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A B S T R A C T   

Red-edge band is widely used for LAI estimation as it is highly correlated to vegetation growth conditions. 
Canopy reflectance is affected by both vegetation biophysical and biochemical characteristics. However, esti
mating LAI using satellite reflectance data as input rarely considers the influence of leaf chlorophyll content 
(LCC). This study tested the hypothesis whether LAI estimation accuracy can be improved by involving LCC 
information. Firstly, the sensitivities of seven PROSAIL simulated Sentinel-2 bands to LAI and LCC were inves
tigated, and related vegetation indices (VIs) were constructed using these sensitive bands (including LAI-sensitive 
VIs and LCC-sensitive VIs). Then, the LAI estimation model taking sensitive VIs as input and LCC estimation 
model taking sensitive VIs as input were generated by random forest regression algorithm. Finally, the improved 
LAI estimation model involving LCC information was proposed using three different methods: (1) PROSAIL 
simulated LCC, (2) simulated LCC with noise, and (3) functional equation of LCC. The results indicated that the 
three LCC information introducing methods all improved the LAI estimation accuracy, while using the functional 
equation of LCC (growth equation) performed best with RMSE of 0.736, which is 11.54% higher when compared 
to the basic LAI estimation model.   

1. Introduction 

Leaf area index (LAI) is defined as the ratio of total one-sided leaf 
area to the ground area (Chen and Black, 1992), which is a crucial in
dicator for characterizing the land surface vegetation states. LAI affects 
many biological and physical vegetation processes, such as photosyn
thesis and respiration (Chen and Cihlar, 1996), and has been widely 
used in the hydrological, crop yield and ecological models (Zhang et al., 
2020; Xia et al., 2021) due to its ability to describe mass (e.g., water and 
carbon) and energy (e.g., radiation and heat) exchange between 
biosphere and atmosphere (Yan et al., 2019). Therefore, accurate LAI 
estimation is of great importance for a variety of earth systems, agri
culture and ecological studies. 

Remote sensing provides a faster and cost-effective method for LAI 
estimation over large areas. The traditional LAI estimation method using 
remote sensing data builds empirical statistical models based on 

sensitive band reflectances, vegetation indices (VIs), or spectral trans
form values (Chen et al., 2020). Empirical methods are easily affected by 
the vegetation types, experimental locations, and sampling times. 
Therefore, empirical models show limited capabilities when applied to 
large-scale and multitype vegetation areas. In contrast, the physical- 
based methods have no such limitation because they consider various 
vegetation biophysical and biochemical parameters, and soil re
flectances. However, the radiation transfer model (RTM) used in 
physical-based method requires many input parameters for accurate 
simulations. Therefore, the inversion of RTM is very difficult, and hybrid 
LAI estimation models have been widely used for LAI estimation (Sinha 
et al., 2020). By combining a physical model and machine learning al
gorithm, hybrid methods have advantages of both empirical and phys
ical inversion algorithms. 

The VIs are essential inputs for both statistical and hybrid models. 
For example, the normalized difference vegetation index (NDVI) is 

* Corresponding authors at: State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 
(K. Jia) and Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China (X. Wei). 

E-mail addresses: chenzhulin@mail.bnu.edu.cn (Z. Chen), jiakun@bnu.edu.cn (K. Jia), weixq@aircas.ac.cn (X. Wei), liuyan@aircas.ac.cn (Y. Liu), zhanyl@aircas. 
ac.cn (Y. Zhan), xiamu@mail.bnu.edu.cn (M. Xia), yaoyunjun@bnu.edu.cn (Y. Yao), xtngzhang@bnu.edu.cn (X. Zhang).  

Contents lists available at ScienceDirect 

Computers and Electronics in Agriculture 

journal homepage: www.elsevier.com/locate/compag 

https://doi.org/10.1016/j.compag.2022.106902 
Received 27 December 2021; Received in revised form 15 March 2022; Accepted 20 March 2022   

mailto:chenzhulin@mail.bnu.edu.cn
mailto:jiakun@bnu.edu.cn
mailto:weixq@aircas.ac.cn
mailto:liuyan@aircas.ac.cn
mailto:zhanyl@aircas.ac.cn
mailto:zhanyl@aircas.ac.cn
mailto:xiamu@mail.bnu.edu.cn
mailto:yaoyunjun@bnu.edu.cn
mailto:xtngzhang@bnu.edu.cn
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2022.106902
https://doi.org/10.1016/j.compag.2022.106902
https://doi.org/10.1016/j.compag.2022.106902
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2022.106902&domain=pdf


Computers and Electronics in Agriculture 196 (2022) 106902

2

widely used for LAI estimation (Hasegawa et al., 2010; Sinha et al., 
2020). However, the Red-NIR band combinations easily suffer from 
saturation at moderate-to-dense canopies, which usually cause under
estimation for moderate-to-high LAI values (LAI > 3) (Delegido et al., 
2013). The reason is that NIR band reflectances increase rapidly due to 
scattering of light in intercellular volumes of leaf mesophylls (Dorigo 
et al., 2007), while red band reflectances exhibit fewer variations since 
they become saturated with high chlorophyll content. To improve the 
sensitivity to moderate-to-high LAI values, various new VIs have been 
developed in the past few decades. One solution is to attenuate the 
reflectance contrast between the red and NIR bands, such as modified 
simple ratio index (MSR) (Chen 1996). Although this method is effective 
for multispectral bands (e.g. Landsat-8) (Dong et al., 2020), it still shows 
a limited capability for reducing the underestimation phenomenon. 
During the past 20 years, the development of hyperspectral imaging 
sensors has provided plenty of narrow bands from visible to NIR 
wavelength (Delegido et al., 2013). The red-edge (RE) wavelength is 
discovered to be influenced by multiple scattering between leaf layers, 
and is strongly affected by LAI. Moreover, because the RE bands are 
sensitive to vegetation conditions, several studies have used them to 
formulate VIs and achieved more accurate LAI estimation in the 
moderate-to-high dense canopy regions (Brown et al., 2019). Therefore, 
a number of RE-based VIs, such as the red edge normalized difference 
vegetation (NDVIRE) and red edge chlorophyll index (CIRE), have been 
widely used for LAI estimation (Sibanda et al., 2019). 

Although, the RE-based VIs have contributed to LAI estimation ac
curacy improvement, some concerns still need to be solved (George 
et al., 2018). Although the RE-based VIs developed using hyperspectral 
reflectances possess great potential, those narrow RE band-based VIs can 
hardly applied to large region because of the small amount of hyper
spectral data. Fortunately, several spaceborne sensors that involve RE 
bands have been designed and launched, such as Rapid-Eye, WorldView- 
2, Sentinel-2 (S2), and Chinese GF-6. Among those sensors, the S2 
Multispectral Instrument (MSI) provides the most detailed RE bands. 
Thus, it is of great significance to discuss the potential of improving LAI 
estimation accuracy by using S2 data. Other than VIs, another important 
but often ignored parameter is leaf chlorophyll content (LCC). It also has 
a great influence on RE band reflectance (Xie et al., 2018). The increase 
of LCC not only causes strong absorption in the red spectral wavelengths, 
but also leads to a shift in the RE band toward longer wavelengths 
(Herrmann et al., 2011). In recent years, some studies have attempted to 
reduce the effect of LCC change by excluding LCC-sensitive bands in LAI 
estimation (Sun et al., 2020). However, since it is impossible to fully 
separate the influence of these two parameters on reflectance, the effects 
of LCC changes are still nonnegligible for LAI estimation. Another 
disadvantage of the above method is that the canopy information pro
vided by RS data is not fully used. Although LCC-sensitive bands are not 
recommended for LAI-sensitive VI modifications, they can be combined 
with LAI-sensitive VIs to increase the information on canopy status for 
LAI estimation. According to plant physiology studies (Dordas and 
Sioulas, 2008), photosynthesis which is directly influenced by LCC is one 
of the crucial factors for plant growth (including LAI enlargement). 
Those studies have indicated that LCC is also capable of characterizing 
the vegetation growth status and related to LAI. However, there is no 
obvious linear relationship between these two parameters. Fortunately, 
the development of machine learning algorithm provides an opportunity 
to solve complex nonlinear relationships between LAI and LCC. There
fore, based on the powerful nonlinear expression ability of machine 
learning algorithm, it is possible to adopt LCC information in charac
terizing the current state of LAI. 

As discussed above, this study aims to test the hypothesis of 
improving LAI estimation accuracy of wheat by involving LCC infor
mation. To achieve this objective, two issues need to be resolved. Firstly, 
the basic LAI estimation model should be established using LAI-sensitive 
VIs. Secondly, since LCC information can be involved in various ways, 
the best LCC introducing form needs to be determined for LAI estimation 

accuracy improvement. 

2. Materials and methods 

First, the PROSAIL (PROSPECT and Scattering by Arbitrarily Inclined 
Leaves (SAIL)) model was used to simulate the S2 multispectral re
flectances and the corresponding LAI and LCC values (Fig. 1). Global 
sensitivity analysis was applied to identify LAI-sensitive bands and LCC- 
sensitive bands for VIs construction. To select the best VIs for LAI and 
LCC estimation, several VIs were calculated by different band combi
nations. LAI and LCC estimation models were established using the 
random forest regression (RFR) algorithm. Then, the model with the 
highest estimation accuracy was chosen as the basic LAI estimation 
model. Next, the LCC information with three introducing methods was 
added to the basic LAI estimation model, respectively. Finally, the best 
LCC introducing method and best LAI estimation model were 
determined. 

2.1. Study area and field survey 

The study area is located in Hengshui (115◦10′E ~ 116◦34′E, 
37◦03′N ~ 38◦23′N), Hebei province of China. It has a temperate con
tinental monsoon climate with an annual average temperature of 13.2℃ 
and annual average precipitation of 642.1 mm. The climatic conditions 
and flat terrain with an altitude varying from 10 to 20 m (above sea 
level) are very suitable for the growing of wheat (Triticum aestivum L.) 
and maize (Zea mays L.). Field LAI measurements were conducted twice 
during the different growing stages of wheat using a LAI-2200C plant 
canopy analyzer (LI-COR Inc., Lincoln, Nebraska) (first: 29 March 2017 
to 1 April 2017; second: 4 May 2017 to 6 May 2017). There were 22 
sample sites with the size of 100 m × 100 m across 11 counties of 
Hengshui (Fig. 2). Five sample plots with the size of 30 m × 30 m were 
established at each sample site. Five measurements were taken in one 
plot, and the average value was calculated as the final LAI measurement 
for one sample plot. Therefore, there were a total of 220 ground 
measured LAI values during the whole survey period. However, only 
218 LAI measurements could be used in this study due to cloud 
contamination of the remote sensing data. 

2.2. Sentinel-2 data and preprocessing 

As a part of the European Commission’s Copernicus program, 
Sentinel-2A and Sentinel-2B were launched on June 23, 2015 and March 
7, 2017, respectively. Those two satellites are in the same solar orbit and 
phased at 180◦ to each other. The MSI installed on the twin satellites 
provides images with a resolution of 10 to 60 m in 13 spectral channels 
(Drusch et al., 2012). In this study, seven visible and near-infrared bands 
(including Green, Red, RE1, RE2, RE3, NIR1, and NIR2) were used to 
construct VIs (Table 1). The Level-1C products of Sentinel-2 (Table 2) 
were selected, and the Sen2Cor processor in the Sentinel Application 
Platform (SNAP) toolbox was used for atmospheric correction. The 
bands with 10 m resolutions were resampled to 20 m, and adjacent 
images with the same acquisition dates were mosaicked. 

2.3. Simulated data generated using PROSAIL model 

Coupled by the leaf optical properties model PROSPECT and scat
tering by arbitrarily inclined leaves (SAIL), the radiative transfer model 
PROSAIL is widely used due to its high simulation accuracy and 
computing efficiency (Jia et al., 2016). By considering the non- 
Lambertian characteristics of soils, specular reflections of leaves, hot 
spot effect of vegetation canopies, and distributions of leaf inclinations, 
the PROSAIL model can accurately describe the reflection characteristics 
of vegetation canopies (Jay et al., 2017). Based on the field measure
ments and previous studies, the parameters of PROSAIL model as well as 
their ranges or values used in this study are shown in Table 3. 
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In addition, the soil reflectance is also an important input for the 
PROSAIL model. In this study, 5 soil reflectances were selected from the 
field measurements in Hengshui. After simulation, the canopy reflec
tance in each band was simulated by using the spectral response func
tion of Sentinel-2. Since the reflectance extracted from the Sentinel-2 

data contains uncertainties, white Gaussian noise at a level of 1% was 
added to the simulated data. In total, 150,000 simulated canopy 
reflectance along with their corresponding LAI and LCC values were 
generated using the PROSAIL model. 

Fig. 1. Flow chart of this study.  

Fig. 2. Geographic location of the study area.  
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2.4. Sensitivity analysis methods 

Global sensitivity analysis (SA) methods have been widely applied in 
remote sensing. Compared with local SA algorithms, global SA methods 
search the full range of parameter variations instead of merely a local 
area around a mean value (Bowyer and Danson, 2004). In this study, the 
Extended Fourier Amplitude Sensitivity Test (EFAST) is used to quantify 
the sensitivities of the variables (seven bands) to the LAI and LCC var
iations. Based on the variances of the simulated results caused by 
different input parameters, EFAST assesses the importance of each 
parameter and their influences on the simulated results. EFAST allows 
for the calculation of the first-order (Si) and total effect (STi) sensitivity 
indices. The Si index represents the main effect contribution of input 
variables. The STi index is an overall measurement of the first-order 
effect and higher-order effects due to the interactions among all 

parameters (Vazquez-Cruz et al., 2014). Si and STi indices are calculated 
as follows: 

Si =
Vi

V(Y)
, V(Y) =

∑

i
Vi +

∑

i∕=j

Vij +
∑

i∕=j∕=m

Vijm+...+
∑

i∕=j∕=...∕=k

Vij...k (1)  

Vi = V[E(Y/xi)] (2)  

Vij = V[E(Y/xi, xj)] − Vi − Vj (3)  

STi = (Vi + Vij + ...+ Vij...k)/V(Y) (4) 

where V(Y) is the total variance of model simulated result (Y) caused 
by the change of parameter (X) within the value range; Vi represents the 
variance of parameter xi; E(Y/xi) is the conditional expectation of Y to xi; 
E(Y/xi,xj) is the conditional expectation of Y to xi and xj; Vij is the 
variance of interaction between parameter xi and xj; Vij…k is the variance 
of interaction between parameter xi, xj, …, xk. 

2.5. VIs for LAI and LCC estimation 

Five two-bands VIs forms (e.g., NDVIa,b, MSRa,b, CIa,b, OSAVIa,b, and 
EVIa,b) were used for LAI and LCC estimation (Table 4). In those forms, a 
and b refer to different band reflectances of S2. To determine the best VIs 
for LAI and LCC estimation, several “a,b” combinations were compared 
in this study. Optimal a and b were determined based on the global 
sensitivity analysis result. In addition to those two-bands VIs, six three- 
bands VIs were also investigated for LCC estimation since accurate LCC 
estimations were more difficult to achieve. Among those six VIs, the 
triangular chlorophyll index (TCI), moderate-resolution imaging 

Table 1 
Seven Sentinel-2 MSI band information.  

Band 
name 

Sentinel-2A Sentinel-2B Resolution 
(meters) 

CW 
(nm) 

BW 
(nm) 

CW 
(nm) 

BW 
(nm) 

Green  560.0 35  559.0 35 10 
Red  664.5 30  665.0 30 10 
RE1  703.9 15  703.8 15 20 
RE2  740.2 15  739.1 15 20 
RE3  782.5 20  779.7 20 20 
NIR1  835.1 115  833.0 115 10 
NIR2  864.8 20  864.0 20 20 

Notes: CW represents central wavelength; BW represents band width. 

Table 2 
Images used in this study.  

Sensing Time Tile Number 

29 March 2017 50SLG, 50SLH, 50SMG, 50SMH 
28 April 2017 50SLG, 50SLH, 50SMG, 50SMH  

Table 3 
Ranges or values of parameters used in the PROSAIL model.  

Model Parameters Range (or 
value) 

Mean Variance Distribution 

PROSPECT Car (carotenoid 
content, μg/ 
cm2) 

12 – – – 

Cw (equivalent 
water 
thickness, cm) 

0.01 – – – 

Cbrowm (brown 
pigment 
content) 

0 – – – 

Cm (dry matter 
content, g/cm2) 

0.001–0.01 0.005 0.005 Gauss 

Cab (leaf 
chlorophyll a 
+ b 
Concentration, 
μg/cm2) 

10–80 40 20 Gauss 

N (leaf 
structure 
parameter) 

1–1.8 1.4 0.5 Gauss 

SAIL LAI (leaf area 
index) 

0–8 2 3 Gauss 

ALA (average 
leaf angle 
inclination) 

40–70 55 10 Gauss 

SZA (solar 
zenith angle) 

35 – – – 

Hot (hot-spot 
parameter) 

0.1–0.5 0.2 0.5 Gauss  

Table 4 
VIs used for LAI and LCC estimation.  

Index Formula Application Reference 

NDVIa,b (Normalized 
difference vegetation 
index) 

(Ra-Rb)/(Ra + Rb) Used for LAI 
and LCC 

(Rouse 
et al., 1974) 

MSRa,b (Modified 
simple ratio) 

[(Ra/Rb)-1]/[(Ra/Rb) +
1]0.5 

Used for LAI 
and LCC 

(Chen, 
1996) 

CIa,b (Chlorophyll 
index) 

(Ra-Rb)/Rb Used for LAI 
and LCC 

(Gitelson 
et al., 2003) 

OSAVIa,b (Soil-adjusted 
vegetation index) 

1.16×(Ra-Rb)/(Ra + Rb 

+ 0.16) 
Used for LAI 
and LCC 

(Rondeaux 
et al., 1996) 

EVI2a,b (Two-band 
enhanced vegetation 
index) 

2.5× (Ra − Rb)/(Ra +

2.4 × Rb + 1) 
Used for LAI 
and LCC 

(Jiang et al., 
2008) 

TCI (The triangular 
chlorophyll index) 

1.2×(RRE1-RGreen)-1.5×
(RRed-RGreen) × (RRE1/ 
RRed)0.5 

Used for LCC (Broge & 
Leblanc, 
2001) 

MTCI (Moderate- 
resolution imaging 
spectrometer 
terrestrial 
chlorophyll index) 

(RRE3-RRE2)/(RRE2- 
RGreen) 

Used for LCC (Dash and 
Curran, 
2007) 

DCNI (Double-peak 
canopy nitrogen 
index) 

[(RRE1-RGreen + 0.09)×
(RRE1-RRed)]/(RRE2- 
RGreen) 

Used for LCC (Jin et al., 
2014) 

TVI (Triangular 
vegetation index) 

0.5 × [120×(RNIR1- 
RGreen)-200×(RRed- 
RGreen)]; 

Used for LCC (Broge & 
Leblanc, 
2001) 

TCARI/OSAVI 
(Transformed 
chlorophyll 
absorption in the 
reflectance index/ 
optimized soil- 
adjusted vegetation 
index) 

3 × [(RRE1 − RRed) −
0.2×(RRE1–RGreen)×
(RRE1/RRed)]/[1.16×
(RNIR1 − RRed)/(RNIR1 +

RRed + 0.16)] 

Used for LCC (Rondeaux 
et al., 1996) 

RECAI (Red-edge- 
chlorophyll 
absorption index) 

(RNIR1 − RRE2)/ 
[RGreen×(RRE1/RGreen)] 

Used for LCC (Cui et al., 
2019) 

Notes: a and b refer to the seven bands of Sentinel-2 used in this study. 
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spectrometer terrestrial chlorophyll index (MTVI), and red-edge- 
chlorophyll absorption index (RECAI) were developed for LCC estima
tion based on the absorption and reflection characteristics of chloro
phyll. The double-peak canopy nitrogen index (DCNI) was developed for 
leaf nitrogen estimation at first (Jin et al., 2014), but also achieved good 
performance in LCC estimation in many studies due to chlorophyll 
content being highly related to nitrogen (Jay et al., 2017). The trian
gular vegetation index (TVI), proposed by Broge and Leblanc (2001), 
assumed that the decrease of red band reflectance and the increase of 
NIR band reflectance would change the total area of a triangle. Due to its 
high correlation with chlorophyll absorption, TVI was considered as one 
commonly used variable for LCC estimation (Cui et al., 2019). By 
providing a canopy chlorophyll measurement and then correcting for 
biomass, the ratio of transformed chlorophyll absorption in the reflec
tance index (TCARI) and optimized soil-adjusted vegetation index 
(OSAVI) had been regarded as the traditional leaf chlorophyll indices in 
many studies (Berger et al., 2020). Therefore, these three VIs were 
appropriately selected for this study and their corresponding equations 
were listed in Table 4. 

2.6. Random forest regression 

Random forest regression (RFR), first proposed by Breiman in 2001 
(Breiman, 2001), has become one of the most popular machine learning 
algorithms in many research fields. To achieve accurate predictions, the 
RFR integrates the results from a large number of decision trees gener
ated by the algorithm. RFR not only achieves accurate and stable pre
dictions, but also shows high efficiency in processing high-dimensional 
data. In this study, several VIs shown in Table 3 are used as inputs in the 
RFR algorithm for LAI and LCC estimation. The number of decision trees 
in the forest (n) and the number of input variables chosen at each split 
(m) are two important parameters that may influence the calculation 
speed and accuracy of the RFR algorithm. In this study, m was set to 1/3, 
and n was set to 500 based on several trial runs. 

2.7. Basic LAI estimation model construction and LCC estimation 

Before introducing LCC information, the basic LAI estimation model 
needs to be determined (see Fig. 3). First, the LAI-sensitive bands are 
selected based on a global sensitivity analysis. Then, only the LAI- 
sensitive bands can be adopted as “a” and “b” to construct LAI- 

sensitive VIs, as shown in Table 4. To be consistent with earlier 
studies of VIs construction (Chen, 1996; Gitelson et al., 2003), the 
central wavelength of “a” is smaller than that of “b”. Moreover, “a” and 
“b” should not both belong to the NIR region. Every five VIs (e.g., NDVIa, 

b, MSRa,b, CIa,b, OSAVIa,b, EVI2a,b) calculated by the same bands are 
considered as a group of inputs for LAI estimation using the RFR algo
rithm. As a result, each group of inputs (or every band combination) 
generates one LAI estimation model. To make full use of the canopy 
reflectance information, this study applied two groups of inputs for the 
LAI estimation. According to the previous studies about the description 
and definition of LAI saturation (Delegido et al., 2013; Xie et al., 2018), 
the evaluations of LAI estimation models were divided into two parts: 
LAI ≤ 3 (low LAI value range) and LAI > 3 (moderate-to-high LAI value 
range). In each part, models with root mean square error (RMSE) values 
smaller than (or equal to) 1.0 were selected. As shown in Fig. 3, subset 1 
contains models with RMSE ≤ 1 in the low LAI value regions while 
subset 2 contains models with RMSE ≤ 1 in the moderate-to-high LAI 
value regions. Each model has a corresponding group of inputs. Then, a 
number of new models whose inputs were consisted of two groups of VIs 
(one group used by the model from Subset 1 and one group used by the 
model from Subset 2) were developed for LAI estimation. Finally, the 
model with the best performance was selected as the basic LAI estima
tion model. 

Eleven VIs were used for LCC estimation (see Table 4). Other than six 
three-band VIs, the construction of the remaining five two-band VIs was 
also based on the global sensitivity analysis. The best combinations of 
“a” and “b” were determined by the performance of LCC estimation 
model. 

2.8. LAI estimation model involving LCC information 

After constructing the basic LAI estimation model, the LCC simula
tions, described as the pure LCC, is used as an additional variable to 
develop the LAI estimation model (Fig. 4). This “pure LCC” is estimated 
using LCC-sensitive VIs. However, it is widely known that estimation of 
LCC is more complicated than LAI. Therefore, adding estimated LCC 
with large errors to LAI estimation may cause lower accuracy im
provements or even unexpected accuracy decrease. Therefore, this study 
proposed two modified methods for introducing the LCC to achieve 
higher LAI estimation accuracy. 

Modified method 1: The noise-adding LCC (noisy LCC) data are used 

Fig. 3. Process of basic LAI estimation model generation.  
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instead of pure LCC data, which is defined as F1(LCC) (see Eq. (5)). This 
modification aims to improve the performance by adding an appropriate 
amount of noise into the pure LCC data. Thus, the difference between 
LCC information used in the theoretical model and in the field validation 
can be reduced. 
⎧
⎨

⎩

F1(LCC) = LCC + a1
a1 = x% × 0.5 × (max(LCC) + min(LCC))

x ∈ [5, 100], step = 5, max(LCC) = 80, min(LCC) = 10
(5) 

where the LCC represents the pure LCC values and a1 represents the 
LCC noise. a1 is set to the times of 45 which is the average value of 
simulated LCC maximum value (80 μg/cm2) and minimum value (10 μg/ 
cm2). To find the best noise increment, x% is set in a range of 5% to 
100% with the step of 5%. 

Modified method 2: The functional equation of LCC (transformed LCC) 
instead of pure LCC is used (see Fig. 4). Similar to LAI, the LCC also suffer 
from underestimation due to the saturation of red band (Clevers and 
Gitelson, 2013), which may cause accuracy LAI estimation accuracy 
decrease. Three transformed LCC (F2(LCC): power function, F3(LCC): 
logarithmic function, and F4(LCC): growth equation) are proposed to 
reduces the error caused by LCC underestimation (see Equations (6) to 
(8)). In F4(LCC), the LCC values are divided by 10 to increase the dif
ference between the maximum and minimum values. All of these 
transformations exhibit slow uptrends in the moderate-to-high LAI re
gions, which can mitigate the underestimation phenomenon by 
decreasing the differences in the LCC. Finally, the transformation 
equation with the greatest LAI estimation accuracy improvement is 
selected as the best method to introduce the LCC information. 

F2(LCC) = LCC0.5 (6)  

F3(LCC) = log(LCC) (7)  

F4(LCC) = 1 − e− (LCC/10) (8)  

2.9. Accuracy assessment 

Two kinds of validations are used in this study including the theo
retical validation to test the model fitness, and the field-based validation 
to test the model practicability in the actual field. For theoretical vali
dation, 100,000 simulations are randomly selected among the 150,000 
samples, and the remaining 50,000 samples are used as the validation 

set. In the field-based validation, 218 field LAI measurements are used to 
assess the LAI estimation accuracy. RMSE is selected as the indicator to 
evaluate both theoretical and practical performance of LAI estimations. 

3. Results 

3.1. EFAST sensitivity analysis 

The Si and STi values representing the contributions of LAI and LCC to 
the reflectances are presented in Fig. 5. These two indices show the 
similar results regarding the sensitivity of each band. The reflectances of 
green and RE1 bands are more sensitive to the LCC, while the reflectance 
of RE2, RE3, NIR1, and NIR2 bands are significantly sensitive to LAI. The 
sum of Si values of LAI and LCC in the red band is 0.915, which indicates 
91.5% of the simulated red band canopy reflectance can be explained by 
LAI and LCC. Compared with other bands (RE2, RE3, NIR1, and NIR2), 
the Si and STi values of LCC in Red band are>0.2. This result demon
strates that although red band can be used for LAI estimation, the in
fluence of LCC is also nonnegligible. Therefore, the LAI sensitive bands 
are red, RE2, RE3, NIR1 and NIR2. Since red band is also influenced by 
the LCC, the determined LCC sensitive bands are green, red and RE1. 

3.2. LAI estimation accuracies based on different VIs 

According to the EFAST analysis and the VIs construction criterion, 
nine groups of VIs were investigated to generate LAI estimation models 
(M1 ~ M9 in Table 5), and their performances were shown in Fig. 6. 
Although using the RE2-based VIs improved the estimation accuracies in 
the moderate-to-high LAI region, they also caused overestimation in the 
low LAI region (see M2, M5, M8 in Fig. 6). Conversely, the use of red- 
based VIs achieved higher estimation accuracies in the low LAI region, 
while it caused underestimation in the moderate-to-high LAI region (see 
M1, M4, M7 in Fig. 6). Therefore, using the five VIs that only contain the 
information from two bands could hardly achieve satisfactory perfor
mance during the whole growing season. 

As shown in Table 6, four models (Subset 1: M1, M4, M7, M9) are 
appropriate for low region LAI estimation while three models (Subset 2: 
M2, M5, M8) are suitable for moderate-to-high region LAI estimation. 
Therefore, to improve LAI estimation accuracy over the entire growing 
season, two VIs groups containing ten variables are used in the RFR 
algorithm for LAI estimation (Table 7). Adding more VIs that contrasted 
with the other bands have significantly improved the LAI estimation 

Fig. 4. Process of final LAI estimation model generation using the pure LCC, noisy LCC and transformed LCC.  
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accuracies (Fig. 7). As shown in Fig. 8, all of the new models achieved 
LAI estimations with RMSE ≤ 1.0 in two LAI regions (LAI ≤ 3 and LAI >
3). Therefore, merging the variables that are suitable for different 
growth stages can generate accurate LAI estimates during the whole 
growing period. Compared to using variables of M2 and M5, the adop
tion of M8 variables (NDVIRE3,RE2, MSRRE3,RE2, CIRE3,RE2, OSAVIRE3,RE2, 
EVIRE3,RE2) resulted in smaller accuracy improvements (see NM3, NM6, 
NM9, NM12, in Figs. 7 and 8). According to Table 6, M8 not only pro
vides LAI estimates with lower RMSE value in the moderate-to-high LAI 
region, but also provides significant LAI overestimation (RMSE = 1.970) 
at low LAI region. Although the addition of other VIs has effectively 
weaken the overestimation, the M8-based models (NM3, NM6, NM9, 
and NM12) still show lower LAI estimation accuracies with RMSE values 
ranging from 0.860 to 1.203 in the low LAI region. Among those twelve 
new LAI estimation models, NM5 achieves the best performance (RMSE 
= 0.832) and is selected as the basic LAI estimation model. 

3.3. Final LAI estimation model containing LCC information 

The LCC information was estimated and added to the basic LAI 
estimation model as one of the inputs to explore its contribution to the 
improvements of LAI estimation accuracies. Three different methods to 
introduce LCC information (pure LCC, noisy LCC, and transformed LCC) 
were compared. 

3.3.1. Theoretical validation based on simulated data 
By adding the pure LCC values, the LAI estimation performance was 

improved significantly (with RMSE decreasing by 21.55% (Fig. 9)). 
Moreover, according to the two fitting lines (Fig. 9), the addition of LCC 
information reduced the bias in both the low and moderate-to-high LAI 
regions. Therefore, the theoretical validation results suggested the 
effectiveness of LCC for improving LAI estimation. 

3.3.2. Selecting best VIs for LCC estimation 
Five two-bands VIs (NDVIa,b, MSRa,b, CIa,b, OSAVIa,b, and EVIa,b) and 

six three-bands VIs (TCI, MTCI, DCNI, TVI, TCARI/OSAVI, and RECAI) 
were both tested for LCC estimation. According to the EFAST sensitivity 
results, three LCC estimation models that use different groups of VIs 
were developed (see Table 8). M2LCC shown the highest LCC estimation 
accuracy, which also indicated that the combination of RE1 and red 
bands could generate better LCC estimation. 

3.3.3. LAI estimation using different LCC introducing methods 
After integrating the pure LCC values into LAI estimation model, the 

RMSE decreased by 4.09% (Fig. 10b). The distributions of the scattered 
points were closer to the 1:1 line compared to the basic LAI estimation 
model (Fig. 10a), especially in low LAI region. However, compared with 
the performances of theoretical validation shown in Fig. 9, the LAI 
estimation accuracy improvement attributed to adding pure LCC was 
not significant. 

In the theoretical verification (see Fig. 11), adding noise with x% 
equal to 100% (or noise values ranging from − 45 to 45) increased RMSE 
by 0.113 compared with the results shown in Fig. 9b. Based on field 
measurements validation, adding noise at level of 5% to 50% to the 
simulated LCC data slightly improved LAI estimation accuracies. With 
increasing amounts of LCC noise, the LAI estimation accuracies 
increased steadily when x ranged from 5 to 25, whereas the LAI esti
mation accuracies decreased when x range from 30 to 100. The highest 
LAI estimation accuracy was achieved (RMSE = 0.781) when x equals to 
25 (Fig. 12a). According to the two-part-LAI-evaluation, this model 
achieved LAI estimation performances with RMSE of 0.713 in the low 
LAI region and RMSE of 0.839 in the moderate-to-high LAI region. 

For adding the transformed LCC to the LAI estimation model, using 
the power function transformation (F2), logarithmic function (F3) and 
growth Equation (F4) decreased the RMSE values by 5.29%, 7.45%, and 
11.54% compared with the basic LAI estimation model, respectively (see 
Table 9). Furthermore, F4 achieved the highest LAI estimation accuracy 
with RMSE of 0.736 (Fig. 12b). In addition, this model achieved LAI 
estimation performances with RMSE value of 0.646 and 0.810 in the low 
LAI region and moderate-to-high LAI region, respectively. 

To demonstrate the importance of the methods used to integrate 
additional band information, this study also tested the performances of 
ten LAI-sensitive VIs and six bands (green, red, RE1, RE2, RE3, and 
NIR1) used in LCC estimation to construct the LAI estimation model 
(Fig. 12c). The results shown that direct adding additional band 
reflectance data as inputs caused a significant LAI estimation accuracy 
decrease (RMSE = 0.875). In addition, compared with the basic LAI 
estimation model (Fig. 10a), using ten VIs and six bands reflectances 

Fig. 5. (a) First-order (Si) and (b) total effect (STi) sensitivity analysis results of the LAI and LCC on the simulated S2 MSI band reflectance.  

Table 5 
Descriptions of the nine LAI estimation models.  

Model Description (input variables) 

M1 NDVINIR2,Red, MSRNIR2,Red, CINIR2,Red, OSAVINIR2,Red, EVINIR2,Red 

M2 NDVINIR2,RE2, MSRNIR2,RE2, CINIR2,RE2, OSAVINIR2,RE2, EVINIR2,RE2 

M3 NDVINIR2,RE3, MSRNIR2,RE3, CINIR2,RE3, OSAVINIR2,RE3, EVINIR2,RE3 

M4 NDVINIR1,Red, MSRNIR1,Red, CINIR1,Red, OSAVINIR1,Red, EVINIR1,Red 

M5 NDVINIR1,RE2, MSRNIR1,RE2, CINIR1,RE2, OSAVINIR1,RE2, EVINIR1,RE2 

M6 NDVINIR1,RE3, MSRNIR1,RE3, CINIR1,RE3, OSAVINIR1,RE3, EVINIR1,RE3 

M7 NDVIRE3,Red, MSRRE3,Red, CIRE3,Red, OSAVIRE3,Red, EVIRE3,Red 

M8 NDVIRE3,RE2, MSRRE3,RE2, CIRE3,RE2, OSAVIRE3,RE2, EVIRE3,RE2 

M9 NDVIRE2,Red, MSRRE2,Red, CIRE2,Red, OSAVIRE2,Red, EVIRE2,Red  
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produced larger RMSE values of 0.754 and 0.986 in the low and 
moderate-to-high LAI region. 

4. Discussion 

Accurate LAI estimation based on medium-resolution multispectral 
data is always a challenging task in quantitative remote sensing. Many 
studies have confirmed that saturation occurs at moderate-to-high LAI 
region when using traditional combined Red-NIR VIs (Sinha et al., 

2020). To solve this problem, RE bands that are more sensitive to LAI are 
widely applied to replace red band. However, some studies have indi
cated that the RE bands are also influenced by LCC, which is a factor that 
cannot be ignored with respect to the errors in LAI estimation (Xie et al., 
2018). Therefore, a novel LAI estimation method involving LCC infor
mation was proposed in the model. Instead of excluding LCC-sensitive 
band reflectance data in LAI estimation model, this method used both 
LAI-sensitive VIs and LCC information. By using the complex nonlinear 
relationship between LAI and LCC information, the canopy reflectance 
has been incorporated efficiently, and the LAI estimation accuracies had 
been significantly improved. 

Fig. 6. Performances of the nine LAI estimation models based on different VIs.  

Table 6 
RMSE values of different LAI estimation models from subset 1 and subset 2.  

Subsets Models RMSE 

LAI ≤ 3 LAI > 3 

Subset 1 M1  0.890  1.302 
M4  0.750  1.332 
M7  0.923  1.361 
M9  0.641  1.916 

Subset 2 M2  1.767  0.905 
M5  1.593  0.827 
M8  1.970  0.874  

Table 7 
Descriptions of the twelve new LAI estimation models.  

Model Description (input variables) Model Description (input variables) 

NM1 Variables of M1 and M2 NM2 Variables of M1 and M5 
NM3 Variables of M1 and M8 NM4 Variables of M4 and M2 
NM5 Variables of M4 and M5 NM6 Variables of M4 and M8 
NM7 Variables of M7 and M2 NM8 Variables of M7 and M5 
NM9 Variables of M7 and M8 NM10 Variables of M9 and M2 
NM11 Variables of M9 and M5 NM12 Variables of M9 and M8  
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To reduce the LCC effect in the first step, a basic LAI estimation 
model was developed by using only LAI-sensitive VIs. The EFAST anal
ysis demonstrated that LCC contributed to the changes of visible and 
red-edge band reflectances, whereas LAI particularly influenced the 
reflectances in red, RE and NIR bands (Xie et al., 2018; Berger et al., 
2020). The results also shown that LCC clearly influenced the re
flectances of green and RE1 bands. This was because the red band, which 
was affected by chlorophyll content, experienced displacement in the 
red-edge domain when it was saturated at high LCC values. These results 
were similar to previous studies which indicated that the 550 nm and 
750 nm bands were suitable for LCC estimation (Sims and Gamon, 
2002). In addition, the results also indicated that the reflectances of red, 

RE2, RE3 and other two NIR bands were mostly influenced by LAI, 
which was also consistent with the previous study (Sun et al., 2020). 
Furthermore, LAI-sensitive VIs were used to test their capabilities in LAI 
estimation. However, one group of VIs only containing information of 
two LAI sensitive band reflectances, which was inadequate for accurate 
LAI estimation (see Fig. 6). As shown in Fig. 6, the use of five RE2-based 
VIs effectively mitigated the underestimation in the moderate-to-high 
LAI region, but caused overestimation in the low LAI region. Previous 
studies had suggested that RE-based VIs could improve LAI estimation 
accuracies when applied to crops with consistent chlorophyll content, 
such as for one growth stage (Delegido et al., 2013). However, the RE2- 
based VIs shown a limited capability for improving the LAI estimation 
accuracies throughout the entire growing period in this study. To 
overcome this problem, two groups of VIs with good performances in 
different LAI regions were used as develop the basic LAI estimation 
model, and the model contained information from the red, RE2, and 
NIR1 bands, achieved the highest LAI estimation accuracy. This agreed 
with the study of Xie et al (Xie et al., 2018), which indicated that 
combining red and RE band reflectances could weaken the underesti
mation and overestimation phenomenon in LAI estimation. 

Fig. 7. Performances of the twelve new LAI estimation models.  

Fig. 8. RMSE values of the twelve new LAI estimation models.  

Fig. 9. Theoretical validation results of the LAI estimation model using LAI-sensitive VIs (a) and using LAI-sensitive VIs and simulated LCC (b).  

Table 8 
Performances of the three LCC estimation models in theoretical validation.  

Models RMSE 

M1LCC (Inputs: NDVIRE1,Green, MSRRE1,Green, CIRE1,Green, OSAVIRE1,Green, 
EVIRE1,Green, TCI, MTCI, DCNI, TVI, TCARI/OSAVI)  

15.058 

M2LCC (Inputs: NDVIRE1,Red, MSRRE1,Red, CIRE1,Red, OSAVIRE1,Red, EVIRE1,Red, 
TCI, MTCI, DCNI, TVI, TCARI/OSAVI)  

9.629 

M3LCC (Inputs: NDVIRed,Green, MSRRed,Green, CIRed,Green, OSAVIRed,Green, 
EVIRed,Green, TCI, MTCI, DCNI, TVI, TCARI/OSAVI)  

11.583  
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In previous LAI estimation studies based on VIs, only information 
from a few sensitive bands was used. Some researchers suggested that 
although the rest of the bands were not recommended for constructing 
modified VIs, they could be useful when combining with VIs to increase 
the information regarding canopy status (Dong et al., 2020). However, 
the introducing methods of additional bands or VIs for LAI estimation 
were very important. As shown in Fig. 12c, adding additional bands 
directly to construct the LAI estimation model resulted significant ac
curacy decrease. This was because the reflectances of green and RE1 
band were more sensitive to LCC than to LAI. When adding these bands 
to the LAI estimation models, the LCC caused reflectance changes were 

Fig. 10. Model performance of the basic LAI estimation model (a) and using LAI-sensitive VIs and pure LCC (b).  

Fig. 11. RMSE values of the LAI estimation models using VIs and noisy LCC data.  

Fig. 12. Model performances using different inputs: the noisy LCC (a), the F4 transformed LCC (b), and ten LAI-sensitive VIs and six band reflectances (green, red, 
RE1, RE2, RE3 and NIR1) (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 9 
Field measurement verification of LAI estimation after 
adding transformed LCC.  

Model formation RMSE 

F2 (LCC) = LCC 0.5  0.788 
F3 (LCC) = log (LCC)  0.770 
F4 (LCC) = 1-e –(LCC/10)  0.736  
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mistakenly considered to be resulted from LAI. For example, as a catalyst 
for plant photosynthesis, the chlorophyll contents promoted plant 
growth in the early growing stage, including height and total leaf area 
increase. In the maturation stage, the leaf areas and chlorophyll contents 
decreased as the bottom leaves turned yellow and fell off. Therefore, the 
correlation between these two parameters was subtle and complex. 
Fortunately, the RFR algorithm used in this study successfully mapped 
the relationship between them (see Fig. 9), and LCC ranked fourth 
among the importance of 11 inputs. When compared with other studies, 
this approach not only reduced the LCC effect by developing a basic LAI 
estimation model, but also made full use of the canopy reflectance by 
including the nonlinear correlation between LCC and LAI in the final 
model. The LAI estimation accuracies were improved by the machine 
learning regression algorithm twice (one for LCC estimation and the 
other for LAI estimation). Therefore, the LCC information used in this 
study could also be regarded as a complex VI that integrated the infor
mation from multiple bands. Moreover, since the LCC values were 
generated by the PROSAIL simulation, this approach was independent of 
field LCC measurements. 

This study discussed the effects of three different LCC introducing 
methods (pure LCC, noisy LCC, and transformed LCC). By adding pure 
LCC, the LAI estimation accuracy had been improved with RMSE 
reduced by 4.08%. However, in contrast to the theoretical verification, 
the accuracy improvement in the field-based verification (Fig. 10b) was 
not significant. The first reason might be the LCC estimation error. 
Previous studies have shown that the Sen2Cor atmospheric correction 
algorithm produced an amount of noise between 5% and 10% (Brede 
et al., 2020). Therefore, using the pure LCC data to generate a LAI 
estimation model would cause lower accuracy improvement, while 
using the noisy LCC data had successfully improved the LAI estimation 
accuracy of the field-based verification. This was because the noise 
added to the pure LCC data decreased the importance of LCC among all 
variables. The second reason might be that the LCC estimation also 
suffered from saturation effect in moderate-to-high value region (Cui 
et al., 2019). Adding the pure LCC value improved the LAI estimation 
accuracy mostly in the low LAI region. Therefore, the LCC information 
only functioned effectively when it was estimated accurately. In previ
ous studies, the use of transformations or combinations of variables 
instead of the original values was an effective means for accuracy im
provements (Chen, 1996; Delegido et al., 2013). The core concept of 
those changes was to reduce some inevitable influences. Based on this 
conception, three transformations (power function, logarithmic func
tion, and growth equation) were applied to decrease the differences 
between the actual and estimated LCC information in the high value 
region. Using the growth equation of LCC achieved the highest LAI 
estimation accuracy, which improved LAI estimation accuracy with 
RMSE reduced by 11.54% compared with NM5. In general, both LCC 
introducing methods improved LAI estimation accuracy. However, they 
had varying improvements since the two modifications were focused on 
solving different problems. In contrast to the first modification, the 
second modification achieves better LAI estimates especially in the low 
LAI region. This indicated that the second modification not only reduced 
the saturation effect of LCC, but also has a better correlation with LAI in 
the low LAI region. While in the first modification, the noise was added 
to all data. Larger noise had a better effect on the moderate-to-high LAI 
region, but it also increased the RMSE value in the low LAI region. 

5. Conclusions 

This study proposed a novel approach to improve LAI estimation 
accuracy by involving LCC information in the model. The main con
clusions are as follows:  

(1) In the basic LAI estimation model, the use of RE2-based VIs and 
red-based VIs can achieve better LAI estimations for the entire 
growth period. In addition, the RE2-based VIs can achieve higher 

LAI estimation accuracies when LAI > 3, but they also caused 
overestimation when LAI ≤ 3.  

(2) The addition of pure LCC can improve LAI estimation accuracy, 
but it is more effective in low LAI region (LAI ≤ 3). Adding noisy 
LCC and transformed LCC can both improve the LAI estimation 
accuracy for both growth periods. 

Compared with the traditional LAI-sensitive-VIs-based method, 
involving LCC information is more reasonable for taking more canopy 
information into consideration and better reflects the seasonal charac
teristics of wheat. Further studies will be focus on investigating this 
method for different vegetation types, and more field measurements 
from different growth phases for validation. 
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