2015. Development of an in situ observation network for 
terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). Ecol. 
Res. 30, 211–223. 

Qu, Y., Zhao, W., Yuan, Z., Chen, J., 2020. Crop mapping from Sentinel-1 polarimetric 
time-series with a deep neural network. Remote Sens. 12, 2493. 

Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., 2009. 
Near-surface remote sensing of spatial and temporal variation in canopy phenology. 
Ecol. Appl. 19, 1417–1428. 

W. Zhao et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0005
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0005
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0005
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0010
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0010
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0010
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0015
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0015
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0015
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0020
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0020
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0020
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0020
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0025
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0025
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0025
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0030
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0030
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0030
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0035
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0035
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0035
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0035
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0040
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0040
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0040
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0045
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0045
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0045
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0050
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0050
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0050
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0055
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0055
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0055
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0060
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0060
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0060
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0065
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0065
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0070
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0070
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0070
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0075
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0075
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0075
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0080
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0080
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0080
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0085
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0085
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0085
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0090
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0090
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0090
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0090
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0095
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0095
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0100
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0100
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0100
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0105
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0105
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0105
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0110
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0110
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0110
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0115
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0115
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0115
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0115
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0120
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0120
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0120
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0125
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0125
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0130
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0130
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0130
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0135
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0135
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0140
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0140
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0140
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0140
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0145
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0145
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0145
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0145
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0150
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0150
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0155
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0155
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0155
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0160
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0160
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0160
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0165
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0165
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0170
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0170
http://refhub.elsevier.com/S0034-4257(22)00160-2/rf0170


Remote Sensing of Environment 276 (2022) 113046

20

Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M., 
2013. Climate change, phenology, and phenological control of vegetation feedbacks 
to the climate system. Agric. For. Meteorol. 169, 156–173. 

Richardson, A.D., Hufkens, K., Milliman, T., Aubrecht, D.M., Chen, M., Gray, J.M., 
Johnston, M.R., Keenan, T.F., Klosterman, S.T., Kosmala, M., 2018. Tracking 
vegetation phenology across diverse North American biomes using PhenoCam 
imagery. Sci. Data 5, 1–24. 

Rußwurm, M., Korner, M., 2017. Temporal vegetation modelling using long short-term 
memory networks for crop identification from medium-resolution multi-spectral 
satellite images. In: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition Workshops, pp. 11–19. 

Schnelle, F., Volkert, E., 1964. Internationale phänologische gärten Stationen eines 
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