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A B S T R A C T   

An accurate estimation of spatially and temporally continuous global terrestrial evapotranspiration (ET) is 
essential in the assessment of surface energy, water and carbon cycles. The Global LAnd Surface Satellite (GLASS) 
ET product Version 4.0 (v4.0) based on the Bayesian model averaging (BMA) method was generated to estimate 
global terrestrial ET. However, certain uncertainty for the GLASS ET product v4.0 limits its application. In this 
study, we introduced the deep neural networks (DNN) merging framework to improve terrestrial ET estimation 
for GLASS ET product Version 5.0 (v5.0) generation by integrating five satellite-derived ET products [Moderate 
Resolution Imaging Spectroradiometer (MODIS) ET product (MOD16), Shuttleworth–Wallace dual-source ET 
product (SW), Priestley–Taylor-based ET product (PT-JPL), modified satellite-based Priestley–Taylor ET product 
(MS-PT) and simple hybrid ET product (SIM)]. We compared the performance of DNN method against other 
merging methods, including GLASS ET algorithm v4.0 (BMA), the gradient boosting regression tree (GBRT) 
method and the random forest (RF) method, based on 195 global eddy covariance (EC) flux towers covering 
observations from 2000 through 2015. Validations indicated that the DNN had the highest accuracy among four 
merging methods across different land cover types, yielding the highest average determination coefficients (R2, 
0.62), root-mean-squared-error (RMSE, 24.1 W/m2) and Kling–Gupta efficiency (KGE, 0.77) with a of 99% 
confidence interval. Compared with GLASS ET algorithm v4.0, the DNN improved on the R2 by approximately 
7% (p < 0.01) and the KGE by 10%. Based on the DNN, we then generated 8-day GLASS ET product v5.0 globally 
with a 1 km spatial resolution from 2001 to 2015 driven by GLASS vegetation and surface net radiation (Rn) 
datasets and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) datasets. 
This global terrestrial ET product provides a valuable dataset for monitoring regional and global water resources 
and environmental changes.   

1. Introduction 

Evapotranspiration (ET), the loss of water from the Earth’s surface to 
the atmosphere from soil evaporation, water bodies evaporation, canopy 
interception evaporation and vegetation transpiration, is a major 
component of the surface energy budget and water cycle (Fisher et al., 
2017; Ma et al., 2021). For the terrestrial energy budget, surface latent 
heat flux (LE) accompanied by the ET process accounts for 

approximately 50% of the surface net radiation, using up more than half 
of the total solar energy absorbed by land surfaces and helping cool the 
land surface as an energy flux (Murphy et al., 2009; Trenberth et al., 
2009). Additionally, for the water cycle, ET via energy flux exchanges 
returns approximately 65% of precipitation on the land surface back to 
the atmosphere at the global scale annually by consuming an enormous 
amount of heat (Oki and Kanae, 2006) and thereby is an important 
constraint on water availability at the land surface (Gleeson et al., 
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2020). Accurate estimation of ET at the global scale provides important 
scientific information that is valuable to high-interest research fields, 
such as global environmental changes, water resource management, and 
sustainable agricultural development (Condon et al., 2020; Helbig et al., 
2020; Liu et al., 2022; Ma and Szilagyi, 2019; Pascolini-Campbell et al., 
2021). 

ET can be measured by in-situ eddy covariance (EC) flux tower 
networks (e.g., FLUXNET), but these site-based measurements are 
spatially sparse and are available only over limited time periods (Bal-
docchi et al., 2001). Fortunately, satellites have provided temporally 
regular and spatially continuous ET estimates from fields to global scales 
because they can successfully retrieve land surface and atmospheric 
variables that are linked to ET variability (Brust et al., 2021; Fisher et al., 
2020). In the past three decades, many satellite-derived ET products 
have been available (Table 1), including the Global Moderate Resolution 
Imaging Spectroradiometer (MODIS) ET products (MOD16) (500 m, 8- 
day) (Mu et al., 2007; Mu et al., 2011); the Breathing Earth System 
Simulator (BESS) ET product (1 km, 8-day) (Jiang and Ryu, 2016); the 
Global Land Evaporation Amsterdam Model (GLEAM) v3 ET product 
(0.25◦, daily) (Martens et al., 2017); the Penman–Monteith–Leuning 
(PML)_V2 global ET product (0.05◦, 8-day) (Zhang et al., 2019; Zhang 
et al., 2016); the ETMonitor ET product (1 km, daily) (Hu and Jia, 2015), 
the FLUXCOM ET product (0.0833◦, 8-day), and the Global LAnd Sur-
face Satellite (GLASS) ET product Version 4.0 (v4.0) (0.05◦/1 km, 8-day) 
(Liang et al., 2021; Yao et al., 2014). However, except for FLUXCOM and 
GLASS ET product v4.0, these products are generated using individual 
models that will lead to low performance in ET estimation (Shang et al., 
2021). Previous studies have shown that the multi-model merging 
method performs better than any individual model for estimating 
terrestrial ET (Aires, 2014; Jimenez et al., 2018; Jung et al., 2019; 
Mueller et al., 2013). For example, the FLUXCOM ET product (0.0833◦, 
8-day) employs an ensemble of multiple machine learning approaches 
(Jung et al., 2019), but their accuracy remains unclear because theirs 
errors are inherent in the underlying EC measurements and the spatially 
biased distribution of FLUXNET sites (Ma et al., 2020). To obtain ET 
estimations with high accuracy, more studies on merging ET products 
are still needed. 

As an established multi-model ensemble ET product, GLASS ET 
product v4.0 (1 km, 8-day) was produced based on the Bayesian model 
averaging (BMA) method by merging five satellite-based physical ET 
models (Yao et al., 2014), including the MOD16 model (Mu et al., 2011), 
the Revised Remote-Sensing-based Penman–Monteith (RRS-PM) ET 
model (Yuan et al., 2010), the Priestley–Taylor-based (PT-JPL) ET model 
(Fisher et al., 2008), the Modified Satellite-based Priestley–Taylor ET 
(MS-PT) model (Yao et al., 2013) and the semi-empirical Penman ET 
model of the University of Maryland (UMD-SEMI) (Wang et al., 2010). 
Subsequently, GLASS ET product v4.0 has been evaluated and validated, 
and the preliminary results indicate that it has relatively higher quality 
and accuracy than some existing satellite-derived ET products (Liang 
et al., 2021; Song et al., 2018; Yang et al., 2022). For example, Yang 
et al. (2022) used GLASS ET product v4.0 to investigate the impacts of 
various climate and vegetation factors on ET variation in northwest 
China because its values are closest to the ground-observations. Besides, 
GLASS ET product v4.0 was used in related studies on topics such as 
climate change and vegetation dynamics (Song et al., 2018; Shang et al., 

2021). For instance, Song et al. (2018) compared five major satellite ET 
products over the Heihe River Basin (HRB) in China and found that 
GLASS ET product v4.0 was slightly more accurate than many other 
products because the BMA method yields a more reliable output in the 
ensemble than any individual model. However, the BMA method is a 
linear combination of each single ET model, which may perform worse 
than many nonlinear multi-model ensemble approaches (e.g., machine 
learning methods) (Duan et al., 2007; Yao et al., 2017b). For example, 
Bai et al. (2021) found that the machine learning method is superior to 
the BMA method in merging individual ET models for cropland ET es-
timates across a wide range of environmental conditions. Currently, 
with the development of deep learning methods, there is a new oppor-
tunity for updating GLASS ET product v4.0 using deep learning methods 
to replace the BMA method by merging individual ET products (Ball 
et al., 2017; Yann et al., 2015; Yuan et al., 2020). 

Recently, deep neural networks (DNN) has been widely used to up-
scale ET from site to regional scales by relating ground-measured ET to 
satellite-derived variables and other meteorological data because DNN 
has multiple layers of parameterized differentiable nonlinear modules 
trained by backpropagation to tackle a wide range of problems with the 
large accumulation of satellite and ground observation data (Elbeltagi 
et al., 2020; Saggi and Jain, 2019; Shang et al., 2021). For example, Cui 
et al. (2021) developed a new combined model coupling DNN and the 
two-source energy balance (TSEB) model (TSEB_DNN) over the HRB in 
China to generate spatiotemporally continuous ET. The TSEB_DNN 
model was consistent with the in-situ measurements and had overall 
correlation coefficient (R) of 0.88, root-mean-square-error (RMSE) of 
0.88 mm/day and bias of 0.37 mm/day. However, there is a lack of 
studies on improving global terrestrial ET estimation using the DNN 
method by merging multiple satellite-derived ET products. 

In the study, we proposed a DNN-merging framework to generate 
GLASS ET product v5.0 by merging five satellite-derived ET products. 
Our specific objectives are to (1) evaluate GLASS ET algorithm v5.0 that 
merges five satellite-derived ET products driven by the individual model 
using long-term FLUXNET EC data from 2000 through 2015; (2) 
compare the performances of DNN method against other merging 
methods (GLASS ET algorithm v4.0, Gradient boosting regression tree 
and Random forest) using EC observations at the site scale; and (3) 
generate the 8-day GLASS ET product v5.0 with a 1 km spatial resolution 
during 2001–2015 driven by GLASS vegetation and surface net radiation 
(Rn) datasets and Modern-Era Retrospective Analysis for Research and 
Applications, Version 2 (MERRA2) datasets. 

2. Data 

2.1. Eddy covariance observations 

Ground-measured EC data were used to evaluated the GLASS ET 
algorithm v5.0 and other three merging methods. The data from 
FLUXNET2015 database were collected from 195 EC flux tower sites 
(Fig. 1) distributed mainly in North America, Europe and Asia, with 5 EC 
flux tower sites in Africa, 4 EC flux tower sites in Australia and 4 EC flux 
tower sites in South America (Pastorello et al., 2020). These flux tower 
sites covered ten International Geosphere-Biosphere Program (IGBP) 
land cover types for the 2000–2015 period: cropland (CRO, 29 flux 

Table 1 
Summary of satellite-based ET products.  

Product Domain Resolution Time span Algorithm 

MOD16 Global 500-m/8-day 2001–2021 Penman–Monteith algorithm 
BESS Global 1 km/8-day 2000–2015 Simplified process-based model 
GLEAM v3 Global 0.25◦/daily 1980–2020 Priestley–Taylor algorithm 
PML_V2 Global 0.05◦/8-day 2002–2019 Penman–Monteith–Leuning model 
ETMonitor Global 1 km/daily 2009–2011 Shuttleworth–Wallace Dual-Source model 
FLUXCOM Global 0.0833◦/8-day 2000–2015 Machine learning method 
GLASS v4.0 Global (0.05◦)1 km/8-day (1981) 2000–2020 Bayesian model averaging method  
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tower sites), deciduous broadleaf forest (DBF, 25 flux tower sites), de-
ciduous needleleaf forest (DNF, 4 flux tower sites), evergreen broadleaf 
forest (EBF, 12 flux tower sites), evergreen needleleaf forest (ENF, 50 
flux tower sites), grassland (GRA, 36 flux tower sites), mixed forest (MIF, 
9 flux tower sites), savanna (SAW, 8 flux tower sites), shrubland (SHR, 
12 flux tower sites) and wetland (WET, 10 flux tower sites). We 
randomly divided the 195 EC flux tower sites into training and inde-
pendent validation groups: 132 sites (~70%) for training and the 
remaining 63 sites (~30%) for independent validation, each repre-
senting major global land cover types. 

Observations from the EC towers include surface net radiation (Rn), 
soil heat flux (G), sensible heat flux (H), air temperature (Ta), diurnal air 
temperature range (DT), vapor pressure (e), shortwave radiation (Rs), 
relative humidity (RH), wind spread (WS), soil moisture (SM) and ET. 
The hourly or half-hourly ET, H and the corresponding meteorological 
variables were subsequently aggregated into daily means using the gap- 
filling method proposed by Reichstein et al. (2005), which utilizes both 
the co-variation of fluxes with meteorological variables and the tem-
poral autocorrelation of fluxes. If more than 25% of the data were 
missing on a given day, the values of that day were considered missing. 
Otherwise, daily values were obtained by multiplying the average 
hourly rate by 24 (hours) (Yao et al., 2015). The data covered the period 
of 2000–2015, and each flux tower site had at least one year of data. 
Although the EC method is considered a good method to measure ET, it 
suffers an energy imbalance where the measured available energy (Rn −

G) is greater than the sum of the measured ET and H (Foken, 2008). 
Therefore, we used the Bowen ratio closure method proposed by Twine 
et al. (2000) to correct ET as follows: 

ETcor = ET ×
(R − G)

(H + ET)
(1)  

where ETcor is the corrected evapotranspiration. 

2.2. Satellite-based ET products 

GLASS ET product v5.0 was generated based on the DNN method, 
which merges five traditional satellite-based ET products (MOD16, SW, 
PT-JPL, MS-PT and SIM) with a daily temporal resolution and 1 km 
spatial resolution (Table 2). The inputs for each ET model include (1) 
GLASS vegetation and radiation datasets: fraction of absorbed photo-
synthetically active radiation (FPAR), leaf area index (LAI), normalized 
difference vegetation index (NDVI) products with a 1 km spatial reso-
lution and 8-day temporal resolution, and the daily Rn with a 0.05◦

spatial resolution (Jiang et al., 2015; Liang et al., 2021; Xiao et al., 2016; 
Xiao et al., 2017; Xiao et al., 2014); and (2) MERRA2 datasets: Ta, DT, e, 
RH, SM and WS. The spatial resolution of the MERRA2 meteorological 
data is 1/2◦ Х 2/3◦. The daily FPAR, LAI, and NDVI values were 
temporally interpolated from the 8-day averages using the linear inter-
polation method, and all coarse resolution MERRA2 data and GLASS Rn 
data were resampled spatially to 1 km using the bilinear interpolation 
method. In addition, we used the MOD16 (Mu et al., 2011) and FLUX-
COM ET products (Jung et al., 2019) as comparison to evaluate the 
performance of the DNN for ET estimation. Information of FLUXCOM ET 
product is summarized in supplementary material. 

(1) MOD16 ET product. 
The MOD16 ET product was calculated based on the Pen-

man–Monteith equation, and the forcing data included daily satellite 
vegetation and daily surface meteorological data. The original beta 
version proposed by Mu et al. (2007) combined land cover, albedo and 
reanalysis data and improved Cleugh’s algorithm (Cleugh et al., 2007) to 
produce the MODIS-based ET product at the global scale. Subsequently, 

Fig. 1. Distribution of the 195 EC sites in the study. “Train” represents the training sites, and “Test” represents the validation sites.  

Table 2 
Summary of the five satellite-based ET products generated in this study for 2001–2015.  

Product Resolution Time span Algorithm Forcing Input of the LE product     

MERRA2 GLASS 

MOD16 1 km/8-day 2001–2015 Penman–Monteith algorithm Ta, Tmin, e, RH FPAR, LAI, Rn 

SW 1 km/8-day 2001–2015 Shuttleworth–Wallace dual-source model RH, Ta, e, SM, WS FPAR, LAI, NDVI, Rn 

PT-JPL 1 km/8-day 2001–2015 Priestley–Taylor algorithm Ta, Tmax, e, RH FPAR, LAI, NDVI, Rn 

MS-PT 1 km/8-day 2001–2015 Priestley–Taylor algorithm Ta, DT NDVI, Rn 

SIM 1 km/8-day 2001–2015 Simple hybrid algorithm Ta, Tmax, Tmin NDVI, Rn  
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Mu et al. (2011) improved the algorithm by utilizing the evaporation 
from canopy interception, which was not considered in the former al-
gorithm. The latest improvements by Mu et al. (2011) include (1) 
simplifying the calculation of the vegetation cover fraction; (2) calcu-
lating ET as the sum of daytime and nighttime components; (3) adding 
the soil heat flux calculation; (4) improving estimates of the stomatal 
conductance, aerodynamic resistance and boundary layer resistance; (5) 
separating the dry canopy surface from the wet surface; and (6) dividing 
the soil surface into a saturated wet surface and a moist surface (Mu 
et al., 2011). In this study, considering the latest MOD16A2 Version 6 
global ET product is an 8-day composite dataset and it doesn’t include 
urban and barren areas, we calculated daily ET based on the MOD16 
algorithm driven by daily meteorological and satellite data. The differ-
ence between the MOD16 we produced and the original product is that 
our estimated MOD16 ET includes the ET values of non-vegetated areas. 
We produced the daily MOD16 ET product with a 1 km spatial resolution 
for the period from 2001 to 2015. 

(2) SW ET product. 
SW ET product was calculated using the Shuttleworth–Wallace Dual- 

Source (SW) model proposed by Shuttleworth and Wallace (1985), 
which accounted separately for the energy balance for vegetation and 
soil components of a soil–vegetation canopy unity (Hu and Jia, 2015; 
Yao et al., 2017a). It is a one-dimensional model to describe the energy 
partition of sparse crops. Theoretical improvement of this model in-
troduces a combination equation that describes evaporation in terms of 
controlling resistances associated with the plants, soil and water. The 
equation provides a simple but physically explainable illustration of the 
transition between bare substrate and a closed canopy (Shuttleworth 
and Wallace, 1985). Inputs of the model include RH, Ta, WS, LAI, SM and 
e from the MERRA2 datasets and Rn from the GLASS datasets. We pro-
duced the daily SW ET product with a 1 km spatial resolution for the 
period from 2001 to 2015. 

(3) PT-JPL ET product. 
PT-JPL ET product was derived from the Priestley–Taylor algorithm 

of the Jet Propulsion Laboratory (PT-JPL). The PT-JPL algorithm was 
based on the original work of Priestley and Taylor (1972) and a novel 
improvement by Fisher et al. (2008). The simplified version of the 
Penman–Monteith model proposed by Fisher et al. (2008) overcomes the 
calculation of aerodynamic and surface resistance and thereby requires 
no inputs of any ground-based observations. The model requires no site 
calibration, tuning or spin-ups and is applied on a per-pixel basis. The 
PT-JPL algorithm was validated by EC observations from 16 FLUXNET 
sites, and the validation results indicated that the R2 was 0.90 (RMSE =
16 mm/month or 28%) across 2 years (Fisher et al. (2008)). The input 
variables include RH, Rn, Ta, WS, LAI, and e from the MERRA2 datasets 
and NDVI and FPAR from the GLASS datasets. We produced the daily PT- 
JPL ET product with a 1 km spatial resolution for the period from 2001 
to 2015. 

(4) MS-PT ET product. 
MS-PT ET product was produced based on the Modified Satellite- 

based Priestley–Taylor (PT-JPL) algorithm developed by Yao et al. 
(2013). To circumvent the difficulty of the satellite-based estimation of 
RH and vapor pressure deficit (VPD) for the PT-JPL algorithm, the MS- 
PT algorithm used the Apparent Thermal Inertia (ATI) derived from the 
temperature (Ta, or land surface temperature, LST) change over time to 
replace RH and VPD for calculating the SM constraint. Similar to PT-JPL, 
the MS-PT algorithm avoids the computational complexities of aero-
dynamic resistance parameters. The MS-PT algorithm only needs four 
variables: Rn, Ta, DT and NDVI. The MS-PT algorithm was evaluated 
based on ground observations from 16 flux tower sites in China, and the 
results showed that compared with the PT-JPL model, the MS-PT algo-
rithm increased the coefficient of determination (R2) by approximately 
10% and slightly reduced the root-mean-square error (RMSE) and mean 
biases. We produced the daily MS-PT ET product with a 1 km spatial 
resolution for the period from 2001 to 2015. 

(5) SIM ET product. 

SIM ET product was estimated based on a simple hybrid (SIM) al-
gorithm proposed by Wang and Liang (2008). In a previous study, Wang 
et al. (2007) used a simple and relatively accurate algorithm that com-
bines Rn, NDVI, and Ta. However, the former algorithm fails to effec-
tively consider the influence of SM. Previous studies have found that SM 
has a potentially important effect on ET and that DT is also a good in-
dicator to characterize SM (Detto et al., 2006; Krishnan et al., 2006). 
Therefore, Wang and Liang (2008) developed SIM algorithm using DT to 
replace SM to further improve ET parameterization. The SIM algorithm 
was validated based on long-term ground measurements from the At-
mospheric Radiation Measurement (ARM) and AmeriFlux sites, and the 
results indicated that the SIM algorithm improved the accuracy of ET 
estimation relative to the beta algorithm of Wang et al. (2007). We 
produced the daily SIM ET product with a 1 km spatial resolution for the 
period from 2001 to 2015. 

3. Methods 

3.1. GLASS ET algorithm v5.0 

GLASS ET algorithm v5.0 is a deep neural networks (DNN)-merging 
method that is a mathematical model analogous to human neurons, 
including input layers, hidden layers and output layers (Krizhevsky 
et al., 2012). Each layer of the DNN contains several neurons that are 
fully connected between layers. For instance, any neuron in Layer i is 
connected to all other neuron in Layer i + 1. The connections between 
adjacent neurons are linear. Due to the fully connected relationships 
between multiple hidden layers, the DNN is able to simulate nonlinear 
feature relationships to maximize the target information extraction from 
limited data (Srivastava et al., 2014). The DNN has powerful nonlinear 
fitting capabilities and can approximate nonlinear continuous functions 
with arbitrary accuracy. The DNN can automatically extract training 
rules from data and has strong feature extraction capabilities. In addi-
tion, it is significantly more efficient in processing high-dimensional 
datasets than machine learning methods (Hinton and Salakhutdinov, 
2006). 

In this study, the DNN is applied to generate GLASS ET product v5.0 
by merging five satellite-based ET products. We set five ET products 
(MOD16, SW, PT-JPL, MS-PT and SIM) as the input layer and set the 
estimated ET as the output layer (Fig. 2). Multiple hidden layers exist 
between the input and output layers, and the nodes within are fully 
connected. For each node, the output (bi) is calculated as: 

bi =
∑m

n = 1
Wni × an (2)  

where Wni is the connection weight of the nth neuron in the hidden layer 
and the ith output layer neuron, and an is the output of the nth neuron in 
the hidden layer. 

The availability of outputs from nodes is impacted by the activation 
function. We applied the ReLU as the activation function: 

σ(bi) =

{
βi − θi, if (βi − θi) ⩾ 0

0, if (βi − θi) < 0 (3)  

where σ is the activation function of the neural network, βi is the output 
received by the ith neuron in the output layer and θi is the threshold of 
the jth neuron in the output layer. 

For each node, the output of bi is linear. The ReLU function in-
troduces the nonlinear feature into connections among nodes while 
simultaneously avoiding the problems of vanishing gradients and ex-
ploding gradients, thus guaranteeing the accuracy of DNN fitting. The 
learning process of the DNN is used to adjust the connection weight 
between neurons and the threshold of each neuron based on the results 
of the training. 
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3.2. Other merging algorithms 

(1) GLASS ET algorithm v4.0. 
GLASS ET algorithm v4.0 is a Bayesian model averaging (BMA)- 

merging method – a statistical probability theory-based method for 
synthesizing model results proposed by Raftery et al. (1997). The BMA 
establishes a probability density function (PDF) for the variables using 
the weighted average of the individual models’ forecasted probability 
distributions after correction for bias, weighted by the posterior prob-
ability distribution of the corresponding model. GLASS ET product v4.0 
used the BMA method to merge five individual ET products for terres-
trial ET estimation (Yao et al., 2014). The PDF for ET weights each 
model by its posterior model probabilities and uses average weights of 
the PDFs for each model, which may reduce the uncertainties in indi-
vidual models and thus improve ET accuracy (Chen et al., 2015). 

(2) Gradient boosting regression tree. 
Gradient boosting regression tree (GBRT) proposed by Friedman 

(2001) is an iterative decision tree algorithm formed by combining 
models from individual decision trees. The core idea of GBRT is to use 
the negative gradient of the loss function in the current model as an 
approximation to the residuals by minimizing the loss function, and each 
subtree is formed by iterating over the residuals of all previous subtrees. 
In each iteration, GBRT fits the residuals of a randomly sampled subset 
rather than the original training data. GBRT has better predictive ca-
pacity and stability than a single decision tree algorithm (Kotsiantis, 
2013). 

(3) Random forest. 
Random forest (RF) is a machine learning algorithm that integrates 

multiple decision trees proposed by Breiman (2001), with the result 
relying on the judgment of each decision tree. For each subtree, random 
sampling is applied, and for each sample, random features are selected 
to build a subtree, and the optimal set of subtrees is iteratively selected 
to build the RF. The RF subsets perform well in both classification and 
regression and generate excellent generalization results using randomly 
selected subtree samples and features. The method has shown superi-
ority in reducing variance and preventing overfitting as an ensemble of 
multiple subtrees (Elith et al., 2008). 

3.3. Model evaluation metrics 

To evaluate the performance of different algorithms, the correlation 
coefficient of determination (R2), root-mean-square error (RMSE), bias 
and Kling–Gupta efficiency (KGE) were adopted. The KGE is a compre-
hensive assesment for model performance (Gupta et al., 2009) incor-
porating the mean value ratio (β), relative variability ratio (α) and 

correlation (r): 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(β − 1)2
+ (α − 1)2

+ (r − 1)2
√

(4)  

β =
μest

μobs
(5)  

α =
σest

σobs
(6)  

where μest and μobs are the mean values of estimations and observations, 
respectively; σest and σobs are the standard deviation of estimations and 
observations, respectively. In ideal circumstances with no simulation 
error, the values are β = α = r = 1; thus, the optimal value of KGE is 1. 

3.4. Experimental setup 

To build models, we extracted ET observations from EC flux tower 
sites and the corresponding ET values from five satellite-based products. 
ET observations from 195 flux tower sites were collected as target var-
iables, and ET values extracted from five ET products (MOD16, SW, PT- 
JPL, MS-PT and SIM) were used as predictor variables (Fig. 3). To train 
and validate the models, all 195 EC flux tower sites were separated into 
two independent subsets for model training (132 flux tower sites) and 
validation (63 flux tower sites), each representing major global land 
cover types. The optimal parameters that provided the highest correla-
tion coefficient were chosen in the training data and then were used to 
estimate ET. 

We built the DNN, BMA, RF and GBRT based on Sklearn, Keras and 
TensorFlow modules on the Python platform. To determine the optimal 
parameter for each method, we applied the GridSearchCV module. The 
GridSearchCV method tunes parameters by trying every possibility 
through loop traversal among all parameter combinations and thereby 
selecting the optimal ones. For DNN models built with Keras and Ten-
sorFlow modules, the major parameters of selection are activation and 
density. We tested the second-layer to the fifth-layer which fully connect 
the DNN model, implementing the merging of the satellite-derived ET 
products and ground-based measurements. For each hidden layer, we 
used nodes (2, 4, 8, 16, 32, 64, 128) for random combinations. To reduce 
the risk of overfitting, we restricted the hidden layers to three (16, 8, and 
4) and adopted a ‘rectified linear units’ (ReLU) activation function for 
the hidden layer. We used the Adam optimizer and the mean squared 
error (MSE) loss function to compile the DNN model. The training ter-
minal was set as 1000 echoes, and the RMSE was used as the cost 
function. Acquisition of the optimal parameters of the model not only 
improves the accuracy of model simulation but also shortens model 

Fig. 2. The structure of the DNN used in this study.  
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running time. 

4. Results 

4.1. Evaluation of GLASS ET algorithm v5.0 

4.1.1. Model development based on the training EC observations 
We trained GLASS ET algorithm v5.0 (DNN), GLASS ET algorithm 

v4.0 (BMA), GBRT and RF using the EC data collected from 132 training 
flux tower sites for merging ET products. It’s clear that the estimated 
daily ET from GLASS ET algorithm v4.0 is much closer to the EC 
observation than that of the other individual satellite-based ET products 
(supplementary material). Fig. 4 shows the comparison between the 
daily ET observations and the estimated ET from different methods at 
the 132 training sites. Regarding the parameters of R2, RMSE and bias, 
GLASS ET algorithm v5.0, GBRT and RF yield rather similar results 
based on R2 (0.68, 0.67 and 0.68, respectively), RMSE (22.2, 22.3 and 
22.1 W/m2, respectively) and bias (− 0.2, − 0.1 and − 0.1 W/m2, 
respectively), and preformed slightly better than the results of GLASS 
Algorithm v4.0 with a R2 value of 0.64, RMSE of 23.5 W/m2 and bias of 
0.4 W/m2. However, in terms of KGE, GLASS ET algorithm v5.0 per-
formed better than with GBRT and RF. Compared with GLASS ET v4.0, 
GLASS ET v5.0 increased R2 and KGE by 6% and 11%, respectively. 

GLASS ET v4.0 tended to underestimate ET when ET had high values, 
while GLASS ET v5.0 can partly improve the issue. Moreover, GLASS ET 
v5.0 shows a relatively symmetrical bias distribution and is thus more 
likely to provide unbiased ET estimation on average. 

Fig. 5 compares statistics (R2, RMSE, Bias and KGE) of different 
merging methods (GBRT, RF, GLASS ET v4.0 and GLASS ET v5.0) at 132 
training flux tower sites across different land cover types. It is clear that 
for CRO, all four merging methods present the lowest performance with 
the lowest KGE (0.55–0.68) and R2 (0.55–0.63, p < 0.01), highest RMSE 
(28.1–30.1 W/m2) and negative bias (− 10.9 to − 8.6 W/m2). In addition, 
all merging methods yield a relatively lower performance for EBF, GRA 
and WET. In contrast, all merging methods for MIF produce the best 
performance with the highest KGE (0.82–0.88) and R2 (0.80–0.81, p <
0.01) and lowest RMSE (16.4–17.3 W/m2). Overall, for all land cover 
types, GLASS ET v5.0 outperforms GBRT, RF and GLASS ET v4.0, with 
favorable R2 values ranging from 0.62 to 0.81 (p < 0.01), KGE ranging 
from 0.68 to 0.88, RMSE ranging from 16.4 to 28.1 W/m2 and bias 
ranging from − 10.1 to 4.2 W/m2. Therefore, we can conclude that 
GLASS ET v5.0 is the best method among all four merging methods used 
in this study. 

. 

Fig. 3. The flowchart of the study.  
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4.1.2. Model evaluation based on the validation EC observations 
We evaluated GLASS ET v5.0 (DNN), GLASS ET v4.0 (BMA), GBRT 

and RF using EC observations collected from 63 validation flux tower 
sites. Fig. 6 presents the comparison of the estimated ET from different 
merging methods and ground-observed ET at 63 validation flux tower 
sites for all land cover types. Although GLASS ET v4.0 has an acceptable 
accuracy based on R2 (0.58, p < 0.01) and RMSE (24.3 W/m2), it per-
forms the worst in terms of KGE (0.70) by comparison with other 
merging methods. In contrast, GLASS ET v5.0 yields the best perfor-
mance in terms of R2 (0.62, p < 0.01), RMSE (24.1 W/m2) and KGE 
(0.77), followed by RF and GBRT. Compared with GLASS ET algorithm 
v4.0, GLASS ET algorithm v5.0 improved R2 and KGE by 7% (p < 0.01) 
and 10%, respectively. Similar to the conclusions for the training data, 
GLASS ET v4.0 still tends to underestimate ET when high ET occurs, 
while GLASS ET v5.0 yields unbiased ET estimation. 

Fig. 7 displays the statistics (R2, RMSE, Bias and KGE) of the com-
parison among different merging methods (GLASS ET v5.0, GLASS ET 
v4.0, GBRT and RF) at 63 validation flux tower sites for different land 
cover types. For EBF, all merging models illustrate the worst perfor-
mance with the lowest KGE (0.52–0.64) and R2 (0.39–0.46, p < 0.01), 
and the largest RMSE (27.1–30.2 W/m2). In contrast, all merging 
methods for SHR have the highest LE accuracy with the highest KGE 
(0.81–0.85) and R2 (0.72–0.79, p < 0.01) and the lowest RMSE 
(12.4–15.5 W/m2). In addition, GLASS ET algorithm v5.0, along with 
other merging methods, also demonstrates satisfactory LE performance 
[KGE of 0.69–0.79, R2 of 0.49–0.78 (p < 0.01) and RMSE of 20.5–26.0 
W/m2] for the DBF and MIF land cover types. Overall, although the 
merging models might generate good LE estimations for different land 
cover types, GLASS ET algorithm v5.0 demonstrates the best perfor-
mance with the largest KGE (0.57–0.85) and R2 (0.46–0.79, p < 0.01) 

Fig. 4. Comparison of the estimated ET from different merging methods and ground measurements at 132 training flux tower sites for all land cover types.  
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and with the smallest RMSE (12.4–27.2 W/m2) and bias (− 3.2 to 11.6 
W/m2), respectively. Compared with GLASS ET algorithm v4.0, the 
performance of GLASS ET algorithm v5.0 shows a large improvement 
among all land cover types. The most obvious improvement occurs in 
the DBF and WET land cover types; the KGE values are enhanced over 
5%, and the R2 values are enhanced more than 12%. Similarly, for CRO 
and EBF, the GLASS ET algorithm v5.0 enhanced the R2 values more 
than 11%. 

Fig. 8 shows a time series for 8-day EC observations and the esti-
mated ET from multiple algorithms (or products) for ten typical land 
cover types. In comparison to the individual LE products, GLASS v5.0- 
derived ET estimates capture more accurate seasonal ET variations 
that were closest to the ET observations for multiple land cover types. 
Overall, the error of the estimated ET based on GLASS is smaller than the 
error from the individual ET products. Therefore, the GLASS ET 

algorithm v5.0 can effectively capture the ET seasonal variance and is 
reliable for acquiring long-term ET products. 

4.2. Global summary and spatial pattern 

We generated GLASS ET product v5.0 with a 1 km spatial resolution 
and 8-day temporal resolution. Fig. 9 displays the spatial pattern of 
average annual terrestrial ET (2001–2015) for GLASS ET product v5.0, 
GLASS ET product v4.0, MOD16, SW, PT-JPL, MS-PT and SIM ET 
product over the globe. For GLASS ET v5.0, the highest ET occurs in 
equatorial regions, typically including the rainforests of Amazon, Ituri 
and Harapan, and the lowest ET estimates occur in high-latitude regions. 
Compared with the other six ET products, GLASS ET v5.0 has a similar 
spatial pattern during 2001–2015. GLASS ET v5.0 yields a global 
average annual terrestrial ET (excluding Antarctica) of 41.2 W/m2, 

Fig. 5. Diagrams of the statistics (R2, RMSE, Bias and KGE) of the comparison between different merging methods (GBRT, RF, GLASS ET v4.0 and GLASS ET v5.0) at 
132 training flux tower sites for different land cover types. 
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which is lower than the ET values (42.1 W/m2) of GLASS ET v4.0, but it 
falls within the range of 35–41 W/m2 documented by previous studies 
(Ma et al., 2021; Wang and Dickinson, 2012). 

Fig. 10 shows the spatial difference in the average annual global 
terrestrial ET (2001–2015) between GLASS ET v5.0 and the other six ET 
products. GLASS ET v5.0 yields significantly lower ET values than 
GLASS ET v4.0 around tropical areas and higher ET values in North 
Africa and a portion of Australia. In these regions, the differences in ET 
estimates are within ±8 W/m2. In general, GLASS ET v5.0 yields small 
spatial differences when compared with PT-JPL and SIM. However, 
relative to SW, GLASS ET v5.0 yields a large spatial difference in South 
America and South Africa. When compared with MS-PT, GLASS ET v5.0 
has lower ET values for most regions, including North Africa, the 
Arabian Peninsula and northwestern Australia. This spatial dissimilarity 
is possibly caused by differences in the structures of different ET models. 

5. Discussion 

5.1. The performance of GLASS ET v5.0 

5.1.1. The ability of GLASS ET v5.0 to estimate ET 
We applied the DNN to produce GLASS ET product v5.0 by merging 

five individual satellite products and found that the DNN preserves 
spatiotemporal consistency and produces reliable and robust estimation 
for most cover types. Independent validations for 63 EC flux tower sites 
demonstrated that GLASS ET v5.0 showed the best performance with the 
highest KGE and R2 and the lowest RMSE and bias when compared with 
the other merging methods for most land cover types (Fig. 6 and Fig. 7). 
We found that the GLASS ET v5.0 method showed large differences 
among biomes and performed better for DBF [KGE of 0.79, R2 of 0.78 (p 
< 0.01) and RMSE of 20.9 W/m2] and SHR [KGE of 0.85, R2 of 0.79 (p <
0.01) and RMSE of 12.4 W/m2] flux tower sites when compared with the 
other land cover types. This might be explained by the fact that GLASS 
ET v5.0 uses vegetation indices or LAI to successfully capture the sea-
sonal ET variations for these vegetation types (Ershadi et al., 2014) 

Fig. 6. Comparison of the estimated ET from different merging methods (GBRT, RF, GLASS ET algorithm v4.0 and GLASS ET algorithm v5.0) and ground-observed 
ET at 63 validation flux tower sites for all land cover types. 
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because the strong seasonality of satellite vegetation variables (NDVI, 
FPAR and LAI) could reflect accurate information on seasonal changes in 
vegetation (Yebra et al., 2013). Several previous studies have docu-
mented that some satellite-based ET algorithms, i.e., the surface energy 
balance system (SEBS), PT-JPL, and the beta version of MOD16, could 
generate more accurate ET estimates for vegetation with significant 
seasonal variation (e.g., DBF) (Mu et al., 2007; Vinukollu et al., 2011a; 
Vinukollu et al., 2011b). Therefore, by merging these individual ET 
products that can provide a reasonable seasonality of ET variability, 
GLASS ET v5.0 improves the accuracy of ET estimation. In contrast, for 
some evergreen forests, such as the EBF [KGE of 0.64, R2 of 0.46 (p <
0.01) and RMSE of 27.2 W/m2] and ENF [KGE of 0.64, R2 of 0.49 (p <
0.01) and RMSE of 24.0 W/m2], GLASS ET v5.0 yields a relatively poorer 
estimate. This may be attributable in part to the fact that seasonal EBF 
variation is less evident (Yebra et al., 2013). GLASS ET v5.0 tends to 

underestimate ET for CRO and GRA flux tower sites while it tends to 
overestimate ET for forest flux tower sites. This might be mainly caused 
by the limitations of the individual ET products. For example, the MS-PT 
ET product was produced by a simplified PT method that tends to un-
derestimate ET for CRO and GRA flux tower sites (Yao et al., 2013), 
which may make a large contribution to the uncertainties of DNN-based 
estimations. Despite its underestimation or overestimation, GLASS ET 
v5.0 has relatively higher accuracy compared with other individual 
products. 

A series of validations using EC observations also confirmed the 
improvement of GLASS ET v5.0 over GLASS ET v4.0. Generally, ET 
underestimation for high values was found for GLASS ET v4.0 but not for 
GLASS ET v5.0 (Fig. 6 and Fig. 7). This might partially be attributed to 
the fact that the DNN can fit nonlinear input data well owing to multi-
layer learning, while BMA cannot (Duan et al., 2007). Moreover, the 

Fig. 7. Diagrams of the statistics (R2, RMSE, Bias and KGE) of the comparison between different merging methods (GBRT, RF GLASS ET v4.0 and GLASS ET v5.0) at 
63 validation flux tower sites for different land cover types. 
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DNN is superior to the BMA for transforming input data and reaching a 
depth of tens/hundreds of multiple layers, saving much time and effort 
(Rumelhart et al., 1986; Yoshua, 2009). 

To investigate the difference between the merged ET and the 
upscaled ET from the flux tower site to the global scale, we also esti-
mated global terrestrial ET using the DNN method driven by the forcing 
data of the five individual products as input variables. To compare the 

results of upscaling and fusion, we used forcing data from the same 
group of sites to upscale ET. Fig. 10 shows that the same satellite-derived 
data sources and ground observations and integration approach provide 
overall comparable performance in ET estimation with upscaling ET 
(KGE of 0.77 and 0.75 for integration and upscaling of ET, respectively). 
This is supported by a study by Shang et al. (2021) who compared the 
results of a DNN trained model and upscaling using forcing data of five 

Fig. 8. Examples of the 8-day ET average as observed and estimated using the different models for the different land cover types.  
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products over the Heihe River Basin in China and found that merging ET 
produced consistent results with upscaling at the regional scale. 

However, the integration approach shows significant improvement 
in estimation accuracy in the extreme cases. Specifically, the KGE of the 
merged ET in the case of NDVI ≤ 0.15 arrives at 0.50, while the KGE of 
the upscaled ET is 0.40 (Fig. 11). This may be explained by the fact that 
the ET products used in the merging procedure are constrained by 
process-based models, which are capable of generating more reliable 
results under extreme circumstances, while the upscaling approach is 
confined to the training sample and fails to deal with extreme data and 

hence introduces uncertainty (Chen et al., 2014; Zhao et al., 2019). 
Therefore, the integration approach we chose can preserve model 
physics to maintain strong extrapolation capacity in extreme cases and 
thereby outperform the upscaling approach. 

5.1.2. The uncertainties of GLASS ET v5.0 
The uncertainties of GLASS ET v5.0 mainly include the errors of the 

individual ET products, the bias of EC observations, the spatial scale 
mismatch between flux tower sites and satellite pixels, and the algo-
rithm structure of the DNN (Fisher et al., 2020; Mu et al., 2011; 

Fig. 9. Spatial pattern of average annual terrestrial ET during 2001–2015 for different ET products.  
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Polhamus et al., 2013). The errors of the individual ET products are 
mainly inherited through the errors in forcing inputs (MERRA2 and 
satellite-derived vegetation variables) and the ET model structures. 

Previous studies showed that MERRA2 meteorological data also contain 
a large bias when compared to in-situ measurements, and no single 
reanalysis dataset is superior to others in terms of meteorological vari-
ables to estimate land surface energy budgets (Badgley et al., 2015; 
Ferguson et al., 2010). We used MERRA2 products with spatial resolu-
tion of 1/2◦ Х 2/3◦ that were resampled spatially into 1 km using the 
bilinear interpolation method. However, the resolution of MRERRA2 is 
greater than footprint for field measurements (Baldocchi, 2008). Thus, 
accurate meteorological information for flux tower sites cannot be ac-
quired due to their coarse spatial resolution and errors in the bilinear 
interpolation method (Zhang et al., 2010). Additionally, there also exist 
approximately 15–30% errors in the vegetation parameters (e.g., LAI, 
NDVI, or FPAR) retrieved from satellite-based observations (Ganguly 
et al., 2012; Kalma et al., 2008). Moreover, different ET model structures 
lead to a 20% bias in ET estimation (Polhamus et al., 2013). Therefore, 
the errors of inputs and model structures for the individual ET products 
contribute to large uncertainties in GLASS ET v5.0. Although EC ob-
servations are relatively accurate for ET acquisition, biases of approxi-
mately 5%–25% still exist (Foken, 2008). Importantly, the EC method 
suffers from an energy imbalance, and Foken (2008) reported that the 
EC method cannot observe large eddies, which will cause H + LE ∕= Rn – 

Fig. 10. Spatial differences in the average annual global terrestrial ET (2001–2015) between GLASS ET v5.0 and the other six ET products.  

Fig. 11. Comparison of KGE of the upscaled LE and integration of LE estimates 
by the DNN method under different NDVI cases. 
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G. Although we corrected the energy imbalance using a method devel-
oped by Twine et al. (2000), the uncertainties in EC observations remain 
unclear (Wang and Dickinson, 2012; Wilson et al., 2002). Additionally, 
the gap filling from half-hour intervals to daily periods will also intro-
duce a 5% bias into the daily ET values (Barcza et al., 2009; Falge et al., 
2001). 

The spatial mismatch between the flux tower footprint and satellite 
pixels could also introduce large uncertainties in the merged ET. The 
footprint of the flux tower site is several hundred meters (Barcza et al., 
2009), and the spatial resolution of GLASS pixels is 1 km. Inaccurate 
representations of the EC footprint may lead to large errors for merging 
ET (Wang et al., 2019). The DNN generally depends on the representa-
tion of training data. The lack of a sufficient amount of labeled data 
could lead to the inferior performance of the DNN (Bengio et al., 2013). 
Therefore, the uncertainties could be inherited through errors from 
training samples. Furthermore, DNN requires many hyperparameters as 
input and careful tuning to deliver a favorable learning performance 
(Yann et al., 2015). On the other hand, too many interfering factors 
could definitely introduce great uncertainties into the model construc-
tion process (Chollet, 2017). 

5.2. Comparison with the MOD16A2 and FLUXCOM ET products 

To evaluate the accuracy and spatial consistency of GLASS ET 
product v5.0 (8-day, 1 km) for different land cover types, we compared 
GLASS ET product v5.0 with the 8-day MOD16A2 ET product that was 
resampled into 1 km from 500 m using the bilinear method and 8-day 
FLUXCOM ET product resampled into 1 km from 0.0833◦ using the 
bilinear method. Fig. 12 shows the validation results of GLASS ET 
product v5.0, MOD16A2 ET product and FLUXCOM ET product based on 
EC observations at 63 validation flux tower sites. It is clear that GLASS 
ET v5.0 is superior to MOD16A2 with increasing R2 by 23% (p < 0.01), 
and KGE by 19% and reducing RMSE by 17%. This supports the 
conclusion that the ET estimated by merging multiple ET products using 
machine learning outperforms the ET estimated using the individual ET 
model (Shang et al., 2021). MOD16A2 was produced by the improved 
Penman–Monteith equation, which includes a complicated ET process. 
Thus, the errors in input data, including MODIS and MERRA2 reanalysis 
data, and the error transmission through the Penman–Monteith equa-
tion could reduce the accuracy of MOD16A2 (Ruhoff et al., 2013). For 
example, the classification accuracy of the MODIS land cover type 
product (MCD12Q1) is approximately 75% (Myneni et al., 1997; Wang 
et al., 2004), and misclassification of MCD12Q1 could also cause the 
large bias of MOD16A2. Additionally, the same biophysical parameters 
for different phonologies in the MOD16 algorithm might ignore the 
actual ET variations and reduce the accuracy of MOD16A2 (Turner et al., 
2003). Additionally, GLASS ET v5.0 outperforms FLUXCOM with 

increasing R2 by 6% (p < 0.01), and KGE by 7% and reducing RMSE by 
2%. Validation results illustrated that the machine learning-based ET 
products (e.g., GLASS ET v5.0 and FLUXCOM ET) are superior to the 
process-based ET products (e.g., MOD16) at site scale when the training 
sample is sufficiently representative, which may be attributed to the fact 
that both GLASS and FLUXCOM ET products make full use of prior 
knowledge of training samples partially inherited from EC observations 
(Shang et al., 2021). Moreover, GLASS ET v5.0 outperforms FLUXCOM 
in all dimensions because GLASS ET v5.0 not only preserves model 
physics to effectively simulate ET under extreme cases but has a strong 
DNN structure. 

We also found that the MOD16A2 ET product yields ET values below 
45 W/m2 for most regions of the world (Fig. 9). GLASS ET v5.0 uses the 
DNN to yield reliable global terrestrial ET, which are approximately 
consistent with those of MOD16A2 and FLUXCOM with acceptable dif-
ferences within ±20 W/m2 for most regions (Fig. 13). However, relative 
to MOD16A2, GLASS ET v5.0 underestimates ET in northern South 
America and South Asia and overestimates ET in Africa and Australia. 
Previous studies also revealed that MOD16A2 generally underestimated 
ET in arid and sparsely vegetated areas (Brust et al., 2021; Khan et al., 
2018; Marshall et al., 2020). Compared to FLUXCOM, GLASS ET v5.0 
underestimates ET in Central and South Africa and part of South 
America and overestimates ET in North Africa, West Asia and Australia. 
Previous studies reported FLUXCOM estimated with higher evaporation 
levels than GLDAS especially in Africa, while GLDAS performed stably in 
Africa (Staal et al., 2020). This may indicate that GLASS ET v5.0 has a 
more reliable spatial distribution of ET than MOD16A2 and FLUXCOM. 

5.3. Advantages and limitations of GLASS ET algorithm v5.0 

Compared with GLASS ET algorithm v4.0 and the individual ET 
products, GLASS ET algorithm v5.0 (DNN) has two distinct advantages. 
On the one hand, GLASS ET algorithm v5.0 improves global terrestrial 
ET estimation by merging five individual ET products and EC observa-
tions because it can accurately approximate the complicated nonlinear 
relationship between observed EC and the individual ET estimates using 
multilayer learning, which helps capture the potential association be-
tween different variables for spatiotemporal fusion of remote sensing 
data (Ngiam et al., 2011; Yuan et al., 2020). Several studies have also 
shown that merging algorithms can avoid intrinsic errors generated by a 
single model structure caused by overconfidence and significant bias, 
and applying machine learning methods to integrate multiple models 
can lead to higher ET estimate accuracy (Parrish et al., 2012; Zhu et al., 
2016). On the other hand, GLASS ET algorithm v5.0 preserves some 
physical mechanisms of individual algorithms for producing the indi-
vidual ET products and can better simulate ET under extreme conditions 
than pure machine learning. Substantial studies have reported that 

Fig. 12. Validation of GLASS ET product v5.0, MOD16A2 ET product and FLUXCOM ET product based on EC observations at 63 validation flux tower sites.  

Z. Xie et al.                                                                                                                                                                                                                                       



Journal of Hydrology 610 (2022) 127990

15

fusion models can merge the information provided by different sources 
to improve algorithm performance as well as provide a better physical 
interpretation of the results to enhance the understanding of ET pro-
cesses (Hu et al., 2021; Salcedo-Sanz et al., 2020). 

Similar to other machine learning methods, GLASS ET algorithm 
v5.0 also has two limitations. First, the DNN has a complex neural 
network model that requires a long time (~10 s for 1000 samples) to 
complete the generation of global ET products (Chollet, 2017). In gen-
eral, DNN always requires many hyperparameters, with the perfor-
mance of DNN depending largely on their parameter tuning, which will 
reduce the efficiency of the generation of ET products (Hinton and 
Salakhutdinov, 2006). Second, the DNN relies on sufficient training 
samples adequate forcing inputs to enhance model performance (Hinton 
et al., 2012). If the samples are not sufficient for some land cover types, 
the DNN could result in large biases of ET estimation. Furthermore, as 
different sources of ET products introduce different meteorological 
forcing into the model, the possible inclusion of unnecessary interfering 
factors and almost infinite configurational combinations might lead to 
the model construction process more uncertain (Zhou and Feng, 2017). 

6. Conclusions 

We introduced a DNN-merging framework to produce GLASS ET v5.0 
by merging five satellite-derived ET products and ground observations 
at 195 globally distributed EC sites from 2000 through 2015. Compared 
with the existing GLASS ET v4.0, GLASS ET v5.0 has relatively lower 
uncertainty and spatial consistency. The main results of this study are 
summarized as follows: 

(1) GLASS ET algorithm v5.0 outperformed other merging models, 
including GLASS ET algorithm v4.0 (BMA method), and two machine 
learning methods (RF and GBRT), which was superior to five individual 
satellite-derived ET products. 

(2) The EC validation results illustrated that GLASS ET product v5.0 
outperformed the MOD16A2 and FLUXCOM ET products and demon-
strated improvement in spatiotemporal prediction accuracy. 

(3) Compared with the upscaling of ET from site to global, the 
integration approach not only has comparable accuracy but also has 
enhanced performance for extreme cases because it can preserve model 
physics and maintain extrapolation capacity in extreme conditions. 
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chemistry, National Science Foundation, University of Tuscia, 
Université Laval, Environment Canada and US Department of Energy 
and the database development and technical support from Berkeley 
Water Center, Lawrence Berkeley National Laboratory, Microsoft 
Research eScience, Oak Ridge National Laboratory, University of Cali-
fornia – Berkeley and the University of Virginia. Other ground-measured 
data were obtained from the GAME AAN (http://aan.suiri.tsukuba.ac. 
jp/), the Coordinated Enhanced Observation Project (CEOP) in arid 
and semi-arid regions of northern China (http://observation.tea.ac.cn/), 
and the water experiments of Environmental and Ecological Science 
Data Center for West China (http://westdc.westgis.ac.cn/water). 

Fig. 13. Map of the spatial difference in the annual average (a) between GLASS ET product v5.0 and MOD16A2 ET product, and (b) between GLASS ET product and 
FLUXCOM ET product over the globe from 2001 to 2015. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jhydrol.2022.127990. 
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