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Abstract— In this letter, the National Oceanic and Atmospheric
Administration Joint Polar Satellite System enterprise algorithm
and the quadratic split-window (SW) algorithm were adapted to
high spatial resolution thermal infrared (TIR) data of Chinese
Gaofen-5 (GF5) to estimate the land surface temperature (LST)
and sea surface temperature (SST), respectively. Lacking official
calibration coefficients, GF5 TIR data were cross-calibrated
by the well-characterized Visible Infrared Imaging Radiometer
Suite (VIIRS) data. The coefficients of two SW algorithms
were obtained by linear regression from the simulated data
set generated via comprehensive radiative transfer modeling.
The performance of the two algorithms was first evaluated by
independent simulation data and then cross-validated by Moder-
ate Resolution Imaging Spectroradiometer (MODIS) LST/SST,
VIIRS LST/SST, and Advanced Himawari Imager (AHI) SST
products. The preliminary results show good agreement between
estimated GF5 LSTs/SSTs and referenced LST/SST products,
with an average bias (root mean square error) of −0.26 (1.74),
−2.48 (3.49), 0.18 (2.43), and −1.47 K (2.86 K) for VLSTO,
VNP21, MYD11, and MYD21 LST products, −0.79 (1.55),
−0.28(1.58), and −1.71 (2.21) K for VIIRS, MODIS, and AHI
SST products. This is the first time that both LST and SST are
retrieved from the real GF5 data. This letter provides a practical
method to estimate LST and SST from Chinese Gaofen-5.

Index Terms— Cross-calibration, Gaofen-5 (GF5), land surface
emissivity (LSE), land surface temperature (LST), sea surface
temperature (SST).

I. INTRODUCTION

SURFACE temperature including land surface tempera-
ture (LST) and sea surface temperature (SST) is one of

the key parameters in the earth’s surface energy and water
budgets on local, regional, and global scales [1], [2], which has
been used in many research fields such as evapotranspiration,
weather forecast, and global climate change [3]–[7]. LSTs and
SSTs obtained from satellite observations are of great potential
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benefit to a regional or global study. For example, Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and
Advanced Very High Resolution Radiometer (AVHRR) LST
products have been used for accessing forest fire risk [8], [9].
SST anomalies have been used to forecast El Niño and the
Southern Oscillation (ENSO) [10].

Chinese Gaofen-5 (GF5) is the polar-orbiting satel-
lite of the China High-resolution Earth Observation Sys-
tem (CHEOS) satellite [11], which was successfully launched
on May 9, 2018. The orbit altitude is 705 km and local
time of the ascending node is 13:30. Visual and infrared
multispectral imager (VIMI) payload on the GF5 satellite
has four thermal infrared (TIR) channels centered at 8.20
(band9: 8.01∼8.39 μm), 8.63 (band10: 8.42∼8.83 μm),
10.80 (band11: 10.30∼11.30 μm), and 11.95 μm (band12:
11.40∼12.50 μm). The TIR image has a spatial resolution
of 40 m and the visible, near-infrared, and shortwave images
have a spatial resolution of 20 m. GF-5 imagery has significant
potential for exploring the urban ecological environment, water
management, and natural disasters, by virtue of the high spatial
resolution.

During the past two years, several algorithms, includ-
ing split-window (SW) algorithm [11]–[14], temperature and
emissivity separation (TES) algorithm [15], and hybrid algo-
rithm [16], have been proposed to retrieve LST or SST
from simulated GF5 TIR data. For example, Ye et al. [13]
developed a four-channel SW algorithm to estimate LST from
GF5 TIR data simulated from Thermal Airborne Spectro-
graphic Imager (TASI) hyperspectral TIR data set. The root
mean square errors (RMSEs) of GF5 LST are 0.45, 0.81,
and 0.58 K, respectively, at three field sites. When GF5 TIR
data simulated from Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) data were used, the
hybrid algorithm can achieve an error of less than 1 K and
0.015 for LST and land surface emissivity (LSE). Nonlinear
SW algorithms were used by Tang [11] for estimating LST
and SST from simulated GF5 TIR data, and the preliminary
evaluation results showed that the RMSE of LSTs (SSTs) is
less than 0.7 K (0.3 K). Chen et al. [14] developed an SW
algorithm to estimate SST from simulated GF5 TIR data, and
the bias and RMSE are −0.05 and 0.53 K, respectively, when
validated by in situ SST.

Although the accuracy of LST/SST retrieved from simu-
lated GF5 TIR data is acceptable, the performance of these
algorithms on real GF5 TIR data remains unknown, because
many kinds of uncertainties during the data acquisition process
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cannot be incorporated in the analog data through simple
simulation, e.g., systematic error and random error. Regarding
the GF5 data, two key issues are need to be solved to obtain
operational LST/SST product. One is radiometric calibration,
because the official calibration coefficients are unavailable
so far. The other is a robust algorithm. Thus, the objective
of this letter aims to develop a practical SW algorithm for
GF5 to obtain LST/SST products. Sections II and III introduce
SW algorithms and radiometric cross-calibration. Results and
discussion are presented in Section IV. The conclusion is
provided in Section V.

II. METHODOLOGY

A. Split-Window Algorithm

Meng et al. [17] demonstrated that the National Oceanic
and Atmospheric Administration (NOAA) Joint Polar Satellite
System (JPSS) enterprise algorithm has a comparable accuracy
to the generalized SW (GSW) algorithm [18] and the SW
algorithm designed by Sobrino et al. [19]. Thus, the NOAA
JPSS enterprise algorithm was used to estimate LST from
GF5 TIR data in this letter. According to the research of
Yu et al. [20], the NOAA JPSS enterprise algorithm can be
expressed as follows:
LST = C0+C1Ti+C2(Ti −Tj )+C3ε+C4ε(Ti −Tj )+C5�ε

(1)

where Ti and Tj are the GF5 brightness temperatures of the
channels i and j , respectively; ε = (εi + ε j )/2 and �ε =
εi − ε j are the mean and difference of the channel emissivity,
respectively. Ci (i = 0∼5) are the algorithm coefficients to be
determined from simulated data.

B. Land Surface Emissivity Estimation

The LSE was determined from GF5 optical data [21].
Soil emissivity was estimated from the surface reflectance
of GF5 visible and near-infrared channel [22], [23]. The
emissivity of vegetated area was estimated by the vegetation
cover method [24]. The formulas for calculating LSE are
expressed as follows:

εi =

⎧⎪⎨
⎪⎩

a1 i +
n∑

j=2

a j iρ j NDVI < NDVIs

εv i Pv +εsi(1− Pv)+4 dεPv (1− Pv) NDVIs ≤NDVI
(2)

where εi is the LSE of two SW channels; εv i and εsi are
the vegetation and soil component emissivity, respectively;
ρ j is the surface reflectance of the visible, near-infrared
band j , which was extracted from the imagery corrected by
fast line-of-sight atmospheric analysis of spectral hypercubes
(FLAASH); a j i is the coefficient ( j = 1 ∼ n); Pv is the
fractional vegetation cover; NDVIs = 0.2 and NDVIv = 0.86
are assigned [13]

Pv =
[

NDVI − NDVIs

NDVIv − NDVIs

]2

(3)

dε represents the emissivity increment from the cavity effect
caused by the multiple scattering in the pixel, which can be

expressed by [25], [26]

dε =
{

εv i(−0.435εsi + 0.4343)/0.985 εv i �= 0.985
−0.435εsi + 0.4343 εv i = 0.985.

(4)

C. Sea Surface Temperature Algorithm

According to Coll et al. [27] and Niclòs et al. [28], con-
sidering the sea surface as a blackbody, the quadratic SW
algorithm used to estimate SST can be expressed as follows:

SST = C0 + C1(Ti − Tj ) + C2(Ti − Tj )
2 + Ti (5)

where Ti and Tj are the GF5 brightness temperatures of the
channels i and j , respectively; Ci (i = 0∼2) are the algorithm
coefficients determined in the next part using the simulated
data.

D. Simulation Data Set

The coefficients of two SW algorithms were obtained by
linear regression using the simulated GF5 brightness tempera-
tures generated by the SeeBor V5.0 global profiles (hereafter
SeeBor) and MODTRAN 5.0. In total, 2762 (939) atmospheric
profiles acquired on land (sea) surface under clear sky condi-
tions are considered based on the research of Galve et al. [29].
For a realistic simulation using limited atmospheric profiles,
the LSTs varies from T0 − 5 K to T0 + 20 K in steps of
5 K [17], [30] and the SSTs varies from T0 − 3 to T0 + 3
in steps of 3 K [28]. T0 is the bottom layer temperature
of the SeeBor atmospheric profiles. For LSE simulation,
110 emissivity spectra from the ASTER and MODIS spectral
library [31], [32] were selected, whereas five water emissivity
spectra were selected for sea surface emissivity simulation.
Finally, the algorithm coefficients in (1) and (5) are derived
by a least-squares method.

E. Algorithm Coefficients

To improve the accuracy of the retrieved LST/SST, two
SW algorithms were fit based on six water vapor content
subranges: 0.0–2.5, 2.0–3.5, 3.0–4.5, 4.0–5.5, 5.0–7.0, and
0.0–7.0 cm. The algorithm coefficients and uncertainties of
two SW algorithms are shown in Tables I and II. As shown
in Table I, it is evident that the uncertainties of the estimated
LST increase with the increase in water vapor content, and the
RMSEs are all between 0.44 and 0.94 K under various water
vapor contents. The estimated SST uncertainties also have a
similar trend at the first four water vapor content subranges,
and RMSEs range from 0.10 to 0.45 K. Under 5.0–7.0 and
0.0–7.0 cm subranges, the uncertainties of SST algorithm are
0.43 and 0.24 K.

III. RADIOMETRIC CROSS-CALIBRATION

The radiometric calibration of TIR data is a critical step
toward generating high-level products. However, the official
calibration coefficients are unavailable. In this letter, Visible
Infrared Imaging Radiometer Suite (VIIRS) imagery was used
for cross-calibration by following two reasons: first, VIIRS has
similar thermal channels with GF5 and the spectral response
functions are shown in Fig. 1.
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TABLE I

COEFFICIENTS AND UNCERTAINTY OF THE LST ALGORITHM IN
DIFFERENT WATER VAPOR CONTENT SUBRANGES

TABLE II

COEFFICIENTS AND UNCERTAINTY OF THE SST ALGORITHM IN

DIFFERENT WATER VAPOR CONTENT SUBRANGES

Fig. 1. Spectral response functions for GF5 and VIIRS.

Second, previous works [33] demonstrated that the VIIRS
has high calibration accuracy. The cross-calibration has three
key steps: 1) calculate at-sensor radiances of GF5 at nadir
view and VIIRS at various view zenith angles (VZAs) using
the simulated data in Section II-D; 2) establish the relationship
between at-sensor radiances of GF5 at nadir view and that
of VIIRS at various VZAs; and 3) calculate the calibration
coefficients with the at-sensor radiances and corresponding
digital numbers (DNs) of GF5 image. Finally, the original
GF5 TIR data can be calibrated to at-sensor radiances (Li )
by the following expression:

Li = Gain ∗ DN + Offset. (6)

In theory, both GF5 and VIIRS pixels should be matched at
nadir. However, we just get very limited matched imageries
due to the narrow width and long revisit time of GF5,
so GF5 pixels at nadir resampled using pixel aggregate
method were matched with VIIRS pixels at various VZAs.
Note the overpass time difference between GF5 and VIIRS
is 35 min. In total, 22 scenes of the GF5 data were
collected on September 30, 2018, October 03, 2018, and
December 02, 2018. Currently, the GF5 TIR images are sub-
jected to real-time onboard calibration, so the images of three
dates are cross-calibrated separately. Water and sand have long
been used as the primary target for vicarious calibration due

Fig. 2. Example of false-color images of Chinese GF5 data.

Fig. 3. Cross-calibration results for two TIR bands.

to its spatial homogeneity and long-term stability [34], [35].
Imageries primarily covered by seawater and sand were used to
obtain calibration coefficients. The mosaic images of Chinese
GF5 data are shown in Fig. 2.

IV. RESULTS AND DISCUSSION

A. Radiometric Cross-Calibration Results

The cross-calibration results are shown in Fig. 3. The mean
deviation and RMSE are about 0 (0) and 0.1 (0.1) W/m2·sr·μm
for Band 11 (Band 12). The radiance difference between
calibrated GF5 radiance and vicarious radiance ranged from
−0.373 (−0.36) to 0.359 (0.446) W/m2 · sr · μm for Band 11
(Band 12). Assuming the brightness temperature of Band 11
and Band 12 to be 300 K, the brightness temperature variation
caused by the above radiance uncertainty ranged from 297.39
(297.03) to 302.45 K (303.59 K) for Band 11 (Band 12).
So far, the calibration coefficients are not stable, which means
real-time calibration is required.

B. Algorithm Testing With Independent Profiles

A total of 4714 (3610) Global Atmospheric Profiles from
Reanalysis Information (GAPRI) profiles [36] over land (sea)
surface were choose to test the performance of two SW
algorithms. Fig. 4. shows the biases and RMSEs of two SW
algorithms when evaluated by GAPRI profiles. Under various
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Fig. 4. Bias and RMSE of two SW algorithms when evaluated by GAPRI
profiles.

Fig. 5. Cross-validation result of estimated GF5 SST on September 30, 2018.

water vapor content subranges, the RMSEs of SST are all less
than that of LST. The RMSEs are 0.55 (0.39), 0.86 (0.52),
0.90 (0.62), 0.88 (0.52), 0.94 (0.65), and 1.16 K (0.48 K) for
LST (SST), whereas those values are −0.19 (−0.32), −0.58
(−0.39), −0.50 (−0.41), −0.52 (−0.33), −0.31 (−0.48), and
−0.37 K (−0.35 K) for biases, respectively.

C. Preliminary Validation and Discussion

The coefficients of SW algorithms are selected based on
the MODIS Water Vapor data product (MYD05_L2). The
cloud mask for GF5 data was obtained from the supervised
classification of GF5 visible and near-infrared images. Ideally,
in situ LSTs collected from homogeneous surfaces should
be used to conduct validation. Unfortunately, such data are
unavailable in this letter. Thus, the retrieved GF5 LST/SST
was validated by MODIS LST/SST, VIIRS LST/SST, and
Advanced Himawari Imager (AHI) SST products. The prod-
ucts derived from SW algorithm (MYD11_L2, VLSTO) and
TES algorithm (MYD21, VNP21) were used for validation.
The overpass time differences between GF5 and other TIR
sensors are less than 30 min. The pixel aggregate method was
used to match the GF-5 pixels to other TIR sensors pixels
during LST/SST cross-validation. The validation results of
GF5 LST and SST are shown in Fig. 5 and Table III. Note
that MODIS image on December 2, 2018, is covered by cloud,
so there are no data in Table III.

When validated by MYD11, the biases of enterprise
algorithm on September 30, 2018, and October 3, 2018,

TABLE III

CROSS-VALIDATION RESULT OF GF5 LST ESTIMATED
FROM ENTERPRISE ALGORITHM

were 1.55 and −1.2 K, respectively, whereas the values
when validated by MYD21 were −0.47 and −2.46 K,
respectively. When validated by VIIRS LST, the biases of
enterprise algorithm on September 30, 2018, October 3, 2018,
and December 2, 2018, were 0.53, −1.09, and −0.21 K,
respectively, whereas the values when validated by VNP21
were −0.16, −3.64, and −3.64 K, respectively. The RMSEs
of enterprise algorithm between GF5 LST and four LST
products for three dates were between 1.05 and 4.08 K. When
VIIRS, MODIS, and AHI SSTs were used for validation,
the biases of the quadratic SW algorithm were −0.79,
−0.28, and −1.71 K, respectively. The RMSEs of quadratic
SW algorithm between GF5 SST and three SST products
were 1.55, 1.58, and 2.21 K, respectively. The preliminary
validation results demonstrate that both LST and SST
estimated from the SW algorithm can achieve comparable
accuracy with MODIS and VIIRS products.

We found that the retrieved LSTs over bare soil are lower
than MODIS and VIIRS LST products. One reason may
explain this result. The LSEs are obtained from optical data
without rigorous radiometric calibration, which may introduce
large uncertainties in the estimated LSE. Taking ASTER
global emissivity database as a reference, we found that
retrieved LSEs of two bands are overestimated on average to
about 0.019 and 0.01 for Bands 11 and 12, which may result
in an underestimation of the LST.

The effect of cloud contamination may explain the large
uncertainties in the estimated SST. Although most of the
clouds can be identified from the supervised classification,
the thin cloud is not well recognized. Moreover, some phe-
nomena existing in GF5 TIR images, such as noticeable strip-
ing and banding, are worth mentioning. This requires more
processing to improve the quality of the GF5 image before
quantitative inversion. The above two reasons may introduce
large deviations into the retrieved SST. In addition, more
GF5 data need to be collected for comprehensive analysis.

V. CONCLUSION

In this letter, the NOAA JPSS enterprise algorithm and the
quadratic SW algorithm were adapted to retrieve LST/SST
from high spatial resolution TIR data of Chinese GF5. As the
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official calibration coefficients are unavailable, GF5 TIR data
was cross-calibrated by VIIRS imagery before surface temper-
ature retrieval. A new land surface scheme was used to deter-
mine the LSE of GF5. The coefficients of two SW algorithms
were derived using simulated data generated from the SeeBor
profiles and ASTER/MODIS emissivity spectra. Simulated
data sets derived from GAPRI profiles were used to test
the performance of two SW algorithms. The biases (RMSEs)
of the enterprise algorithm were between −0.58 (0.55) and
−0.19 K (1.16 K), and the biases (RMSEs) of the quadratic
SW algorithm were between −0.48 (0.39) and −0.32 K
(0.65 K). When VIIRS and MODIS LST products were used
for validation, the average biases (RMSEs) ranged from −2.48
(1.74) to 0.18 (3.49) K, whereas those values ranged from
−1.71 (1.55) to −0.28 (2.21) K when VIIRS, MODIS, and
AHI SST are used for validation. The preliminary validation
results indicate that both LST and SST estimated from SW
algorithm can achieve acceptable accuracy.

This is the first time that both LST and SST are retrieved
from the real GF5 data. This letter will improve the application
level of GF5 data and benefit the research fields that need high
spatial resolution surface temperature.
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