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Understanding the Role of Receptive Field of
Convolutional Neural Network for Cloud Detection

in Landsat 8 OLI Imagery
Longkang Peng, Xuehong Chen , Jin Chen, Wenzhi Zhao , and Xin Cao

Abstract— Deep semantic segmentation networks perform bet-
ter in cloud detection of satellite imagery than traditional
methods due to their ability to extract high-level features over a
large receptive field. However, a large receptive field often leads
to loss of spatial details and blurring of boundaries. Therefore,
it is crucial to understand the role of the receptive field on the
segmentation results, which has rarely been investigated for cloud
detection tasks. This study, for the first time, explored the rela-
tionship between the receptive field size and the performance of a
cloud detection network. Six typical networks commonly used for
cloud detection and nine modified UNet variants with different
depths, dilated convolutions, and skip connections were evaluated
based on the Landsat 8 Biome (L8 Biome) dataset. The theoretical
receptive field (TRF) and the effective receptive field (ERF)
were introduced to measure the receptive field sizes of different
networks. The results revealed a negative correlation between the
ERF size and cloud segmentation accuracies for different cloud
distributions and a relatively weak negative correlation between
the TRF size and segmentation accuracies. Furthermore, ERFs
were considerably smaller than the corresponding TRFs for most
networks, implying that large-scale contextual information was
not learned after training. This result indicates the importance of
using networks with a small receptive field for cloud detection of
Landsat 8 OLI imagery. Moreover, as the boundary accuracies
are significantly lower than the region accuracies, future efforts
should be devoted to addressing inaccurate boundary localization
rather than exploring the contextual information over a large
receptive field.

Index Terms— Cloud detection, convolutional neural network
(CNN), Landsat 8, receptive field.

I. INTRODUCTION

LANDSAT satellites publicly avail optical imagery
datasets with long records and global coverage and have

been widely used in various applications [1]–[5]. However,
optical satellite imagery is likely to be affected by clouds,
which covers more than 50% of the Earth’s surface at any
given moment [6]–[10]. Therefore, it is critical to accurately
label cloud-covered areas before further processing and analy-
sis of optical imagery.
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Cloud detection or pixel-by-pixel cloud labeling for satellite
imagery has received increasing attention over the last few
decades [11], [12]. Cloud detection methods for the Landsat
imagery are commonly classified into two categories: physical-
rule- and machine-learning-based methods [11]. Physical-rule-
based methods detect clouds by identifying their physical or
empirical characteristics, such as “bright,” “white,” “cold,”
and “high” [13]–[19]. In contrast, machine learning techniques
show great potential with respect to the image classification
of remote sensing [20]–[22], [44]; therefore, they have been
widely used for the classification of cloud pixels in Land-
sat imagery [3], [23]–[26]. Facilitated by deep convolutional
neural networks (CNNs), networks that are capable of per-
forming dense prediction tasks (i.e., semantic segmentation)
have been recently applied and developed in cloud detection
tasks and have demonstrated more optimized performance than
traditional methods [3], [4], [25]–[31]. The superiority of deep
CNNs to traditional methods is commonly attributed to their
ability to automatically extract advanced features at a higher or
more abstract level [32], [33]. A large receptive field covering
the relevant image region is essential to learning high-level
features for a CNN [34]. Generally, there are two main ways
of increasing the receptive field. The first option is to deepen
the network by stacking additional layers [34]. Therefore,
CNN models have become deeper over the past decade and
achieved improved performance in vision tasks [35]–[38]. For
example, the DeepLab family, based on the ResNet backbone
with significantly deeper layers than previous structures, yields
more optimized segmentation results on several vision bench-
marks than the shallower networks [39]–[41]. Another option
is increasing the receptive field of each layer, for example,
dilated convolutional kernel and subsampling operation, which
can also increase the receptive field size of the entire network.
Dilated convolution has been adopted in various networks,
such as DeepLabv3 [40], DeepLabv3+ [41], and MSCFF [25],
to efficiently explore the large-scale context features without
increasing the computation cost and training time. PSPNet [42]
and MF-CNN [26] enlarge the receptive field by introducing
multiscale pooling, which consists of parallel multiscale sub-
sampling operations. In summary, enlarging the receptive field
is an important trend in the development of CNNs.

However, the final segmentation results yielded by a CNN
with a large receptive field may lose the spatial details and
cannot accurately delineate its borders [39], [43]–[45]. Efforts
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have been made to accurately localize object boundaries for
segmentation networks. Exploiting features from intermediate
layers is a common strategy for enhancing boundary local-
ization. For example, UNet [46] and its variants specifically
designed for cloud detection (e.g., TL-Net [28], MUNet [27],
RS-Net [3], and Refined UNet [47]) adopt this strategy through
a skip connection between two symmetrical paths to retain
more spatial details. MF-CNN [26] and MSCFF [25], two
networks specifically designed for the cloud detection of the
Landsat imagery, also adopt a similar skip connection mech-
anism. Postprocessing of the segmentation results is another
way of refining the segmentation results. For example, the
conditional random field (CRF) [39] and multiwindow-guided
filtering [48] were used to refine the coarse segmentation
outputs of UNet, which has shown promising results in cloud
detection tasks [47], [48]. Recently, formulating a loss function
to focus more on the pixels near the boundary than those in
the center of the cloud or clear region by penalizing errors
in object boundaries was developed to optimize the boundary
blur [49] and improve cloud detection results [50].

Although a lot of effort has been devoted to exploring
rich information over a large receptive field and obtaining
accurate boundary localization, balancing the tradeoff between
these two aspects continues to be a challenge [44]. Therefore,
understanding the effect of the receptive field size on the
segmentation results is essential to selecting a suitable network
or developing a novel network. Unfortunately, the role of the
receptive fields of CNN networks for cloud detection has rarely
been investigated. In this study, two types of receptive fields,
the theoretical receptive field (TRF) and the effective receptive
field (ERF), were introduced to quantify the receptive field size
and explore their effects on the cloud detection accuracy of
different networks for the Landsat 8 OLI imagery. TRF refers
to the region where an output unit depends on the input, which
is determined only by the network architecture [34]. Expand-
ing the receptive field by improving the network architecture
commonly results in a larger TRF. ERF refers to the effective
area in the TRF, which can reveal the context effectively
influencing semantic predictions [34], [51]. As the ERF is
estimated after training, the ERF of the same network can
vary with different training datasets. If the large-scale context
is not significant for the classification or segmentation of a
certain dataset, the ERF should be reduced after training, even
if the designed network has a large TRF. Therefore, ERF is an
effective tool for exploring whether the designed TRF plays
a role in a certain task. Considering that clouds in satellite
imagery have unique spectral features, herein, we reexamined
the need for a large TRF on the cloud detection task of
Landsat data and explored the relationship among TRF, ERF,
and cloud detection accuracy. Six typical networks, namely,
U-Net [46], DeepLabv3+ [41], TL-Net [28], MUNet [27],
MF-CNN [26], and MSCFF [25], were selected for cloud
detection of the Landsat 8 OLI imagery to explore the differ-
ences between TRF, ERF, and segmentation accuracy among
various networks. Furthermore, considering that network depth
and dilated convolution are two important ways of effectively
enlarging the TRF, and skip connection is a commonly used
structure that largely affects segmentation results, nine U-Net

Fig. 1. Illustration of dilated convolution with a 3 × 3 kernels and different
rates. Standard convolution is a special case for a rate of 1.

Fig. 2. Illustration of TRF and effective receptive field (ERF) for a simple
model with three layers.

variants with different depths, dilated convolutions, and skip
connections were designed and compared to examine the effect
of the network architecture on TRF, ERF, and segmentation
accuracy.

The remainder of this article is organized as follows.
In Section II, we present the dataset and experimental settings,
including the segmentation network structure, training, valida-
tion, and test details. The experimental results and analyses
are presented in Section III. Further discussions are presented
in Section IV, followed by the conclusions in Section V.

II. DATASET AND EXPERIMENTAL SETTINGS

A. Dataset and Preprocessing

Landsat 8 cloud cover assessment validation data,
called Landsat 8 Biome (L8 Biome) (acquired from
https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-
validation-data), were used in this study. The L8 Biome is
one of the most widely used datasets for research on cloud
detection [3], [25], [28], [52], [53]. The L8 Biome consists
of 96 Landsat 8 scenes acquired over different biomes and
the corresponding manually generated cloud masks, which
flag pixels as five classes, including cloud, thin cloud, clear,
cloud shadow, and fill for each scene [52].

In our experiments, the dataset was randomly divided into
three parts: training (48 scenes), validation (24 scenes), and
testing (24 scenes). The top of atmosphere (TOA) reflectance
of eight bands of Landsat 8 OLI, including bands 2 (blue), 3
(green), 4 (red), 5 (NIR), 6 (SWIR1), 7(SWIR2), 9 (Cirrus),
and 10 (TIR1), was used as network inputs. To focus the cloud
detection performance, we merged classes “cloud” and “thin
cloud” into “cloud,” and classes “clear” and “cloud shadow”
into “clear,” similar to previous studies [41], [54]. Due to the
GPU memory limitation, each scene was split into small 256 ×
256 pixel patches; therefore, 26 558, 13 314, and 13 415
patches were generated for training, validation, and testing,
respectively.
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Fig. 3. Quantitative comparison results of six typical networks in terms of (a) OA, (b) F-score, (c) MIoU, (d) FWIoU, (e) BF-3px, and (f) BF-5px.

TABLE II

TRF SIZE, ERF SIZE, AND SIX EVALUATION METRICS OF SIX TYPICAL NETWORKS

B. Segmentation Network Structure

1) Six Typical Cloud Detection Networks: The follow-
ing six typical cloud detection networks were selected for
our experiment: UNet [46], DeepLabv3+ [41], TL-Net [28],
MUNet [27], MF-CNN [26], and MSCFF [25]. UNet and
DeepLabv3+ were selected because they are widely used in
various applications and are commonly used as benchmarks
for cloud detection [8], [25], [55]–[57]. For DeepLabv3+,
ResNet-101 [36] was adopted as the backbone architecture
of the encoder. TL-Net, MUNet, MF-CNN, and MSCFF
were selected because they were specifically designed for
cloud detection of satellite imagery and yielded promising
results [25]–[28]. TL-Net and MUNet were simplified from
the UNet architecture by reducing the number of pooling
steps and convolution kernels, respectively; therefore, their
receptive field size is similar to that of UNet. MF-CNN and
MSCFF were designed to extract multiscale global features

by multiscale pooling filters and multiscale feature fusion,
respectively, which can explore multiscale contextures in large
receptive fields [25], [26].

2) Nine UNet Variants: Considering that a deepening net-
work and dilated convolution are two important ways of
enlarging the receptive field, two types of UNet variants with
different depths and different dilated convolutions were built to
explore the effect of these two efforts on enlarging the recep-
tive field. Considering that skip connection is a commonly
used structure that significantly affects segmentation results,
UNet variants with different numbers of skip connections were
also built to explore their effect on the receptive field and
segmentation accuracy. The details of the three variants are
listed in Table I.

The network depth was changed by varying the number of
blocks in the UNet (conv → conv → max pool in the contract-
ing path and up-conv → conv → conv in the expanding path)
according to previous studies [28], [58]. In our experiment,
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four UNet variants with depths ranging from 1 to 4 (i.e.,
UNet-1, UNet-2, UNet-3, and UNet) were built (see Table I).

UNet variants with different dilated convolutions were built
by replacing the fourth pooling step and the two subsequent
convolutional layers in UNet with three dilated convolutional
layers with a kernel size of 3 × 3 and stride of 1 (see Table I).
The position of this replacement is the same as that of dilated
convolutions in DeepLabv3 [40]. The dilated convolution ker-
nel inserts holes in the 3 × 3 filter to enlarge the receptive field
without losing spatial resolution and increasing the number
of parameters. As shown in Fig. 1, a larger dilation rate,
corresponding to more holes in the filter, will lead to a larger
TRF. Considering that the spatial resolution of the resulting
feature maps of the dilated convolution layer is not reduced,
the subsequent up-conv layer (the first up-conv layer) in the
original UNet is not necessary and is, therefore, replaced by
a 1 × 1 convolution to maintain the spatial resolution. In our
experiment, two dilated U-Net variants with dilation rates
of 2 and 4 were built and named UNet-D2 and UNet-D4,
respectively.

UNet variants with different numbers of skip connections
were built by gradually removing skip connections from
shallow layers to deep layers. The differences in the number
of skip connections did not change the TRF, whereas they
probably changed the ERF. In our experiment, three UNet
variants with four skip connections, namely, UNet, UNet-S3,
UNet-S2, and UNet-S1, were built (see Table I).

Our code and trained models are shared online to provide
support for the research in the field of cloud detection
(https://github.com/LK-Peng/CNN-based-Cloud-Detection-
Methods.git).

C. Training, Validation, and Test Details

All the networks were implemented in PyTorch (1.7.1)
under the operating system Ubuntu 7.5.0 equipped with
two NVIDIA GTX 1080Ti GPUs. The stochastic gradient
descent (SGD) algorithm [59] with a momentum of 0.9 and
a weight decay of 5 × 10−4 was used for training. The other
settings were given as follows: fixed batch size of 24, initial
learning rate of 0.01, and learning rate decay by a factor of
0.1 every 20 epochs. Subsequently, the optimal model was
selected from 100 training epochs based on the accuracy of the
validation set. Specifically, it had the highest average FWIoU
in the windows of five consecutive epochs. Finally, the selected
optimal model was evaluated using the test set. Four copies
of the same network were trained from scratch for hundred
epochs with different random seed initializations to consider
the random effect of the weight initialization.

D. Receptive Field Size

The TRF and ERF sizes were computed to explore the effect
of the receptive field. As shown in Fig. 2, the TRF refers to
the region that is theoretically connected to the output unit
through network operations, whereas the ERF refers to the
region with an effective impact on the output unit. Therefore,
the region of the ERF was smaller than that of the TRF (see
Fig. 2).

Fig. 4. Visual comparison of ERF for six typical networks in different
locations. Receptive fields are visualized in the image space of 256 ×
256 pixels. (a) From path 157 and row 45 (center pixel position: row 125 and
column 131). (b) From path 16 and row 50 (center pixel position: row 126 and
column 128). (c) From path 175 and row 51 (center pixel position: row
123 and column 124). (d) From path 159 and row 36 (center pixel position:
row 128 and column 126). (e) From path 197 and row 24 (center pixel
position: row 126 and column 125).

The detailed calculation methods for the areas of the TRF
and ERF are described as follows.

1) TRF Size: The TRF size is determined only by the
network architecture and can be calculated as follows [60]:

lk = lk−1 +
[
( fk − 1) ×

k−1∏
i=1

si

]
, where l0 = 1 (1)

where lk is the TRF size of the network with k layers, fk is the
maximum kernel size of filters in the kth layer, and si is the
stride of the kernels in the i th layer. Unfortunately, (1) is not
valid for the upsampling layers because fk cannot be correctly
calculated for the deconvolutional filter and other upsampling
methods. Therefore, in our experiment, the approximate TRF
size was calculated based on the partial network structure
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Fig. 5. Qualitative comparison of cloud detection results for six typical networks (under the random seed with optimal performance) in different locations.
(a) From path 157 and row 45. (b) From path 16 and row 50. (c) From path 175 and row 51. (d) From path 159 and row 36. (e) From path 197 and row 24.

before the first upsampling layer. Such an approximation is
reasonable because upsampling operations affect TRF mar-
ginally.

2) ERF Size: Because not all input pixels in a TRF con-
tribute equally to an output unit’s response, ERF was devel-

oped by Luo et al. [34] to represent the region containing any
input pixels with a nonnegligible impact on that output unit.
The ERF region commonly exhibits a Gaussian distribution
and can be expressed using an impact gradient map (G). The
gradient of each pixel (gi, j) is the partial derivative of the
output unit (yp,q) with respect to the input pixel (xi, j) on the
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Fig. 6. Quantitative comparison results of six typical networks in terms of (a) OA, (b) F-score, (c) MIoU, (d) FWIoU, (e) BF-3px, and (f) BF-5px.

TABLE III

TRF SIZE, ERF SIZE, AND SIX EVALUATION METRICS OF NINE UNET VARIANTS

input

gi, j = ∂yp,q

∂xi, j
(2)

which can be calculated using the backpropagation
method [34]. Therefore, the larger absolute value of
gi, j corresponds to a larger impact of pixel xi, j on the output
(yp,q). Furthermore, two-standard deviations were used as the
criteria for calculating the ERF size. First, any pixel with an
impact gradient value exceeding 1%–95.45% of the center
point is considered as in the ERF [34]. The ERF size is then
calculated as the square root of the number of pixels within

the ERF. In our study, as the input was an eight-channel
image, the absolute impact gradient values of each band
were first summed and then used to calculate the ERF size.
Considering that the ERF calculation is very time-consuming,
we only calculated the ERF size on two randomly selected
pixels located in the image center area (28 × 28) for each
patch in the test set. Therefore, 26 830 pixels were selected
to calculate the ERF size.

E. Evaluation Metrics

Two groups of quantitative measures were used to evaluate
the performance of cloud detection networks. Four widely used
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quantitative metrics, namely, overall accuracy (OA), F-score,
mean intersection over union (MIoU), and frequency weighted
intersection over union (FWIoU), were used to evaluate the
accuracy of the network’s cloud region prediction [50], [61].
These metrics are calculated as follows:

OA = TP + TN

TP + TN + FP + FN
(3)

F-score = 2 × Precision × Recall

Precision + Recall
(4)

MIoU = 1

2
×

(
TP

TP + FP + FN
+ TN

TP + FP + FN

)
(5)

FWIoU = P

P + N
× TP

TP + FP + FN

+ N

P + N
× TN

TP + FP + FN
(6)

where TP and TN denote the correct prediction of cloud
pixels and clear pixels, respectively, and FP and FN denote an
incorrect outcome where the pixels are incorrectly identified as
cloud pixels and clear pixels, respectively. Precision is defined
as TP/(TP + FP), and Recall is defined as TP/(TP + FN). P
and N denote the number of cloud pixels and clear pixels,
respectively. As the classification error likely occurs in the
boundary areas, the boundary F-score [62], [63] was used to
quantitatively measure the boundary quality of the prediction
results. This index computes the F-score along the boundary
of the predicted mask, given a small slack in distance [63].
There is a slight difference in the calculation of Precision
and Recall for the boundary F-score. When calculating Pre-
cision, TP denotes a correct prediction of boundary pixels in
the dilation of the true boundary; when calculating Recall,
TP denotes the true boundary pixels in the dilation of the
predicted boundary. Similar to a previous study [63], we used
thresholds of three and five pixels as the radius of dilation
to calculate the F-score, i.e., BF-3px and BF-5px, in our
experiments.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison of Six Typical Networks

Table II reports the TRF sizes, ERF sizes, and the five
evaluation metrics; and Fig. 3 shows the uncertainty of
the evaluation metrics induced by random initiation seed.
Large differences were observed in the TRF size, ranging
from 32 to 1267, for the six networks. Generally, a network
with a relatively large TRF size results in a relatively large
ERF size after training on the L8 biome dataset. However, the
ERF sizes of all six networks were below 39, thus significantly
smaller than the corresponding TRF sizes of most networks.
Several examples shown in Fig. 4 also demonstrate that only
the pixels in the small central area play a role in predicting the
cloud segmentation results. With respect to the accuracy,
the performance of the network with relatively small ERF
and TRF sizes is slightly more optimized. The OA, F-score,
MIoU, and FWIoU of the optimal network (MUNet) were
approximately 1%, 1%, 2%, and 2% higher than those of
the inferior network (DeepLabv3+), respectively. However,

Fig. 7. Visual comparison of ERF for nine UNet variants in different
locations. Receptive fields are visualized in the image space of 256 × 256.
(a) From path 157 and row 45 (center pixel position: row 125 and column
131). (b) From path 16 and row 50 (center pixel position: row 126 and column
128). (c) From path 175 and row 51 (center pixel position: row 123 and
column 124). (d) From path 159 and row 36 (center pixel position: row
128 and column 126). (e) From path 197 and row 24 (center pixel position:
row 126 and column 125).

such accuracy differences among the six networks are not
significant based on one-way ANOVA ( p > 0.05), considering
the effect of random initialization seed [see Fig. 3(a)–(d)].
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However, the six networks show significant differences in the
boundary F-score of three and five pixel thresholds at the level
of p < 0.01 based on one-way ANOVA, indicating that the
main differences among the six networks occur in the cloud
boundary. Generally, networks with relatively large TRF and
ERF perform poorly in boundary localization. DeepLabv3+
with the largest TRF and ERF underperforms the optimal
network (MF-CNN) by more than 4% and 3% in terms of
BF-3px and BF-5px, respectively. This result is also demon-
strated by the examples in Fig. 5, where all networks show
similar prediction results, differing almost only at the cloud
boundary. Visually, the boundary of DeepLabv3+ with the
largest ERF and TRF was too smooth compared to the ground
truth and the results of other networks. In summary, networks
with relatively large TRFs or ERFs correspond to relatively
low segmentation accuracy of cloud detection, especially in
terms of boundary accuracy.

B. Comparison of Nine UNet Variants

Table III reports the TRF sizes, ERF sizes, and six evalua-
tion metrics of nine UNet variants; and Fig. 6 shows the uncer-
tainty of the evaluation metrics induced by random initiation
seed. The TRF sizes of the nine networks ranged from 14 to
260 and were, thus, larger than the corresponding ERF sizes
ranging from 10 to 66. However, a larger TRF size does not
necessarily translate to a larger ERF size for the nine UNet
variants in contrast to the result in Section III-A. This finding
indicates that UNet variants can effectively learn small-scale
spatial features, even for variants with large TRFs. In addition,
variants with the same TRF sizes but fewer skip connections
result in larger ERFs after training, indicating that skip con-
nections facilitate the exploration of contextual information in
small regions. These results can also be demonstrated by the
examples shown in Fig. 7, where UNet variants with different
depths and different dilated convolutions show similar ERF
sizes, whereas UNet variants with fewer skip connections show
larger ERF sizes. Regarding accuracy, significant differences
were detected in both the region and boundary accuracies of
the nine UNet variants based on one-way ANOVA (p < 0.01)
(see Fig. 6). Generally, the networks with relatively large
ERFs exhibited inferior performance in both boundary and
nonboundary segmentation; particularly, UNet-S1, which had
the largest ERF, underperformed the optimal network (UNet-1)
by 7% and 6% in terms of BF-3px and BF-5px, respectively.
The examples in Fig. 8 also show that the boundary of UNet-
S1 with the largest ERF is too smooth compared to the ground
truth and the results of other networks. This result might be
attributed to the fact that skip connections effectively combine
the high-level features in the expanding path and the low-level
features in the contracting path, which can maintain boundary
accuracy for networks with large TRFs. In summary, the nine
UNet variants with different TRF sizes did not change the
ERF size or segmentation accuracy; rather, UNet variants with
relatively few skip connections resulted in an increase in ERF
size and a decrease in segmentation accuracies, especially
boundary accuracies.

C. Relationships Among TRF, ERF, and Accuracies

To elucidate the roles of the receptive field in cloud
segmentation, the relationships among TRF size, ERF size,
region accuracy, and boundary accuracy were analyzed for all
56 trained networks (four networks were trained for each type
of network). As shown in Fig. 9(a) and (f), the TRF and ERF
sizes are weakly correlated because ERF sizes are determined
by many factors other than TRF. However, both TRF and ERF
sizes are significantly negatively correlated with the two types
of accuracies [see Fig. 9(b)–(e)], i.e., OA and BF-3px. This
finding indicates that the TRF and ERF sizes of the network
play important roles in determining segmentation quality.
Such negative correlation between TRF size and segmentation
accuracies disappeared if only UNet variants (TL-Net, MUNet,
and nine UNet variants in Table I; and the subsequent “UNet
variants” indicates these 11 networks) were considered [see
Fig. 9(g)–(j)], indicating that ERF size is a better indicator of
segmentation accuracy than TRF size. Moreover, the negative
correlation between ERF size and boundary accuracy yields an
R-squared value of 0.4657, showing greater strength than that
between the ERF size and region accuracy. These data indicate
that the ERF is a key factor affecting the determination of the
cloud boundary. These results show that a larger ERF size
adversely affects the cloud segmentation accuracy, especially
the boundary accuracy.

IV. DISCUSSION

A. Receptive Field Size and Segmentation Accuracies in the
Scenes With Different Cloud Distributions

The TRF size is determined only by the network architec-
ture, whereas the ERF size is related to the network parameters
and input scenes. Specifically, the ERF size may differ in
scenes with different cloud distributions, i.e., cloud thickness,
cloud object size, and cloud amount. The network performance
might also vary in scenes with different cloud distributions due
to the different spectral and spatial features of different cloud
types. Therefore, to comprehensively elucidate the effects of
the receptive field on network performance, the relationships
between TRF/ERF and accuracy were investigated for UNet
variants in scenes with different cloud distributions.

The results showed that the ERF sizes and segmentation
accuracies could largely differ for different cloud distribu-
tions (see Figs. 10–12). For scenes with different relative
percentages of thick clouds, both the region and boundary
accuracies are substantially lower in the scenes with more thin
clouds because the spectra of thin clouds are more difficult to
distinguish from the land surface spectra. In addition, ERF
sizes are particularly small for the scenes with a mixture of
thick and thin clouds (i.e., the “MidFracThickCloud” group in
Fig. 10), probably because the fragmented mixture of clouds
might lead to a high density of cloud edges; therefore, the
spatial contextual features could be exhibited in small regions,
corresponding to a small ERF. Regarding the scenes with
different cloud object sizes, the corresponding ERF sizes were
similar, whereas the segmentation accuracies showed obvious
differences. Specifically, the region accuracies were lower in
the scenes with small cloud object sizes [see Fig. 11(b-1)] than
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Fig. 8. Qualitative comparison of cloud detection results for nine UNet variants (under the best performing random seed) in different locations. (a) From
path 157 and row 45. (b) From path 16 and row 50. (c) From path 175 and row 51. (d) From path 159 and row 36. (e) From path 197 and row 24. The
satellite images and the corresponding ground truths are the same as Fig. 5.
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those in the scenes with large cloud object sizes [see Fig. 11(b-
3)]; in contrast, the boundary accuracies are lower in the scenes
with large cloud object sizes [see Fig. 11(d-3)], probably
because the detection of small objects (small cloud objects
and small clear holes inside large cloud objects) is a relatively
challenging task for CNN [64]. For scenes with different cloud
percentages, the region and boundary accuracies were signifi-
cantly lower in the group of scenes with low cloud percentages
(see Fig. 11) because there are relatively more small cloud
objects and thin clouds in this case. Similarly, the ERF sizes
were particularly small for the group of scenes with a middle
cloud percentage because of the high density of cloud edges.
Despite the differences in the ERF sizes and accuracies for
different cloud distributions, significantly negative correlations
were observed between ERF size and both the region and
boundary accuracies (see Figs. 10–12), except that all UNet
variants achieved extremely high region accuracies (OA >
95%) for scenes with thick clouds [see Fig. 10(b-3)] and
scenes with few clouds [see Fig. 12(b-1)]. Compared to the
ERF size, the TRF size is weakly or insignificantly correlated
with the cloud segmentation accuracies. In summary, the
relationships between TRF/ERF size and accuracy generally
remain unchanged for different cloud distributions, consistent
with the results in Section III-C.

B. Receptive Field Size and Segmentation Accuracies in the
Scenes With Different Spectral Configurations

Landsat 8 OLI imagery contains abundant spectral infor-
mation with 11 spectral bands, which potentially provides
adequate spectral features for cloud detection. However, the
lack of many spectral bands in certain satellite sensors might
change the role of the receptive field in cloud detection.
Therefore, to understand the effects of the receptive field on
network performance in the case of insufficient spectral infor-
mation, cloud detection experiments with UNet variants were
conducted on simulated datasets by removing some bands
in Landsat 8 OLI imagery. Two commonly designed spec-
tral configurations for remote sensing, the red/green/blue/NIR
(RGBN) bands and RGBN/SWIR-1/SWIR-2 (RGBNS) bands,
were considered. When fewer spectral bands were used in
the networks, the ERF sizes increased, indicating that spatial
contextual information plays a relatively more important role
in cloud segmentation (see Fig. 13). Moreover, the negative
correlation between TRF/ERF and region accuracy becomes
very weak when the RGBN bands are used [see Fig. 13(b-1)–
(e-1)]. The TRF size is positively correlated with the boundary
accuracy in this case [see Fig. 13(d-1)]. The relationship
between ERF and boundary accuracy becomes a quadratic
function with an optimal ERF size of 33 for RGBNS data and
70 for RGBN data. These data suggest that cloud detection
on imagery with fewer spectral bands would require a larger
receptive field. These results are largely different from those
presented in Section III-C, indicating that the negative effects
of TRF and ERF on cloud detection accuracy are inapplica-
ble to other satellite imagery. Furthermore, the other remote
sensors would differ from Landsat 8 OLI in terms of spatial
resolution and radiometric resolution. Therefore, the role of the

Fig. 9. Relationships among TRF, ERF, and accuracies for (a)–(e) all models
and (f)–(j) UNet variants.

receptive field in the cloud detection of other satellite imagery
should be reinvestigated using more datasets.

C. Implications for the Selection of Cloud Detection
Networks

Due to the tradeoff between accurate boundary localiza-
tion and rich contextual information extraction for different
CNNs, comprehending the effects of the TRF and ERF sizes
on the cloud segmentation result is essential to selecting a
suitable network. The experiments in this study show that
networks with relatively small receptive fields yield more
optimized region and boundary accuracies for cloud detection
in Landsat 8 OLI imagery. Moreover, the ERF sizes were
significantly smaller than the corresponding TRF sizes for all
of the networks, particularly for MSCFF and DeepLabv3+
with relatively large TRFs, implying that large-scale features
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Fig. 10. Relationships between (a) TRF and OA, (b) ERF and OA, (c) TRF and BF-3px, and (d) ERF and BF-3px of UNet variants in scenes with different
relative percentages of thick clouds (percentages of thick clouds to all clouds). “LowFracThickCloud” denotes the results for scenes with the relative percentage
of thick cloud below 35%, “MidFracThickCloud” denotes the results for scenes with the relative percentage of thick cloud ranging between 35% and 65%,
and “HighFracThickCloud” denotes the results for scenes with the relative percentage of thick cloud over 65%. Subplots with dashed and bolded borders
indicate that the correlation between the x-axis and the y-axis has changed from significant to insignificant or vice versa.

had not been learned after training. In other words, large-
scale features were gradually disregarded during training, and
only small-scale features were retained. Therefore, networks
with small TRFs are adequate for detecting clouds for Land-
sat 8 OLI imagery due to their abundant spectral information.
The spatial contextual information in the high-level features
cannot benefit the cloud detection task; rather, it negatively
affects the boundary localization and further reduces the region
accuracy.

In addition to the gain in cloud detection accuracy, networks
with relatively small TRFs generally contain relatively few
parameters and require relatively few computational resources.

These networks generally have lower giga-floating point
operations (GFLOPs), resulting in shorter processing time

and higher implementation efficiency (see Table IV). The
running time in Table IV is based on a platform with two
NVIDIA GTX 1080 Ti GPUs. GFLOPs are related to network
complexity and the input patch size. Due to the GPU memory
limitation, it is necessary to divide the entire remote sensing
image into small patches for computing on the GPU. However,
the size of each patch cannot be smaller than the ERF size;
otherwise, the lack of sufficient spatial information would
influence the prediction results. Therefore, using networks
with a small TRF could further reduce the computation cost
by reducing the input patch size, providing the potential
for deployment on more GPU devices with less memory.
Therefore, we recommend using TL-Net, which yields both
high accuracy and efficiency for cloud detection in Landsat
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Fig. 11. Relationships between (a) TRF and OA, (b) ERF and OA, (c) TRF and BF-3px, and (d) ERF and BF-3px of UNet variants in scenes with different
cloud object sizes. “SmallObjects” denotes the results for scenes with an average cloud object size below 4096 pixels but exceeding zero pixels, “MidObjects”
denotes the results for scenes with an average cloud object size ranging between 4096 and 36 864 pixels, and “LargeObjects” denotes the results for scenes
with an average cloud object exceeding 36 864 pixels. Subplots with dashed and bolded borders indicate that the correlation between the x-axis and the y-axis
has changed from significant to insignificant or vice versa.

8 OLI imagery. However, this suggestion is only applicable
to Landsat 8 OLI imagery according to the different results
shown in Section IV-B.

D. Future Perspectives

Although the recommended TL-Net with a small receptive
field size achieved high region accuracy (F-score higher than
90%), the cloud boundary accuracy (BF-5px less than 70%)
was considerably lower than the region accuracy. Visually, the
boundaries generated by networks with large receptive field
sizes tend to be relatively smooth. We used the fractal dimen-
sion index (FRAC) [65]–[67] to quantitatively compare the
complexity difference between the cloud boundary predicted
by the networks and the reference cloud boundary. As shown

TABLE IV

PROCESSING TIME AND GFLOPS PER BATCH AND THE NUMBER OF
PARAMETERS (PARAMS) OF SIX TYPICAL NETWORKS

in Fig. 14, both TRF and ERF sizes are significantly negatively
correlated with the FRAC of the prediction results of the
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Fig. 12. Relationships between (a) TRF and OA, (b) ERF and OA, (c) TRF and BF-3px, and (d) ERF and BF-3px of UNet variants in scenes with different
cloud percentages. “FewClouds” denotes the results for scenes with the cloud percentage less than 35%, “MidClouds” denotes the results for scenes with the
cloud percentage ranging between 35% and 65%, and “Cloudy” denotes the results for scenes with a cloud percentage over 65%. Subplots with dashed and
bolded borders indicate that the correlation between the x-axis and the y-axis has changed from significant to insignificant or vice versa.

cloud detection networks. In particular, ERF sizes exhibit a
remarkable correlation with FRAC for all models or UNet
variants with an R square higher than 0.6. In addition, the
FRAC of the prediction results of all the models is lower
than that of the reference cloud boundary (see Fig. 14). These
results indicate that the predicted boundaries of all networks
are too smooth, even for networks with small receptive field
sizes. Therefore, we suggest that future research on cloud
detection networks should focus on enhancing the prediction
accuracy on the boundary rather than enlarging the receptive
field.

The ERF tool employed in this study illustrates the impor-
tance of each input pixel and reveals the spatial scale of
the learned features; it may help unveil the “black box” of
neural networks and guide network selection and development.

Although the ERF size explained approximately 20% variance
of OA and 47% variance of BF-3px in the experiments (see
Fig. 9), it is far from clearly explaining the behavior of the
neural network. Apart from the ERF tool, different techniques
have been developed to illustrate how deep neural networks
work. For example, the Taylor decomposition [68], [69],
layerwise relevance propagation [69], dropout as a Bayesian
approximation [70], and DeepLIFT [71] have been proposed
to determine the importance of the input pixel to the output
unit. Zeiler and Fergus [72] proposed a Deconvnet method
to visualize the features learned by deep models. It was then
modified by Springenberg et al. [73] to further improve the
feature visualization. Li et al. [74] adapted an attention mech-
anism to reveal the subtle relations between geological depo-
sitions and seismic spectral responses. Wickstrøm et al. [75]
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Fig. 13. Relationships among TRF, ERF, and accuracies for UNet variants
in scenes with spectral configurations of (a-1)–(e-1) “RGBN” and (a-2)–(e-2)
“RGBNS.” “RGBN” denotes the results for models using the RGBN bands,
and “RGBNS” denotes the results for models using the RGBN/SWIR1/SWIR2
bands. Subplots with dashed and bold borders indicate that the correlation
between the x-axis and the y-axis has changed from significant to insignificant
or vice versa, and subplots with bolded borders indicate that the scatters are
fitted with a quadratic polynomial.

proposed a novel method for estimating the uncertainty in
the importance of input features. Such techniques help users
determine whether the model detects features that are actually
associated with the object or exploits artifacts in the data [75]
and, to a certain extent, addresses the lack of transparency and
elucidates the underlying mechanics of deep models. However,
these methods have yet to be utilized in cloud detection
based on deep learning. Therefore, additional attention should
be paid to comprehending or visualizing how deep neural
networks work on cloud detection to help improve cloud
detection networks in the future.

Fig. 14. Relationships between receptive field and predicted cloud boundary
quality for all models under each seed. FRAC change with TRF or ERF for
(a) and (b) all models and (c) and (d) UNet variants.

V. CONCLUSION

In this study, we explored the role of the receptive field
of six typical networks and nine UNet variants for cloud
detection in Landsat 8 OLI imagery. The results show that
networks with relatively large receptive field sizes, especially
the ERF size, show relatively low segmentation accuracies
in scenes with different cloud distributions. Moreover, the
ERF sizes of all networks were significantly smaller than the
corresponding TRF sizes after training with the L8 Biome
dataset, indicating that large-scale contextual information
cannot benefit the cloud detection of Landsat 8 OLI imagery.
Hence, we recommend using networks with small TRFs (e.g.,
TL-Net) that can achieve both high accuracy and efficiency
for cloud detection in Landsat 8 OLI imagery. Moreover, all
networks generated cloud boundaries that were too smooth
with substantially lower boundary accuracies than region
accuracies. Therefore, boundary localization is the main
challenge in cloud detection tasks; thus, we recommend
that additional effort should be made to improve the
boundary localization rather than enhancing the contextual
information exploration over a large receptive field. Finally,
the aforementioned conclusions are only applicable for cloud
detection of Landsat 8 OLI imagery because these findings
vary for data with different spectral bands.
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