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A B S T R A C T   

A reliable thermal-derived method for spatially and temporally continuous latent heat flux (LE) estimates is vital 
for agricultural water resource management. In this study, we proposed a novel three-source LE model (TSLEM) 
derived by all-weather thermal infrared (TIR) land surface temperature (LST) to generate all-sky daily LE in 
mainland China. In this approach, LE was partitioned into the energy fluxes from canopy transpiration, soil 
evaporation, and interception water evaporation, respectively. Importantly, a new strategy was used to 
decompose radiational temperature into soil temperature (Ts), canopy temperature (Tc) and interception water 
temperature (Ti). Then soil evaporation was estimated by Penman-Monteith (PM) equation that parameterizes a 
soil resistance as a function of the normalized difference temperature index (NDTI) derived from Ts. A simplified 
MOD16 algorithm framework was used to estimate canopy transpiration and a Priestley-Taylor (PT) model to 
estimate interception evaporation. The proposed method was validated using 26 eddy covariance (EC) tower 
sites in mainland China across various vegetation types and applied to generate spatial continuous daily LE in 
mainland China. The results show that TSLEM accurately yielded daily LE with an average coefficient of 
determination (R2) of 0.53 (p<0.01) and root-mean-square-error (RMSE) of 27.37 W/m2, indicating TSLEM is a 
promising method for generating daily LE using all-weather LST at the regional scale.   

1. Introduction 

Terrestrial latent heat flux (LE), refers to the flux of water transferred 
from the land surface to the atmosphere by vegetation transpiration, soil 
evaporation, and interception evaporation, is a critical variable for 
many applications, such as crop yield forecast, drought monitor, and 
global climate change research (Fisher et al., 2017; Li et al., 2009; Zhou 
et al., 2021, 2020). Ground eddy-covariance (EC) tower measurements 
can provide accurate LE values from the scale of a few dozen meters to 

approximately 1 km over several decades (Baldocchi et al., 2001; Liu 
et al., 2011; Tang et al., 2010). However, sparse EC towers can only 
represent limited local processes, and it is difficult to characterize 
regional or global scales due to terrestrial ecosystem heterogeneity and 
the complex dynamic nature of water, heat, and energy transfer pro-
cesses (Kalma et al., 2008; Schimel et al., 2019; Yao et al., 2017a). 
Fortunately, remote sensing (RS) can provide spatially continuous and 
temporally regular measurements of terrestrial variables, such as land 
surface temperature (LST) and vegetation index (VI), for regional or 
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global LE estimation (Brust et al., 2021; Yao et al., 2018). 
RS-derived LST is a critical variable for regional LE estimation due to 

its fast response to the variation of soil moisture (SM), which constrains 
canopy transpiration and soil evaporation (Carlson et al., 1994; Kalma 
et al., 2008; Sandholt et al., 2002). Many LST products derived from 
thermal infrared (TIR) satellite data, such as MODerate Resolution Im-
aging Spectroradiometer (MODIS), can provide frequent coverage and 
high spatial resolution inputs for LE models. However, LST information 
missed under cloudy conditions seriously limits spatially continuous and 
temporally regular monitoring of regional or global LE. Fortunately, 
various processes have been developed to compensate for missing in-
formation in MODIS LST by blending TIR-derived LST and microwave 
brightness temperature, thereby providing spatiotemporally continuous 
precise LST products for LE estimation (Duan et al., 2017; Xu and 
Cheng, 2021). 

Over the last few decades, LST-derived surface energy balance (SEB) 
models have been widely used to estimate regional LE. One-source SEB 
models consider the land surface as “one-leaf” to calculate sensible heat 
flux (H) and LE, which may yield significant errors in partially vegetated 
landscapes (Verhoef et al., 1997; Yao et al., 2017b). To solve this defect, 
two-source SEB models decompose LST into soil temperature (Ts) and 
canopy temperature (Tc) to calculate H and then LE of soil and canopy 
(Anderson et al., 1997, 2007; Colaizzi et al., 2014, 2012; Kustas and 
Norman, 1999; Norman et al., 1995). However, two-source SEB models 
do not consider the influence of interception water from rainfall in LST 
decomposition and flux division. Previous studies reported that 
approximately 30% of rainfall can be intercepted in the evergreen beech 
forest (EBF) of New Zealand (Rowe, 1983). Similarly, approximately 6% 
and 11% of rainfall can be intercepted in Indonesia’s logged and 
unlogged forests, respectively (Asdak et al., 1998). Considering the ef-
fect of interception water is crucial when estimating LE over a regional 
or global scale because interception water can affect the energy distri-
bution and LST change via partial energy absorption. 

In addition, the calculation of H is based on resistance-temperature 
gradient in SEB model. There are two problems that have not been 
fully solved. Firstly, resistance is parameterized by the complex theory 
of wind-profile and surface roughness length (Norman et al., 1995; Yao 
et al., 2017b). The complex resistance parameterizations generally lead 
to great uncertainty in LE estimation (Zhao et al., 2020). Secondly, the 
estimation of H is sensitive to the error of LST (Timmermans et al., 
2007). Generally, more than 50% of errors are caused by the usage of 
LST in SEB models (Mu et al., 2011; Stewart et al., 1994). In contrast, 
many LST-derived methods have been developed to characterize the 
surface water conditions for LE estimation. Compared with SEB models, 
these methods are insensitive to LST errors. These include methods 
based on space features between LST and VI (LST-VI space methods) 
(Carlson et al., 1994), the water deficit index (WDI) (Moran et al., 1994), 
the crop water stress index (CWSI) (Jackson et al., 1981), the 
temperature-vegetation dryness index (TVDI) (Sandholt et al., 2002), 
and the normalized difference temperature index (NDTI) (McVicar and 
Jupp, 1998). An overview of LE models based on these methods was 
summarized in the Table S1, including their major merits and limita-
tions. Overall, LST-VI space methods are widely used to estimate 
regional LE, yet the determining of dry/wet edges is subjectivity and the 
absence of one condition in the given images, very dry, very wet, fully 
vegetated, and bare surfaces may lead to large uncertain in the LE 
estimation. Although many methods, such as WDI, TVDI, CWSI, and 
NDTI, synergistic utilize satellite and meteorological data to determine 
the theoretical wet/dry edges, it is not operational on large scale due to 
the complex scheme and errors from too many input variables. 

To overcome the above problems, we proposed a novel three-source 
LE model (TSLEM) driven by an all-weather LST product to estimate all- 
sky daily LE. We developed LE models by (i) considering the effect of 
interception water on energy balance model and LST decomposition; (ii) 
employing Penman-Monteith (PM) model, simplified MOD16 frame-
work, and Priestley-Taylor (PT) model to calculate LE of soil, canopy 

and interception water, respectively; (iii) developing a robust new 
strategy to calculate NDTI and then using NDTI to parameterize soil 
resistance in PM equation; and (iv) applying an all-weather LST product 
to drive the TSLEM model for LE estimation. The proposed method was 
compared with the two-source energy balance (TSEB) model, Priestley- 
Taylor-Jet Propulsion Laboratory (PT-JPL) model, and the double source 
LE model (DSLEM) at 26 flux tower sites across mainland China. Section 
2 present the description of four models. The forcing variables and 
implementation of four models are described in Section 3. Results are 
given in Section 4, followed by a discussion in Section 5 and a conclusion 
in Section 6. 

2. Methods 

2.1. The description of TSLEM 

TSLEM includes four modules: (1) a novel three-source energy bal-
ance model framework that considers the effect of interception water on 
LST decomposition and energy balance; (2) a Penman-Monteith (PM) 
model for LEs estimation; (3) a simplified MOD16 framework for LEc 
estimation; and (4) a Priestley-Taylor (PT) model for LEi estimation. 
These four modules are introduced in the following sections. 

2.1.1. A novel three-source energy balance model framework 
In our model, the surface flux is divided into soil, canopy and 

interception water three components (Fig. 1). The LE is composed of soil 
(LEs, W/m2), canopy (LEc, W/m2) and interception water (LEi, W/m2) 
three components. 

LE = LEc + LEs + LEi (1) 

The available energy is partitioned into soil, canopy and interception 
water based on vegetation fractional coverage (fc, unitless) and relative 
surface wetness (fwet, unitless). 

As = (1 − fwet)(1 − fc) × Rn − G (2)  

Ac = (1 − fwet) × fc × Rn (3)  

Ai = fwet × Rn (4) 

Fig. 1. Schematic diagrams of parallel resistance and flux components for the 
novel three-source energy balance model framework. The symbols in the dia-
grams are defined in Section 2.1. 
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where As (W/m2), Ac (W/m2), and Ai (W/m2) are the available energy of 
the soil, canopy, and interception water, respectively; G (W/m2) is soil 
heat flux that can be calculated by the following equations, 

G = Rn[(m − n)(1 − fc)(1 − fwet)+ n] (5)  

fwet =

{
0 RH < 70%

RH4 RH ≥ 70%
(6)  

where RH (%) is relative humidity; m and n are empirical values and set 
as 0.315 and 0.05 (Kustas and Daughtry, 1990; Su, 2002), respectively. 
The reasonable representation of Eq. (6) has been proved by Stone et al. 
(1977) based on observed precipitation. In our model, there is no soil 
heat interaction between atmosphere and soil if the land surface is fully 
covered with interception water. 

Here, the energy balance model of three components can be 
expressed as: 

Rns = LEs + Hs + G (7)  

Rnc = LEc + Hc (8)  

Rni = LEi + Hi (9)  

where Rns, Rnc, and Rni (W/m2) are the net radiation of soil, canopy and 
interception water, respectively; Hs, Hc, and Hi (W/m2) are the sensible 
heat fluxes of the soil, canopy, and interception water, respectively. 

We assume the sensible heat flux from the soil and canopy surfaces 
are paralleled (Fig. 1), in which Hs and Hc can be calculated by Eq. (10) 
and Eq. (11). 

Hs = ρCp
Ts − Ta

ras
(10)  

Hc = ρCp
Tc − Ta

rac
(11)  

where ρ (kg/m3) is the air density; Cp (J/kg/K) is the specific heat ca-
pacity of air; Ta (K) is the air temperature; Ts (K) and Tc (K) are the 
temperatures of the soil and canopy, respectively. Here, we consider the 
effect of interception water temperature (Ti (K)) on LST and propose a 
new strategy to calculate Ts and Tc (Text S1). ras (s/m) in Eq. (10) is the 
total aerodynamic resistance that determines the ability of water vapor 
and heat from the soil surface transfer into the air above; The ras is 
generally estimated by the classical theory of dynamic roughness and 
wind profile, but complex parameterization schemes and too many input 
variables may lead to uncertainty (Zhao et al., 2020). Based on the 
methods revised by Yao et al. (2017b), here ras (s/m) (Eq. (12), Fig. 1) is 
parallel to convective heat transfer resistance (rhs (s/m)) and radiative 
heat transfer resistance (rrs (s/m)) in the soil surface (Choudhury et al., 
1998; Mu et al., 2007). 

ras =
rrs × rhs

rrs + rhs
(12)  

rrs =
ρCp

4.0 × σ × Ta
3 (13)  

rhs =
107.0

101.3
Pa

×
( Ta

293.15

)1.75 (14)  

Where σ (W/m2/K) is the Stefan–Boltzmann constant; Pa (KPa) is the 
atmospheric pressure. rac (s/m) in Eq. (11) is the aerodynamic resistance 
of water vapor and heat from the canopy surface transfer into the air 
above the canopy surface. As the MOD16 algorithm (Mu et al., 2011), in 
the current study, rac (Eq. (15), Fig. 1) is calculated as the parallel of 
radiative heat resistance (rrc (s/m)) and convective resistance (rhc (s/m)) 
in the canopy surface. 

rac =
rrc × rhc

rrc + rhc
(15)  

rhc =
1.0

gl bl
(16)  

rrc =
ρCp

4.0 × σ × Ta
3 (17)  

where gl_bl (m/s) is the leaf-scale boundary layer conductance, whose 
value is equal to the conductance of leaf to H (gl_sh (m/s)) per unit LAI 
(Mu et al., 2011). To make the method suitable for all ecosystems and 
reduce the model input variables. In the current study, gl_sh is set as 0.04 
for all ecosystem types. 

2.1.2. Penman–Monteith model for LES estimation 
In our model, the fundamental method for estimating instantaneous 

LEs is based on the PM equation, 

LEs =
ΔAs + (1 − fc)ρCp × VPD

/
ras

Δ + γ(1 + rs/ras)
(18)  

where Δ (kPa/K) is the slope of the saturated vapor pressure (esat (kPa)) 
curve to temperature; VPD (kPa) is the water vapor pressure deficit; rs 
(s/m) is a metric of the total factor that constrains water from soil 
transport to the atmosphere near the soil surface, which is mainly 
determined by surface SM availability. Therefore, it is necessary to 
utilize surface SM available to parameterize rs. Here, rs is parameterized 
using NDTI proposed by McVicar and Jupp (1998). 

NDTI is strongly related to SM availability and can be calculated by 
TIR-derived LST and meteorological parameters. 

NDTI =
Tsmax − Ts

Tsmax − Tsmin
(19)  

where Tsmax is the modeled soil surface temperature when the soil sur-
face resistance is infinite, and Tsmin is the modeled soil surface temper-
ature when the soil surface resistance is close to zero. Tsmax and Tsmin can 
be taken as the physically limited soil surface temperatures under given 
meteorological conditions (McVicar and Jupp, 1998). Ts close to Tsmin is 
an indication of wetness, while Ts close to Tsmax is an indication of 
dryness. Therefore, NDTI can be used to indicate soil surface moisture 
conditions. 

McVicar and Jupp (1998) calculated Tsmax and Tsmin in Eq. (19) by 
inversion of the one-layer or two-source resistance energy balance 
model (REBM). In our study, Tsmax and Tsmin are calculated by the 
following revised method. By combining Eqs. (7), (10), and (18), we can 
obtain Eq. (20), 

Ts =
ras × As

ρCp
×

γ(1 + rs/ras)

Δ + γ(1 + rs/ras)
−

(1 − fc) × VPD
Δ + γ(1 + rs/ras)

+ Ta (20) 

For dry bare soil with no available water, where rs=∞, the soil 
temperature reaches its highest value. In this case, the soil temperature 
can be expressed as Eq. (21). The soil temperature reaches its lowest 
value for well-watered soil, where rs is very small. In this case, the soil 
temperature can be expressed as Eq. (22). 

Tsmax =
ras × As

ρCp
+ Ta (21)  

Tsmin =
ras × As

ρCp
×

Δ
Δ + γ

−
(1 − fc) × VPD

Δ + γ
+ Ta (22) 

NDTI and rs have the following relationship: (i): rs decrease with the 
increase of NDTI; (ii): rs is infinity when NDTI is close to zero. Based on 
the relationship between them, we assume there is an inverse relation-
ship between rs and NDTI (Fig. 2) which can be expressed as Eq. (23). 
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rs =
Ck

NDTInk (23)  

where Ck and nk are the empirical parameters and set as 10.0 and 1.6, 
respectively in this study. 

2.1.3. Simplified MOD16 framework for LEc estimation 
Here, a simplified MOD16 algorithm is implemented to calculate 

instantaneous LEc, 

LEc =
ΔAc + ρCp × VPD × fc

/
rac

Δ + γ(1 + rc/rac)
(24)  

where rc is the effective resistance to transpiration from the plant, which 
is highly dependent on environmental conditions (VPD, Ta, carbon di-
oxide concentration, water potential, etc.) and vegetation growth status 
(Mu et al., 2007, 2011). To reduce the error caused by too many input 
variables, we use the invariant parameters proposed by Yao et al. 
(2017a) to calculate rc, such that: 

rc = 1/Cc (25)  

Cs = cL × m(Ta) × m(VPD) (26)  

Cc = Cs × LAI (27)  

where cL (m/s/K/Pa)) is the mean surface conductance per unit LAI, in 
our model, cL is set as 0.0022 (Cleugh et al., 2007); Cc (m/s) is the 
canopy conductance; and Cs (m/s) is the stomatal conductance. m(Ta) is 
calculated with an optimum air temperature (Topt) set as 298.15 K 
(Fisher et al., 2008); m(VPD) is calculated by setting VPDopen to 0.65 kPa 
and VPDclose to 2.9 kPa (Yao et al., 2017a). 

m(Ta) = exp

[

−

(
Ta − Topt

Topt

)2
]

(28)  

m(VPD) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.0 VPD ≤ VPDopen

VPDclose − VPD
VPDclose − VPDopen

VPDclose < VPD < VPDopen

0.1 VPD ≥ VPDclose

(29)  

2.1.4. Priestley-Taylor model for LEi estimation 
The Priestley-Taylor (PT) (1972) model is used to estimate LEi based 

on Ai (Fisher et al., 2008, 2011; Priestley and Taylor, 1972; Wang et al., 
2019). 

LEi = α Δ
Δ + γ

Ai (30)  

where α is the PT parameter (1.26). 

2.2. Daily LE estimation 

Satellite-derived LE values from the TSLEM model are instantaneous, 
and we upscale instantaneous LE into daily values via the invariant 
evaporative fraction (EF) method (Sugita and Brutsaert, 1991), 

EFinst =
LEinst

Rninst − Ginst
= EFdaily (31)  

LEdaily = EFdaily
(
Rndaily − Gdaily

)
(32)  

where EFinst (unitless) is an instantaneous EF; EFdaily (unitless) is a daily 
EF; LEinst (W/m2) is instantaneous LE; LEdaily (W/m2) is daily LE; Rninst- 
Ginst (W/m2) is instantaneous available energy, and Rndaily-Gdaily (W/ 
m2) is daily available energy. 

2.3. Comparison with other LE models 

2.3.1. Double-source LE model (DSLEM) 
The framework of DSLEM is similar to TSLEM except DSLEM sepa-

rates LE into LEc and LEs two components. The calculations of LEc and 
LEs are similar to those of TSLEM. The DSLEM model can be written as: 

LE = LEc + LEs (33)  

Ac = Rn × fc (34)  

As = Rn(1 − fc) − G (35)  

LEc =
ΔAc + ρCp × VPD

/
rac

Δ + γ(1 + rc/rac)
(36)  

LEs =
ΔAs + ρCp × VPD

/
ras

Δ + γ(1 + rs/ras)
(37) 

The calculation of ras, rac, and rc refers to Eqs. (12), (15), and (25). 
The parametrization scheme of rs is similar to TSLEM except that DSLEM 
decomposes LST into Ts and Tc. 

2.3.2. Two-source energy balance (TSEB) model 
The originally TSEB model was developed by Norman et al. (1995) 

and has been revised by Kustas and Norman (1999). TSEB assumes that 
the available energy is equal to turbulent fluxes and partitions net ra-
diation into canopy and soil components (Eq. (38)). 

Rn = Rnc + Rns = LE + H + G (38) 

The LE of each component is calculated as the residual of energy 
balance models. 

Rnc = LEc + Hc (39)  

Rns = LEs + Hs + G (40) 

Here, Hc and Hs are calculated by series resistance network form, 
which can be expressed as follows: 

H = ρCp
Tac − Ta

ra
(41)  

Hc = ρCp
Tc − Tac

rx
(42)  

Hs = ρCp
Ts − Tac

rs
(43) 

Fig. 2. The relationship between NDTI and soil resistance.  
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where Tac (K) is the air temperature within the canopy boundary layer 
and rx (s/m) is the resistance in the boundary layer near the canopy. 
Satellite-derived radiometric temperature is the composition of Ts and 
Tc. TSEB model calculates the initial Ts and Tc from the following 
equation. 

Tc = Ta +
Rnc × ra

ρCp

(

1 − α× fc ×
Δ

Δ + γ

)

(44)  

LST4 = fc × Tc
4 + (1 − fc) × Ts

4 (45)  

2.3.3. Priestley-Taylor-based LE model (PT-JPL) 
The PT-JPL model developed by Fisher et al. (2008) was downscaled 

the potential LE to actual LE by multiple eco-physiological constraint 
functions. The model can be described as: 

LE = LEs + LEc + LEi (46)  

LEs = [fsm(1 − fwet)+ fwet] ×
Δ

Δ + γ
× α × (Rns − G) (47)  

LEc = (1 − fwet) × fg × fT × fM × α Δ
Δ + γ

Rnc (48)  

LEi = fwet × α Δ
Δ + γ

Rni (49)  

where fsm is the soil moisture constraint; fg is the green canopy fraction; 
fT is the plant temperature constraint, and fM is the plant moisture 
constraint. 

3. Data processing and implementation of LE models 

3.1. Eddy-Covariance data 

Eddy-Covariance (EC)-measured water and heat fluxes and the cor-
responding meteorological data across mainland China were used to 
evaluate the model performance. EC data from 26 sites (Fig. 3, Table S2) 
were provided by the chinese ecosystem research network (CERN) (Fu 
et al., 2010), synergetic enhanced observation network (SEON) for 
northern China, flux sites of the Haihe River Basin (Haihe-flux) (Liu 
et al., 2013), Chinaflux (Yu et al., 2006) and Fluxnet (Pastorello et al., 
2020). These sites cover major vegetation types across China, including 
cropland (CRO, 9 sites), deciduous needle forest (DNF, 1 site), evergreen 
broadleaf forest (EBF, 1 site), evergreen needleleaf forest (ENF, 1 site), 
grassland (GRA, 11 sites), open shrublands (OSH, 1 site), mixed forest 
(MF, 1 site), and wetland (WET, 1 site). The climate zones covered by 
these EC towers include the temperate monsoon climate (TeMC), tem-
perature continental climate (TeCC), subtropical monsoon climate 
(SuMC), and plateau mountain climate (PlMC). The distinctive charac-
teristics of these sites are suitable to evaluate the model performance. 
The corresponding meteorological and heat flux measurements include 
net radiation (Rn), incident solar radiation (Rs), latent heat flux (LE), 
sensible heat flux (H), air temperature (Ta), soil temperature (Ts), at-
mospheric pressure (Pa), relative humidity (RH), soil moisture (SM), and 
wind speed (WS). The daily parameters were set as null when more than 
25% of the half-hourly data are missing. Because the EC data suffer a 
problem of energy imbalance in which the total observed LE and H are 
generally less than available energy. Therefore, LE here was corrected 
using the method developed by Twine et al. (2000) (Eq. (50)). 

LEcor =
Rn − G

Huncor + LEuncor
× LEuncor (50) 

Fig. 3. Locations and climate zones of selected EC sites over China. The climatic zones are the temperate monsoon climate (TeMC), temperature continental climate 
(TeCC), plateau mountain climate (PlMC), subtropical monsoon climate (SuMC), and tropical monsoon climate (TrMC). 
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where LEcor is corrected LE; LEuncor and Huncor are uncorrected LE and H, 
respectively. 

3.2. Satellite and reanalysis datasets 

Datasets used in the LE model here are listed in Table 1. These 
datasets include the blended all-weather instantaneous LST, leaf area 
index (LAI), fractional vegetation cover (fc), and meteorological data. 
The instantaneous LST product required for characterizing soil surface 
moisture conditions was provided by Duan et al. (2017) with a 1 km 
spatial resolution. The all-weather LST was generated by blending 
TIR-derived MYD11A1 LST and PMW-derived AMSR-E LST. Both TIR 
and AMSR-E sensors are aboard the Aqua satellite and the cross equator 
at 1:30 am/pm (Duan et al., 2017). We also used 8-day Global land 
surface satellite (GLASS) fc and LAI products with a spatial resolution of 
1 km (Jia et al., 2015; Liang et al., 2021; Xiao et al., 2014). 

Instantaneous and daily gridded meteorological data were derived 
from Modern-Era Retrospective Analysis for Research and Applications, 
version 2 (MERRA-2) developed under the National Aeronautics and 
Space Administration (NASA) Modeling Analysis and Prediction Pro-
gram (Gelaro et al., 2017). Here, we used Rs, surface net downloads 
longwave radiation (Rl), Pa, Ta, and RH at 6:00 UTC (approximately 
14:00 local time in China, close to the Aqua satellite transit time) to 
derive instantaneous LE. Daily Rs and Rl were used to upscale instan-
taneous LE into daily values. 

3.3. Implementation of LE models 

The four models mentioned above estimated all-sky LE are validated 
by ground-based EC observations. The force variables of four LE models 
at sites include satellite data (fc, LAI, and all-weather LST), canopy 
height, instantaneous (RH, Rn, Rs, Ta, Pa) and daily (Rn) meteorology 
data (Table 2). The EC data and the corresponding meteorology data 
were derived from in-situ observation and satellite data was derived 
from pixel values in the corresponding location of EC sites. We refer-
enced the method proposed by Anderson et al. (2007) to set canopy 
height. Daily variables were linearly aggregated from half-hourly in-situ 
measurements. Here, the daily LE estimated by four models was 
upscaled from an instantaneous scale. 

The forcing variables for mapping spatial continuous daily LE in 
mainland China based on TSLEM driven by satellite variables (all- 
weather LST, LAI, and fc), instantaneous meteorological variables (Ta, 
Rs, Rl, RH, and Pa), and daily meteorological variables (Rs and Rl) from 
MERRA-2 data. To match the temporal and spatial resolution of all- 
weather LST, the MERRA-2 data were spatially interpolated to 1 km 
using the bilinear interpolation method, the 8-day fc and LAI products 
were linearly interpolated into daily. All the above mentioned data 
processing procedure is implemented using the Python programming 
language. 

4. Results 

4.1. LST decomposition 

Across all sites, decomposing LST into three components can 
improve the performance of Ts simulation under both aerodynamic 
resistance schemes of TSLEM and TSEB, with respective average R2 of 
0.81 and 0.84 (p<0.01), accompanying RMSE of 5.27 K and 5.48 K 
(Figs. 4 and 5). In contrast, decomposing LST into two components has 
lower performance under both aerodynamic resistance schemes of 
TSLEM [R2=0.77 (p<0.01) and RMSE=7.39 K] and TSEB [R2=0.79 
(p<0.01) and RMSE=6.19 K]. Both decomposing LST into two and three 
components under the TSEB scheme are slightly better than those of 
TSLEM, with an average reducing RMSE of 1.20 K and 0.49 K and 
increasing R2 values of 0.03 and 0.02 (p<0.01), respectively. 

The performance of decomposing LST into two and three compo-
nents is similar in arid sites (DL2 and SZWG) under two aerodynamic 
resistance parameterization schemes (Figs. 4 and 5). In contrast, in three 
sites with sufficient rainfall (CBS, DHS, and QYZ), decomposing LST into 
three components significantly improves the performance of Ts simu-
lation under both TSLEM and TSEB parameterization schemes, with an 
average decrease in RMSE of 1.94 K and 2.06 K, and an increase in R2 of 
0.02 and 0.33 (p<0.01). 

4.2. Model validation at EC sites 

4.2.1. Validation of the estimated instantaneous LE 
To evaluate our model, we first validated the estimated instanta-

neous LE using TSLEM against in-situ measurements at all-sky condi-
tions. As illustrated in Fig. 6, the estimated instantaneous LE in general 
agrees with ground-based measurements over most sites, yielding an 
average R2 of 0.39 (p<0.01), RMSE of 105.98 W/m2, and bias of 44.22 
W/m2. But the significant overestimation at two arid GRA sites (DS and 
XLGL) indicates the application of TSLEM in arid grassland requires 
more caution. 

TSLEM shows variable capability over different vegetation types and 
climate zones. TSLEM performs generally better in forests (including 
MF, DNF, EBF, and ENF), with an average R2 of 0.54(p<0.01) and RMSE 
of 97.79 W/m2, followed by cropland, yielding an average R2 of 0.37 
(p<0.01), and RMSE of 108.38 W/m2, and performs worst in the grass 
with R2 of 0.28(p<0.01) and RMSE of 113.52 W/m2. In addition, TSLEM 
has good performance in the EC sites of plateau mountain climate 
(PlMC) and subtropical monsoon climate (SuMC), with respective 
average R2 of 0.69 and 0.54 (p<0.01), accompanying RMSE of 73.94 W/ 
m2 and 101.05 W/m2. In contrast, TSLEM performs poor in the EC sites 

Table 1 
Description of the datasets used in this study.  

Variables Datasets Units Temporal/ 
spatial 
resolution 

Timespan Reference 

fc GLASS No 
unit 

8 day/1km 2002–2011 (Jia et al., 
2015) 

LAI GLASS No 
unit 

8 day/1km 2002–2011 (Xiao et al., 
2014) 

LST All- 
weather 
LST 

K Instantaneous/ 
1km 

2002–2011 (Duan 
et al., 
2017) 

RH MERRA-2 % Hourly/ 0.5◦ 2006–2008 (Gelaro 
et al., 
2017) 

Ta MERRA-2 K Hourly/ 0.5◦ 2006–2008 (Gelaro 
et al., 
2017) 

Pa MERRA-2 K Hourly/ 0.5◦ 2006–2008 (Gelaro 
et al., 
2017) 

Rs MERRA-2 W/ 
m2 

Daily and 
Hourly/0.5◦

2006–2008 (Gelaro 
et al., 
2017) 

Rl MERRA-2 W/ 
m2 

Daily and 
Hourly/0.5◦

2006–2008 (Gelaro 
et al., 
2017)  

Table 2 
The force data of four LE models at the site scale.  

Models Input variables 

DSLEM Rn, Pa, Ta and RH, LST, fc and LAI 
TSLEM Rn, Pa, Ta and RH, LST, fc and LAI 
TSEB Rn, Rs, Ta, Pa, RH, LST, fc, LAI, and canopy height 
PT-JPL Rn, Pa, Ta and RH, fc and LAI  
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of temperate monsoon climate (TeMC) [R2=0.38 (p<0.01) and 
RMSE=111.18 K] and temperate continental climate (TeCC) [R2=0.28 
(p<0.01) and RMSE=110.90 K]. 

4.2.2. Validation of the estimated daily LE 
In general, TSLEM has a good capability to estimate daily LE in all- 

sky conditions, with an average R2 of 0.53 (p<0.01), accompanied by 
an average RMSE of 27.37 W/m2 and a bias of − 6.49 W/m2 (Fig. 7). The 

Fig. 4. Validation of DTs and TTs for the aerodynamic resistance parameterization scheme adopted by TSLEM at 6 sites (DTs represent decomposing LST into the 
double source and TTs represent decomposing LST into three sources). 

Fig. 5. Validation of DTs and TTs for the aerodynamic resistance parameterization scheme adopted by TSEB at 6 sites.  
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Fig. 6. Scatterplots of observed instantaneous LE versus TSLEM estimated instantaneous LE under all-sky conditions over 26 sites.  
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Fig. 7. Scatterplots between observed daily LE and TSLEM estimated daily LE over 26 sites.  
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absolute value of bias at all sites except LZ, MQ, and YK is less than 40 
W/m2 indicating the systematic bias of TSLEM is small. It is interesting 
to find the significant overestimate of instantaneous LE at two arid GRA 
sites (DS and XLGL) has been largely reduced on a daily scale. 

The observed LE reaches its highest around July and August of 
summer and then decreases from summer to winter (Fig. 8). Generally, 
observed LE seasonal variations were well captured by TSLEM estimated 
LE at most sites. In addition, the amplitudes of TSLEM estimated LE is 
close to the observed at most sites. However, TSLEM tends to underes-
timate LE at some arid sites (AR, LZ, DX, MQ, and YK). 

4.3. Comparison with other LE models 

Across all sites (Fig. 9), TSLEM has the best performance against 
ground measurement among all four LE models, with a mean R2 of 0.53 

(p<0.01), RMSE of 27.37 W/m2, a bias of − 6.49 W/m2, and relative 
error (RE) of 6.02%. The TSEB model perform poor, suggesting a mean 
R2 of 0.31 (p<0.01), RMSE of 42.67 W/m2, a bias of 1.45 W/m2, and RE 
of 11.13%. The performance of PT-JPL is similar to TSLEM, reproducing 
LE with a mean R2 of 0.52 (p<0.01), RMSE of 28.10 W/m2, bias of 
− 12.85 W/m2, and RE of − 21.65%. The performance of DSLEM is 
significantly worse than TSLEM and PT-JPL but better than TSEB, sug-
gesting an average R2 of 0.45 (p<0.01), RMSE of 31.04 W/m2, bias of 
− 15.16 W/m2 and RE of − 24.29%. 

We also compared the statistical distributions of four models esti-
mated LE with ground observed LE. As shown in Fig. 10, the estimated 
LE from four LE models differs greatly despite the same forcing inputs. 
For almost all EC sites, the difference between observed and estimated 
LE is the least in TSLEM and is the largest in TSEB. The box of TSLEM is 
consistent with the observations except for LZ, MQ, NM, and YK EC sites. 

Fig. 8. The 8-day time series observed and estimated daily LE (TSLEM, PT-JPL, and TSEB) over 26 EC sites.  
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The upper box boundaries of TSLEM are higher than those of DSLEM and 
closer to observations at almost all sites. The large amplitudes of the 
TSEB box and abundant outliner points indicate great uncertainty exists 
in the TSEB model. The shape and location of the PT-JPL box are similar 
to observations at humid sites. However, the box boundary of PT-JPL is 
lower than other models and observed in some arid and semiarid sites 
(DS, LZ, TY1, TY2, XLGL, and YZ). 

4.4. Sensitivity analysis 

The contribution of forcing variables to the TSLEM and TSEB output 
was evaluated by a simple relative sensitivity method (RSM) refer to Eq. 
(51) (Zhan et al., 1996). The relative sensitivity (RSv) of each input 
variable v (LST, NDVI, RH, Rn, Ta, WS) was calculated by comparing the 
LE0 estimated by the reference input variable with LEv estimated by 
changing the input variable v. The sensitivity analysis was conducted by 
the data from DHS, DS, DX and GT on Day of Year (DOY) of 180, 244, 
192 and 185, respectively, which cover four main climate zones of 
China. The RH was less than 70% (dry surface) in DS and GT, and greater 
than 70% (wet surface) in DHS and DX. 

RSv =
LEv − LE0

LE0
(51) 

As shown in Fig. 11, the sensitivity of TSLEM to Rn is determined to 
be the highest, and Rn is positively correlated with LE, which is common 
among many LE models (Fisher et al., 2009, 2017; Wang et al., 2019). As 
Rn increases from − 20% to 20%, LE almost equally increases from − 20% 
to 20%. The second-largest variation of TSLEM is caused by the change 
of RH on the wet surface, while caused by the change of Ta on the dry 
surface. When RH and Ta range from − 20% to 20%, LE ranges from 
− 19% to 26% for RH on wet surfaces and from − 17% to 12% for Ta on 
dry surfaces. TSLEM is insensitive to the error of LST on wet surfaces, 
while the increase in LST generally results in the underestimation of LE 
on dry surfaces. The increase in LST by 10% and 20% would lead to a 6% 
and 20% underestimation of LE on dry surfaces, respectively. The 
sensitivity analysis result shows that the estimated LE is insensitive to 
the error of two vegetation parameters (fc and LAI). The fluctuation of LE 
is less than 10% when the variation of fc is within ±20%. A 20% vari-
ation in LAI only results in a 3% fluctuation of LE. 

TSEB is most sensitive to variations in temperature (LST and Ta), 
especially on dry surfaces (DS and GT). Ta is positively related to LE, 
while LST is negatively related to LE. The change in LST of ±20% would 
result in variation in LE from − 55% to 78% on the dry surface. LE varies 
from − 40% to 36% when Ta changes within ±20%. TSEB is insensitive 
to the error of Rn, fc, and LAI. A 20% variation in fc, LAI, and Rn results in 
fluctuations in LE less than 2%, 4%, and 11%, respectively. 

Fig. 8. (continued). 
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Overall, Rn and RH are the important error sources of TSLEM on wet 
surfaces, but Rn and Ta are the important error sources on dry surfaces. 
The increase in Rn would result in the overestimation of LE. TSEB is most 
sensitive to the errors of LST and Ta. The decrease in LST or increase in 
Ta would result in the overestimation of LE. TSLEM shows less sensitivity 
to LST than TSEB. 

4.5. Mapping of daily LE across chinese landmass 

The proposed model was employed to generate all-sky LE products 
during 2006–2008 over the Chinese landmass. The temporal variations 
of monthly LE show obvious seasonality (Fig. 12). The lowest LE occurs 
around December and January and then starts to increase. The LE rea-
ches its highest value around July and then decreases to its lowest value. 
The major deserts of Northwest China remain consistently low, while the 
southern tropical monsoon climate zone remains consistently high over 
the year. 

The spatial distribution of annual mean LE during 2006–2008 
(Fig. 13) shows strong regional variations. The highest LE occurs in the 
tropical monsoon climate and subtropical monsoon climate zones 
(South and Central China), followed by the temperate monsoon climate 
zone (North and Northeast China), and the lowest LE occurs in the 

temperature continental climate and plateau mountain climate zones, 
including Qinghai-Tibet, Inner Mongolia, and Northwest China. The 
mean annual LE in China is 30.5 W/m2, equal to 376.6 mm/year. The 
spatial pattern and magnitudes of LE are consistent with those of pre-
vious studies (Yao et al., 2013; Zhang et al., 2010). 

5. Discussion 

5.1. TSLEM improvements to other models 

The biggest difference between the TSLEM and DSLEM is the division 
of flux. TSLEM segments LE into three components: LEc, LEs, and LEi; 
while DSLEM segments LE into two components: LEc and LEs. The 
occurrence of interception water after rainfall causes DSLEM to incor-
rectly divide LEi into LEc and LEs. The interception water is evaporated 
at potential evaporation (Fisher et al., 2008), while soil evaporation and 
canopy transpiration are constrained by environmental conditions and 
less than potential evaporation. Therefore, incorrect energy flux parti-
tion is responsible for the underestimation of DSLEM (Fig. 10). 
Consideration of interception water in the TSLEM improved the per-
formance of LE estimation, with an increasing R2 of 0.08, decreasing 
RMSE of 3.67 W/m2, and decreasing bias of 8.67 W/m2 (Fig. 9). 

Fig. 9. Radar chart of four statistical metrics (R2, RMSE, bias, and RE) for four models (TSLEM, DSLEM, PT-JPL, and TSEB) over 26 EC sites.  
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TSEB requires knowledge of soil and canopy temperatures. However, 
the LST measured by the TIR sensor is the composite of the soil and 
canopy temperature. Therefore, we are required to decompose LST into 
canopy and soil temperature. The error in LST may cause significant 

uncertainty in LST decomposition and then cause uncertainty in H 
(Timmermans et al., 2007). To avoid the error caused by the calculation 
of H, TSLEM simulates LE directly based on the PM or PT equation. One 
advantage of this method is that it avoids errors in the component 

Fig. 10. Box plot of four models estimated LE and ground measured LE over 26 sites. The box plot shows the median (boxes centerline), 75%, and 25% (upper and 
lower box boundaries), and the possible outlier data point (the data greater than V75+1.5(V75-V25) or less than V25–1.5(V75-V25), where V25 and V75 are values of 
25% and 75%). 

Fig. 11. Sensitivity analysis of TSLEM and TSEB at four sites to the errors of Ta, RH, LAI, fc, LST, and Rn from − 20% to 20% and incrementing by 10%. (The Y-axis 
ranges of TSEB at DS and GT are different from others.). 
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temperature causing uncertainty in H and then encapsulation into LE. 
The sensitivity experiment indicates that TSLEM decreases the uncer-
tainty caused by LST. The 3 K error in LST could cause a 30% LE esti-
mation error in TSEB but only cause a 6% error in TSLEM in arid regions 
(Fig. 11). 

Additionally, we improve LST decomposition from two procedures 
by (i) considering the effect of interception water on LST; and (ii) 
simplifying the aerodynamic resistance parameterization scheme. 
Considering interception water in the TSLEM improved the performance 
of LST decomposition, especially in areas with sufficient rainfall (Figs. 4 
and 5). This may be explained by the fact that rainfall intercepted by 
land surface can alter LST by absorbing partly energy. The aerodynamic 
resistance parameterization scheme adopted in TSEB is slightly more 
accurate than that of TSLEM (Figs. 4 and 5). However, the parametri-
zation scheme of TSEB is complex, and force variables WS from mete-
orological reanalysis data bear great uncertainty. Therefore, to reduce 
the effects of WS on LE models and simplify the ra parameterization 
process, we employ the scheme adopted in TSLEM rather than TSEB to 
decompose LST. 

The limitation of SM on LE in the PT-JPL model is solely dependent 
on meteorological data. The coarse resolution of meteorological data 
hinder the PT-JPL model for mapping the spatial variability of SM 
constraints on LE, especially for the water-limited heterogeneous land 
surfaces (Purdy et al., 2018; Yang et al., 2015). LST is a distinctive 
signature of SM, with low/high LST generally indicating wet/dry SM 

Fig. 12. The spatial distribution of monthly LE over mainland China from January to December during 2006–2008.  

Fig. 13. The spatial distribution of the annual mean LE of mainland China 
during 2006–2008. 
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conditions (Dong et al., 2016; Sandholt et al., 2002). In our model, an 
all-weather satellite LST product with a 1 km spatial resolution was used 
to detect the variation in SM. We utilized the PM equation instead of PT 
to estimate LEc and LEs because it considers the effect of atmospheric 
moisture deficit on LE. 

5.2. Model uncertainties 

Despite our model has improved the model performance and 
decreased the sensitivity to input variables, the estimated LE still re-
mains uncertain. This uncertainty mainly comes from errors of input 
variables, missing LE simulation processes, and spatial mismatch among 
different data sources.  

(1) Error of input variables. The errors of input variables, including 
satellite-based blending LST, LAI/fc, and meteorological data 
MERRA-2, all can contribute to the uncertainties of LE estima-
tion. The all-weather LST product used in our study is obtained 
from the blending of PMW and MODIS LST products. Duan et al. 
(2017) reported that the RMSE of blending LST under cloudy 
conditions varied from 3.5 K to 4.4 K. Sensitivity analysis shows 
that bias in blending LST may cause 6–8% LE estimation errors in 
arid regions (Fig. 11). To generate the daily LE product, 8-day 
LAI/fc was linearly interpolated to daily. However, the varia-
tions in LAI/f c within 8 days were not linear. Many previous 
studies found that MERRA-2 product has large biases. For 
instance, Zhang et al. (2020) reported the bias of MERRA-2 Rs 
ranges from 35.68 to 43.84 W/m2. In the current study, Rn is 
calculated as the sum of Rs and Rl. The overestimate in Rs will be 
linearly transferred to LE (Fig. 11).  

(2) Missing LE simulation process. It is a challenge to simulate all LE- 
related processes because the process of evapotranspiration is 
affected by numerous physical factors, including biophysics, 
plant species, meteorological factors, and other factors. There-
fore, simplifying LE process may lead to partial bias of LE esti-
mation. For example, CO2 can influence plant transpiration 
because high CO2 induces stomatal closure (Idso and Brazel, 
1984; Mu et al., 2011; Yao et al., 2013). This may lead to the 
overestimation of LE because our model ignores the effects of CO2 
on LE. The retrieval of global CO2 from the TanSat satellite (Hong 
et al., 2021; Wang et al., 2020) is an opportunity to add the effect 
of enriched CO2 into the LE model. 

(3) Spatial mismatch among different data sources. The spatial res-
olution of satellite-based fc/LAI/LST is 1 km while the resolution 
of MERRA-2 data is 0.5◦. To match with satellite data, the 
MERRA-2 data were spatially interpolated from 0.5◦ to 1 km. 
However, meteorological conditions can vary significantly within 
0.5◦ as the heterogeneity of vegetation and terrain. Therefore, the 
process of resampling and spatial mismatch among different data 
sources may introduce errors and contribute to the uncertainty of 
LE estimation. Future studies should explore reducing the use of 
meteorological forcing to further decrease the influence of spatial 
mismatch on LE estimation (El Masri et al., 2019). 

5.3. Merits and limitations of TSLEM 

Compared with other models, TSLEM has four advantages. First, 
TSLEM considers the effect of interception water in LST decomposition 
and uses NDTI calculated from decomposed soil skin temperature to 
parameterize rs in the PM equation. Our scheme minimizes the LE biases 
caused by LST errors. Second, TSLEM requires relatively fewer variables 
(LST, Rn, NDVI, RH, Pa, and Ta) that can be obtained from satellite and 
reanalysis meteorological data at the regional or global scale. Third, 
TSLEM is a robust LE model based on the sensitivity experiment. Rn, Ta, 
and RH are the main error sources of TSLEM that can be easily obtained 
with reasonable accuracy. Finally, TSLEM simplifies the process for 

aerodynamic resistance in the TSEB model and therefore reduces the 
required forcing variables, which produce comparable accuracy of LST 
decomposition when compared with the widely used TSEB model. 

Like many TSEB models, TSLEM has three limitations. First, TSLEM 
requires instantaneous meteorological data (Ta, Rn, and RH) at the time 
of TIR-derived LST acquisition, which may not be routinely accessed in 
some datasets. To expand the available data, the data interpolation 
methods introduced by McVicar and Jupp (1999) can be used to convert 
daily data into special time-of-day. Second, the assumption of an inverse 
relationship between NDTI and rs based on statistical analysis may be 
problematic. The relationship between NDTI and rs is complex, and it is 
a challenge to accurately describe the relationship between them with a 
simple mathematical formula. The mathematical relationship between 
them requires future research and is beyond the scope of this study. 
Finally, TSLEM adopts the same parameters over different vegetation 
types. However, for different vegetation types, differences in these pa-
rameters may be more reasonable. 

6. Conclusion 

This study developed a novel TIR-derived three-source LE model 
(TSLEM) for LE estimation, which could generate accurate LE estimation 
under all-sky conditions with few forcing data. In our model, LE was 
composed of heat flux from soil evaporation, canopy transpiration and 
interception water evaporation, and calculated by Penman-Monteith 
(PM) model, simplified MOD16 algorithm and Priestley-Taylor 
method, respectively. Importantly, the land surface temperature is 
decomposed into soil temperature, canopy temperature and interception 
water temperature by a new strategy. And then the soil resistance in PM 
model is parameterized by normalized difference temperature index 
(NDTI) derived from Ts. This novel LE model is capable of mapping the 
spatial variability of soil evaporation controlled by soil moisture. 

The model was validated and compared with three LE models (PT- 
JPL, TSEB, and DSLEM) at 26 EC sites representing 8 vegetation types 
across mainland China. The validation and comparison illustrated that 
TSLEM yielded comparable accuracy with few forcing data. Large un-
certainty in the TSEB model from the use of LST has been decreased in 
our model. Missing the effect of interception water is responsible for the 
underestimation of DSLEM. The PT-JPL model systematically under-
estimated LE in many EC sites of arid regions, and great uncertainties 
exist in TSEB estimated LE. 

TSLEM provides a new operational method for derivation of all-sky 
daily LE on a regional scale using all-weather LST, which are signifi-
cant interest for monitoring both the effects of soil and atmosphere 
moisture on LE. An important next step is to assess the application po-
tential of TSLEM in agriculture, ecology and hydrology. Furthermore, 
improving the accuracies of meteorological and satellite-derived input 
variables is beneficial for decreasing the uncertainties of all-sky daily LE 
and should be explored in the future studies. 
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