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Xiangchen Meng , Associate Member, IEEE, Jie Cheng , Senior Member, IEEE, Beibei Yao, and Yahui Guo

Abstract— The ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station (ECOSTRESS) land surface tem-
perature (LST) product provides LST data with a high-spatial
resolution of 70 m × 70 m. In this letter, the quality of
ECOSTRESS LST product was assessed using ground measure-
ments collected from 17 sites, including seven surface radia-
tion budget network (SURFRAD) sites, seven baseline surface
radiation network (BSRN) sites, and three National Tibetan
Plateau/Third Pole Environment Data Center (TPDC) sites. After
outlier removal using the “3σ -Hampel identifier,” the overall bias
and root mean square error (RMSE) of ECOSTRESS LST at
SURFRAD, BSRN, and TPDC sites are −1.61 and 3.08 K, −0.75,
and 3.50 K, and −0.82 and 4.18 K, respectively. This letter shows
the accuracy and uncertainty of ECOSTRESS LST product, and
will benefit research fields that require LST with high-spatial
resolution.

Index Terms— Baseline surface radiation network (BSRN),
ecosystem spaceborne thermal radiometer experiment on space
station (ECOSTRESS), land surface temperature (LST), National
Tibetan Plateau/Third Pole Environment Data Center (TPDC),
surface radiation budget network (SURFRAD).

I. INTRODUCTION

LAND surface temperature (LST) is a key parameter
in land surface physical processes on regional and

global scales [1]. LST is also an important input parameter
for research on hydrology, urban climate, ecology, and so
on [2]–[4]. Remote sensing is a unique way of obtaining the
LST at regional and global scales. With the development of
thermal infrared (TIR) remote sensing, several LST products,
such as advanced spaceborne thermal emission and reflection
radiometer (ASTER), moderate resolution imaging spectrora-
diometer (MODIS), visible infrared imager radiometer suite
(VIIRS) [5], with different spatial and temporal resolutions
have been generated and applied to drought monitoring, evap-
otranspiration, and climate change studies [6]–[8].
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The ECOsystem Spaceborne Thermal Radiometer Exper-
iment on Space Station (ECOSTRESS) was launched to
the International Space Station (ISS) on June 29, 2018 [9].
ECOSTRESS TIR images are captured in five spectral chan-
nels centered on 8.29, 8.78, 9.20, 10.49, and 12.09 μm, with a
high-spatial resolution (38 m × 69 m pixels) and revisit time
(about three–five days) [10]. The ECOSTRESS LST product,
which generated using the temperature emissivity separation
(TES) algorithm [11], [12] is publicly available to the user
community since July 9, 2018. With a high-spatial resolution
of 70 m × 70 m, the ECOSTRESS LST product has significant
potential for exploring plant water use and stress, agricultural
water management, urban heat island, and volcanology studies.

The released LST products, e.g., MODIS, VIIRS, and
Landsat LST, have been validated by researchers using
temperature-based (T-based) method and radiance-based
(R-based) method [13]–[16]. At present, although ground
measurements have been used to validate the ECOSTRESS
LST product [17], [18], the exploration about the validation of
ECOSTRESS LST is still insufficient. Assessing the accuracy
of ECOSTRESS LST products will help encourage the use
across a wide range of applications. This study aims to validate
the ECOSTRESS LST product with T-based method using
ground measurements. This letter is organized as follows:
Section II introduces the used satellite data, ground mea-
surements, and the validation metrics. Section III provides
the validation results and discussion. Section IV shows the
conclusions of this study.

II. DATA AND PREPROCESSING

A. ECOSTRESS Level 2 Product

ECOSTRESS level-2 LST and emissivity (LST&E) prod-
uct was downloaded from https://search.earthdata.nasa.gov.
A physics-based TES algorithm is used for simultaneously
retrieving the LST&E from ECOSTRESS level-1 data. The
LST&E product contains 15 scientific datasets (SDSs), includ-
ing the LST, LST error, land surface emissivity (LSE) and
LSE error for the five spectral bands, broadband emissivity,
precipitable water vapor, and quality control (QC) for LST&E.

A pair of in situ LST and ECOSTRESS LST can be
obtained after the spatial–temporal match and QC. First, the
nearest neighbor sampling method is used to obtain the spatial
matching data based on the longitude and latitude of the vali-
dation site. Second, two in situ LSTs closest to ECOSTRESS
overpass time are linearly interpolated to obtain the temporal
matching data. Finally, LSTs with the best quality and nominal
quality are selected as the final matchup according to the QC
band of ECOSTRESS LST&E product. In total, we obtained

1558-0571 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 17,2022 at 01:19:29 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-0123-5405
https://orcid.org/0000-0002-7620-4507
https://orcid.org/0000-0002-0099-0759


3005305 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

Fig. 1. Distribution of the in situ sites.

more than 3000 ECOSTRESS LST images between August 1,
2018 and December 31, 2020. After the spatial–temporal
match and QC, only 753, 401, and 110 matchups were
obtained at surface radiation budget network (SURFRAD),
baseline surface radiation network (BSRN), and National
Tibetan Plateau/Third Pole Environment Data Center (TPDC)
sites, respectively.

B. LST Validation Sites

Ground measurements come from SURFRAD, BSRN, and
TPDC are used to validate the accuracy of ECOSTRESS
LST. The tower-based instrument pyranometer measures
high-quality upwelling and downwelling shortwave
and longwave radiation via Eppley [precision infrared
pyrgeometers (PIR)], EKO (MR-60), Kipp and Zonen
(CG4/CGR3/CGR4/CNR1/CNR4), which have been widely
used to validate LST products and surface longwave radiation
products [15], [19]–[27]. In this study, ground measurements
collected from seven SURFRAD sites, seven BSRN sites,
and three TPDC sites were used to validate the accuracy
of ECOSTRESS LST, which can be downloaded from
the following website: https://gml.noaa.gov/grad/field.html,
https://bsrn.awi.de/, and https://data.tpdc.ac.cn/, respectively.

Due to the cosine response of the pyranometer, the down-
ward facing pyranometer has 81◦ effective field of view [28].
Based on the tower height, the diameter of ground measure-
ments footprint in the horizontal plane for each site is listed in
Table I. Besides, the site distribution and specific information
of each in situ site are also shown in Fig. 1 and Table I.

In situ LSTs can be converted by upwelling and
downwelling longwave radiations observation using Stefan–
Boltzmann law

Ts =
[

F↑ − (1 − εb)F↓

εbσ

] 1
4

(1)

where Ts is ground LST, F↑ is the measured upwelling
longwave radiation, F↓ is the measured downwelling long-
wave radiation, σ is the Stefan–Boltzmann’s constant
(5.67 × 10−8 W/m2/K4), εb is the broadband emissivity, which
can be calculated from in situ emissivity or the five ASTER
narrowband emissivity using the following equation [19]:
εb = 0.197 + 0.025ε10 + 0.057ε11

+0.237ε12 + 0.333ε13 + 0.146ε14. (2)

TABLE I

SPECIFIC INFORMATION FOR EACH SITE

C. Validation Metrics

For the LST matchups, average ECOSTRESS LSTs of
1 × 1 pixel and 3 × 3 pixels were extracted from the standard
ECO2LSTE product. The performance of the ECOSTRESS
LST product was assessed through two error metrics: the aver-
age difference (Bias) and the root mean square error (RMSE).
To minimize the impact of cloud contamination and the
uncertainty of ground measurements, the “3σ -Hampel identi-
fier” [21], [29] is used to filter outliers that existed in the LST
matchups. In this letter, the differences between ECOSTRESS
and in situ LST were calculated, and then LST matchups
with LST differences less than median-3S or larger than
median+3S are regarded as outliers [21]. The S is described as

S = 1.4826 ∗ median{|xi − xm|} (3)

where xi is the data sequence of the differences between
ECOSTRESS and in situ LST, and xm the median value
of the xi .

III. RESULTS AND DISCUSSION

A. Validation Result Before Outlier Removal

The validation results of ECOSTRESS LST before outlier
removal are shown in Table II. As shown in Table II, the
accuracy for the 1 × 1 pixel and 3 × 3 pixels is similar,
the bias is between −1.9 and 1.7 K for most in situ sites,
and larger than 2.0 K for GoodwinCreek (GWN), Desert
Rock (DRA), Budapest (BUD), and HuaZhaiZi (HZZ) sites.
Most of the RMSEs are larger than 3.0 K, whereas at BUD,
Cabauw (CAB), Sioux Falls (SXF), Fort Peck (FPK), HZZ,
and MinQin (MQ) sites are larger than 7.0 K.

To analyze the reasons for large biases at the BUD, CAB,
FPK, SXF, HZZ, and MQ sites, the line charts between
ECOSTRESS LST and in situ LST for all matchups at those
sites are shown in Fig. 2. As shown in Fig. 2, there are clearly
some extreme outliers in the ECOSTRESS LST and in situ
LST, e.g., the ECOSTRESS LST is higher than 400 K at FPK
site, the in situ LST is nearly 250 K at SXF site. To explain
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TABLE II

VALIDATION RESULT OF ECOSTRESS LST PRODUCT FOR
EACH SITE BEFORE OUTLIER REMOVAL

Fig. 2. Plots of ECOSTRESS LSTs and in situ LSTs at the (a) FPK, (b) SXF,
(c) BUD, (d) CAB, (e) HZZ, and (f) MQ sites.

the reason more intuitively for larger bias, sample images of
ECOSTRESS LST at the BUD, CAB, FPK, SXF, HZZ, and
MQ sites are shown in Fig. 3. Obviously, the overestimated
LST at FPK, BUD, CAB, and MQ sites is due to the noticeable
strips. Based on the analysis of time series graphs and images
of adjacent dates, the underestimated LST at the FPK, SXF,
CAB, and MQ sites is due to the unmasked cloud pixels.
As for the HZZ site, part of the overestimated LST is due
to the noticeable strips and the other is the underestimation
of ground observations (the LST is close to 260 K during the
daytime of summer). Besides, the overestimated LST at SXF
sites may be due to the inaccurate LSE estimation (<0.94),
which is affected by the surrounding cloud.

In total, the outliers may be explained by three possible
reasons. First, accurate cloud identification is a challenging
endeavor, cloudy pixels in the ECOSTRESS LST product
cannot be completely masked, primarily due to the limita-
tions of having only calibrated ECOSTRESS thermal bands
available for the cloud mask detection algorithm. Second,
according to the statistics of ECOSTRESS LSE at the BUD,
CAB, and SXF sites, part of ECOSTRESS LSE for channel 4
(10.49 μm) is less than 0.80, which may be unreasonable for
grassland. On the one hand, the error of the TES algorithm
will bring uncertainty to the LSE product. On the other
hand, the undetected clouds also influence the accuracy of
the retrieved LSE. Third, measurement error or noise exists in
ground observations might increase the uncertainty of ground
truth [30].

Fig. 3. Sample images of ECOSTRESS LST at the (a) and (b) FPK, (c) and
(d) SXF, (e) and (f) CAB, (g) BUD, (h) and (i) HZZ, and (j) and (k) MQ sites.

TABLE III

VALIDATION RESULT OF ECOSTRESS LST PRODUCT FOR
EACH SITE AFTER OUTLIER REMOVAL

B. Validation Result After Outlier Removal

The bias and RMSE of the differences between
ECOSTRESS LST and in situ LST after removing the
outlier for each site are shown in Table III. After the outlier
removal, the accuracy is also similar for the 1 × 1 pixel
and 3 × 3 pixels results, but the number of effective LST
matchups for some sites is different. For 1 × 1 pixel result,
the bias ranges from −3.79 to −0.33 K at SURFRAD sites,
whereas RMSE ranges from 1.35 to 4.27 K. The accuracy
and uncertainty of ECOSTRESS LST product at BSRN sites
is worse than that at SURFRAD sites, with bias (RMSE)
ranges from −3.43 K (2.61 K) to 1.54 K (4.47 K). As for
TPDC sites, the bias ranges from −1.27 to −0.22 K, whereas
RMSE ranges from 2.40 to 5.02 K. For 3 × 3 pixels result,
the bias (RMSE) ranges from −3.80 K (1.41 K) to −0.04 K
(4.28 K), −3.81 K (2.40 K) to 1.43 K (4.88 K), and −1.33 K
(2.37 K) to −0.22 K (5.04 K) for SURFRAD, BSRN, and
TPDC sites, respectively.

Fig. 4 shows the scatterplots between ECOSTRESS LST
and in situ LST at SURFRAD, BSRN, TPDC, and all sites
after removing the outlier. The overall biases and RMSEs are
also similar for the 1 × 1 pixel and 3 × 3 pixels results, with
biases (RMSEs) between −0.75 K (3.02 K) and −1.61 K
(4.18 K). It is worth noting that the bias at SURFRAD

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 17,2022 at 01:19:29 UTC from IEEE Xplore.  Restrictions apply. 



3005305 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

Fig. 4. Scatterplots between ECOSTRESS LSTs and in situ LSTs at the
(a) SURFRAD, (b) BSRN, (c) TPDC, and (d) all sites after removing
the outlier.

Fig. 5. Boxplots of the STD of ECOSTRESS LST (statistics of a window
of 3 × 3 pixels) for each site.

sites is larger than that of BSRN sites, but the RMSE is
the opposite. When the evaluation results based on the bias
and RMSE are inconsistent, the unbiased RMSE defined as
(RMSE2 − bias2)1/2 by Vanhellemont [31] may be considered
as an indicator of the total error. As shown in Fig. 4, the
unbiased RMSEs at SURFRAD, BSRN, TPDC, and all sites
are 2.62 K (2.56 K), 3.42 K (3.41 K), 4.10 K (4.06 K), and
3.07 K (3.03 K), respectively, for 1 × 1 pixel (3 × 3 pixels)
results. Hulley et al. [18] evaluated the accuracy of
ECOSTRESS LST using the T-based and R-based methods,
with an average RMSE (mean absolute error) of 1.07 K
(0.40 K) at all sites. For the T-based method, ground measure-
ments collected from three Jet Propulsion Laboratory (JPL)
sites and two Karlsruhe Institute of Technology (KIT) sites
were used to validate LST. About 83% of the LST matchups
are acquired at inland water sites, with more homogeneous in
spatial and temporal scale. In this study, LST matchups are
acquired on 17 sites covered by vegetation and desert, which
can supplement the current validation work.

As the spatial representation of the site has an impor-
tant impact on validation, the standard deviation (STD) of
ECOSTRESS LST for the 3 × 3 pixels was also calculated
as an estimate of the spatial heterogeneity of the in situ sites.
Fig. 5 shows boxplots of the STD of ECOSTRESS LST for
each site. The STD of LST at SURFRAD and TPDC sites is
less than 0.5 K for most cases, which indicated the SURFRAD
and TPDC sites are more homogeneous than BSRN sites at
the ECOSTRESS pixel scale. Although the Izana (IZA) and
Selegua (SEL) sites seem more heterogeneous than other sites
at the ECOSTRESS pixel scale, the bias and RMSE at these

sites did not significantly increase. This phenomenon can be
explained by the following reasons.

1) ECOSTRESS LST product was validated with the lim-
ited matchup and the validation results may vary depend-
ing on the number of the valid matchups.

2) Theoretically, ground observations on BSRN sites
with small time intervals (1 min) are closer to the
ECOSTRESS LST because LST changes rapidly with
time.

C. Discussion

Although, robust outlier existed in the LST matchups
were removed before validation, negative biases, and large
uncertainty (>3.0 K) were found. Possible reasons for large
uncertainty are the inaccurate cloud detection, the heterogene-
ity of in situ sites, and the uncertainty of algorithm. First,
as mentioned in Section III, cloudy pixels in the ECOSTRESS
LST product cannot be completely masked, which may bring
uncertainty to LST product. Second, ideally validation of LST
product requires a site that is homogeneous in temperature
at the scale of the imagery. Although the heterogeneity of
SURFRAD sites have been widely discussed [13], [32], the
spatial and temporal representativeness of BSRN and TPDC
sites is still unresolved and needs to be evaluated before LST
validation. Moreover, as indicated by Malakar et al. [15],
spatial heterogeneity of LST at the DRA and TableMountain
(TBL) sites is larger than that of other SURFRAD sites,
which need to be excluded for the validation of LST products
with high-spatial resolution. Except for the DRA and TBL
sites, the bias (RMSE) of ECOSTRESS LST product ranges
from −1.44 K (1.35 K) to −0.33 K (2.53 K) at SURFRAD
sites. Finally, as point out in the algorithm theoretical basis
documents (ATBDs) of level 2 product, due to the mass storage
unit failure anomalies, level 2 product generated using the
original five-band TES algorithm was changed to use the three-
band TES algorithm after May 15, 2019, with RMSE increase
from approximately 1 to near 1.5 K based on simulations.
In addition, the tower-based measurements usually cannot rep-
resent satellite sensor footprint, up-scaling model may be used
to estimate the uncertainty of LST product [13]. Furthermore,
as a supplement of T-based method, the R-based method does
not require in situ LSTs, we can collect atmospheric profiles
at the time of satellite overpass and the surface emissivity to
validate LST products at the global scale.

IV. CONCLUSION

In this study, the accuracy and uncertainty of ECOSTRESS
LST products, which acquired over 2 years from August 1,
2018 and December 31, 2020, was validated using T-based
method by ground measurements collected from 17 sites,
including seven SURFRAD sites, seven BSRN sites, and three
TPDC sites. Considering the accurate cloud identification is a
challenging endeavor, outliers existed in the LST matchups
were filtered using the “3σ -Hampel identifier.” According to
the analysis, the outliers are mainly caused by the noticeable
strips, the unmasked cloud pixels, and the uncertainty of
ground observations. The validation results indicate that the
ECOSTRESS LST product underestimates the LSTs. For the
1 × 1 pixel results, the biases (RMSEs) of SURFRAD, BSRN,
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and TPDC sites are −1.61 K (3.08 K), −0.75 K (3.50 K),
and −0.82 K (4.18 K), respectively. As for the 3 × 3 pixels
results, those values are −1.61 K (3.02 K), −0.80 K (3.50 K),
and −0.85 K (4.15 K), respectively. The overall bias, RMSE,
and unbiased RMSE of all sites is −1.26 K (−1.28 K),
3.32 K (3.29 K), and 3.07 K (3.03 K) for the 1 × 1 pixel
(3 × 3 pixels) results. The validation of ECOSTRESS LST
products using ground measurements will facilitate the use of
the LST product for drought monitoring, evapotranspiration,
and climate change studies.

REFERENCES

[1] Z. Wan and J. Dozier, “A generalized split-window algorithm for
retrieving land-surface temperature from space,” IEEE Trans. Geosci.
Remote Sens., vol. 34, no. 4, pp. 892–905, Jul. 1996.

[2] M. C. Anderson, J. M. Norman, W. P. Kustas, R. Houborg, P. J. Starks,
and N. Agam, “A thermal-based remote sensing technique for routine
mapping of land-surface carbon, water and energy fluxes from field to
regional scales,” Remote Sens. Environ., vol. 112, no. 12, pp. 4227–4241,
Dec. 2008, doi: 10.1016/j.rse.2008.07.009.

[3] S.-B. Duan, Z.-L. Li, B.-H. Tang, H. Wu, and R. Tang, “Generation
of a time-consistent land surface temperature product from MODIS
data,” Remote Sens. Environ., vol. 140, pp. 339–349, Jan. 2014, doi:
10.1016/j.rse.2013.09.003.

[4] J. A. Sobrino, F. Del Frate, M. Drusch, J. C. Jiménez-Muñoz,
P. Manunta, and A. Regan, “Review of thermal infrared applications
and requirements for future high-resolution sensors,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 5, pp. 2963–2972, May 2016, doi:
10.1109/TGRS.2015.2509179.

[5] H. Li et al., “Evaluation of atmospheric correction methods for the
ASTER temperature and emissivity separation algorithm using ground
observation networks in the HiWATER experiment,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 5, pp. 3001–3014, May 2019, doi:
10.1109/TGRS.2018.2879316.

[6] J. Hansen, R. Ruedy, M. Sato, and K. Lo, “Global surface
temperature change,” Rev. Geophys., vol. 48, no. 4, 2010, doi:
10.1029/2010rg000345.

[7] J. Cheng and W. Kustas, “Using very high resolution thermal
infrared imagery for more accurate determination of the impact of
land cover differences on evapotranspiration in an irrigated agricul-
tural area,” Remote Sens., vol. 11, no. 6, p. 613, Mar. 2019, doi:
10.3390/rs11060613.

[8] T. Hu et al., “Monitoring agricultural drought in Australia using MTSAT-
2 land surface temperature retrievals,” Remote Sens. Environ., vol. 236,
Jan. 2020, Art. no. 111419, doi: 10.1016/j.rse.2019.111419.

[9] S. J. Hook et al., “In-flight validation of the ECOSTRESS, Landsats
7 and 8 thermal infrared spectral channels using the Lake Tahoe
CA/NV and Salton Sea CA automated validation sites,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 2, pp. 1294–1302, Feb. 2020, doi:
10.1109/TGRS.2019.2945701.

[10] G. Hulley, S. Shivers, E. Wetherley, and R. Cudd, “New ECOSTRESS
and MODIS land surface temperature data reveal fine-scale heat vulnera-
bility in cities: A case study for Los Angeles County, California,” Remote
Sens., vol. 11, no. 18, p. 2136, Sep. 2019, doi: 10.3390/rs11182136.

[11] A. Gillespie et al., “A temperature and emissivity separation algorithm
for Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter (ASTER) images,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 4,
pp. 1113–1126, Apr. 1998.

[12] T. Islam, G. C. Hulley, N. K. Malakar, R. G. Radocinski, P. C. Guillevic,
and S. J. Hook, “A physics-based algorithm for the simultaneous retrieval
of land surface temperature and emissivity from VIIRS thermal infrared
data,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 563–576,
Jan. 2017, doi: 10.1109/TGRS.2016.2611566.

[13] P. C. Guillevic et al., “Land surface temperature product validation
using NOAA’s surface climate observation networks—Scaling method-
ology for the Visible Infrared Imager Radiometer Suite (VIIRS),”
Remote Sens. Environ., vol. 124, pp. 282–298, Sep. 2012, doi:
10.1016/j.rse.2012.05.004.

[14] S.-B. Duan, Z.-L. Li, H. Wu, P. Leng, M. Gao, and C. Wang, “Radiance-
based validation of land surface tesmperature products derived from
collection 6 MODIS thermal infrared data,” Int. J. Appl. Earth Observ.
Geoinf., vol. 70, pp. 84–92, Aug. 2018, doi: 10.1016/j.jag.2018.04.006.

[15] N. K. Malakar, G. C. Hulley, S. J. Hook, K. Laraby, M. Cook,
and J. R. Schott, “An operational land surface temperature product
for Landsat thermal data: Methodology and validation,” IEEE Trans.
Geosci. Remote Sens., vol. 56, no. 10, pp. 5717–5735, Oct. 2018, doi:
10.1109/TGRS.2018.2824828.

[16] H. Li et al., “Temperature-based and radiance-based validation of
the collection 6 MYD11 and MYD21 land surface temperature
products over barren surfaces in Northwestern China,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 2, pp. 1–14, Feb. 2020, doi:
10.1109/TGRS.2020.2998945.

[17] N. Liu, A. C. Oishi, C. F. Miniat, and P. Bolstad, “An evaluation of
ECOSTRESS products of a temperate montane humid forest in a com-
plex terrain environment,” Remote Sens. Environ., vol. 265, Nov. 2021,
Art. no. 112662, doi: 10.1016/j.rse.2021.112662.

[18] G. C. Hulley et al., “Validation and quality assessment of the
ECOSTRESS level-2 land surface temperature and emissivity product,”
IEEE Trans. Geosci. Remote Sens., early access, Jun. 4, 2021, doi:
10.1109/TGRS.2021.3079879.

[19] J. Cheng, S. Liang, Y. Yao, and X. Zhang, “Estimating the optimal
broadband emissivity spectral range for calculating surface longwave net
radiation,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2, pp. 401–405,
Mar. 2013, doi: 10.1109/LGRS.2012.2206367.

[20] P. C. Guillevic et al., “Validation of land surface temperature products
derived from the Visible Infrared Imaging Radiometer Suite (VIIRS)
using ground-based and heritage satellite measurements,” (in Eng-
lish), Remote Sens. Environ., vol. 154, pp. 19–37, Nov. 2014, doi:
10.1016/j.rse.2014.08.013.

[21] S.-B. Duan et al., “Validation of collection 6 MODIS land surface
temperature product using in situ measurements,” Remote Sens. Environ.,
vol. 225, pp. 16–29, May 2019, doi: 10.1016/j.rse.2019.02.020.

[22] X. Meng, J. Cheng, S. Zhao, S. Liu, and Y. Yao, “Estimating
land surface temperature from Landsat-8 data using the NOAA JPSS
enterprise algorithm,” Remote Sens., vol. 11, p. 155, Jan. 2019, doi:
10.3390/rs11020155.

[23] H. Wang, Y. Yu, P. Yu, and Y. Liu, “Land surface emissivity product
for NOAA JPSS and GOES-R missions: Methodology and evalua-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 307–318,
Jan. 2020, doi: 10.1109/tgrs.2019.2936297.

[24] Q. Zeng, J. Cheng, and L. Dong, “Assessment of the long-term high-
spatial-resolution global land surface satellite (GLASS) surface long-
wave radiation product using ground measurements,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 13, pp. 2032–2055, 2020, doi:
10.1109/JSTARS.2020.2992472.

[25] S. L. Ermida, P. Soares, V. Mantas, F.-M. Göttsche, and I. F. Trigo,
“Google Earth engine open-source code for land surface temperature
estimation from the Landsat series,” Remote Sens., vol. 12, no. 9,
p. 1471, May 2020, doi: 10.3390/rs12091471.

[26] M. Wang et al., “An efficient framework for producing Landsat-based
land surface temperature data using Google Earth engine,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 4689–4701, 2020,
doi: 10.1109/jstars.2020.3014586.

[27] S. Zhou and J. Cheng, “An improved temperature and emissivity
separation algorithm for the advanced Himawari imager,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 10, pp. 7105–7124, Oct. 2020, doi:
10.1109/TGRS.2020.2979846.

[28] Y. Shuai, J. G. Masek, F. Gao, and C. B. Schaaf, “An algorithm for the
retrieval of 30-m snow-free albedo from Landsat surface reflectance and
MODIS BRDF,” Remote Sens. Environ., vol. 115, no. 9, pp. 2204–2216,
2011, doi: 10.1016/j.rse.2011.04.019.

[29] F.-M. Göttsche, F.-S. Olesen, and A. Bork-Unkelbach, “Validation
of land surface temperature derived from MSG/SEVIRI with
in situ measurements at Gobabeb, Namibia,” Int. J. Remote
Sens., vol. 34, nos. 9–10, pp. 3069–3083, May 2013, doi:
10.1080/01431161.2012.716539.

[30] S. Li, Y. Yu, D. Sun, D. Tarpley, X. Zhan, and L. Chiu, “Evaluation of
10 year AQUA/MODIS land surface temperature with SURFRAD obser-
vations,” (in English), Int. J. Remote Sens., vol. 35, no. 3, pp. 830–856,
Feb. 2014, doi: 10.1080/01431161.2013.873149.

[31] Q. Vanhellemont, “Combined land surface emissivity and temper-
ature estimation from landsat 8 OLI and TIRS,” ISPRS J. Pho-
togramm. Remote Sens., vol. 166, pp. 390–402, Aug. 2020, doi:
10.1016/j.isprsjprs.2020.06.007.

[32] K. Wang and S. Liang, “Evaluation of ASTER and MODIS land
surface temperature and emissivity products using long-term surface
longwave radiation observations at SURFRAD sites,” Remote Sens.
Environ., vol. 113, no. 7, pp. 1556–1565, 2009, doi: 10.1016/j.rse.2009.
03.009.

Authorized licensed use limited to: Beijing Normal University. Downloaded on January 17,2022 at 01:19:29 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1016/j.rse.2008.07.009
http://dx.doi.org/10.1016/j.rse.2013.09.003
http://dx.doi.org/10.1109/TGRS.2015.2509179
http://dx.doi.org/10.1109/TGRS.2018.2879316
http://dx.doi.org/10.1029/2010rg000345
http://dx.doi.org/10.3390/rs11060613
http://dx.doi.org/10.1016/j.rse.2019.111419
http://dx.doi.org/10.1109/TGRS.2019.2945701
http://dx.doi.org/10.3390/rs11182136
http://dx.doi.org/10.1109/TGRS.2016.2611566
http://dx.doi.org/10.1016/j.rse.2012.05.004
http://dx.doi.org/10.1016/j.jag.2018.04.006
http://dx.doi.org/10.1109/TGRS.2018.2824828
http://dx.doi.org/10.1109/TGRS.2020.2998945
http://dx.doi.org/10.1016/j.rse.2021.112662
http://dx.doi.org/10.1109/TGRS.2021.3079879
http://dx.doi.org/10.1109/LGRS.2012.2206367
http://dx.doi.org/10.1016/j.rse.2014.08.013
http://dx.doi.org/10.1016/j.rse.2019.02.020
http://dx.doi.org/10.3390/rs11020155
http://dx.doi.org/10.1109/tgrs.2019.2936297
http://dx.doi.org/10.1109/JSTARS.2020.2992472
http://dx.doi.org/10.3390/rs12091471
http://dx.doi.org/10.1109/jstars.2020.3014586
http://dx.doi.org/10.1109/TGRS.2020.2979846
http://dx.doi.org/10.1016/j.rse.2011.04.019
http://dx.doi.org/10.1080/01431161.2012.716539
http://dx.doi.org/10.1080/01431161.2013.873149
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.007
http://dx.doi.org/10.1016/j.rse.2009.03.009
http://dx.doi.org/10.1016/j.rse.2009.03.009

