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Abstract Taxus wallichiana Zucc. (Himalayan yew) is

subject to international and national conservation measures

because of its over-exploitation and decline over the last

30 years. Predicting the impact of climate change on T.

wallichiana’s distribution might help protect the wild

populations and plan effective ex situ measures or cultivate

successfully. Considering the complexity of climates and

the uncertainty inherent in climate modeling for moun-

tainous regions, we integrated three Representative Con-

centration Pathways (RCPs) (i.e., RCP2.6, RCP4.5,

RCP8.5) based on datasets from 14 Global Climate Models

of Coupled Model Intercomparison Project, Phase 5 to: (1)

predict the potential distribution of T. wallichiana under

recent past (1960–1990, hereafter ‘‘current’’) and future

(2050s and 2070s) scenarios with the species distribution

model MaxEnt.; and (2) quantify the climatic factors

influencing the distribution. In respond to the future

warming climate scenarios, (1) highly suitable areas for T.

wallichiana would decrease by 31–55% at a rate of 3–7%/

10a; (2) moderately suitable areas would decrease by

20–30% at a rate of 2–4%/10a; (3) the average elevation of

potential suitable sites for T. wallichiana would shift up-

slope by 390 m (15%) to 948 m (36%) at a rate of

42–100 m/10a. Average annual temperature (contribution

rate ca. 61%), isothermality and temperature seasonality

(20%), and annual precipitation (17%) were the main cli-

matic variables affecting T. wallichiana habitats. Prior

protected areas and suitable planting areas must be

delimited from the future potential distributions, especially

the intersection areas at different suitability levels. It is

helpful to promote the sustainable utilization of this pre-

cious resource by prohibiting exploitation and ex situ

restoring wild resources, as well as artificially planting

considering climate suitability.

Keywords Taxus wallichiana Zucc. � Climate warming �
Potential distribution � MaxEnt � Conservation and

cultivation

Introduction

The Himalaya–Hengduan Mountain (HHM) region is

located in the world’s Third Pole. It is a biodiversity hot-

spot and home to Taxus wallichiana Zucc. (Himalayan

yew), a relict tree species of the Quaternary glaciation. It is

well-known because of taxol, one of the most successful

anticancer drugs derived from natural sources. Recent
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research on the taxonomy of Taxus species (Liu et al. 2018)

laid the foundation for our study of species distribution and

regional conservation. T. wallichiana is the most widely

distributed yew in the HHM region. As a relict species

from the Quaternary glaciation, it has a history of 2.5

million years on earth and it is known as a living fossil of

the plant kingdom. The genus, Taxus, is known for its

medicinal value. Taxol was first extracted from T. brevi-

folia in 1971 (Wani et al. 1971). Early experiments

demonstrated that taxol could completely inhibit the

exponential growth of cancer cells at low concentrations

(Schiff et al. 1979). Subsequently, the effectiveness of

taxol has been documented for the treatment of various

cancers, inflammatory conditions, and Acquired Immune

Deficiency Syndrome (Yan et al. 2013; Yang et al. 2017).

As one of the most successful anticancer drugs derived

from natural sources (Yang et al. 2017), taxol has a huge

and expanding market demand (Miao et al. 2015). The bark

and leaves of T. wallichiana are now used to produce taxol,

and this is the reason for its exploitation (Thomas and

Farjon 2011; Uniyal 2013). The population in the HHM

region has declined significantly ([ 50% in China, B 90%

in Nepal and India) over the last 25–30 years (a single

generation) (Thomas and Farjon 2011).

In 1995, T. wallichiana. was assessed as an endangered

species by the International Union for Conservation of

Nature (IUCN 2018) and trade in the species was regulated

by the Convention on International Trade in Endangered

Species of Wild Fauna and Flora (CITES 2007). It has been

listed as a national first-class protected plant in China

(State Forestry Administration of China 1999), and it is on

the Negative List of Exports of India (Sajwan and Prakash

2007). Some protected areas are established, e.g., Three

Parallel Rivers of Yunnan Protected Areas in China,

Sagarmatha National Park in Nepal, and BiDoup-NuiBa

National Park in Vietnam. However, in order to restore

wild populations or cultivate T. wallichiana successfully,

the impact of global environmental change (especially

climate warming) on T. wallichiana must be considered

due to its relatively restricted and scattered geographical

distribution (Su et al. 2005; Thomas and Farjon 2011;

Poudel et al. 2014), and its weak ecological adaptability

(e.g., poor seed regeneration, long pre-reproductive phase

in nature) (Paul et al. 2013; Uniyal 2013). Global climate

warming has accelerated (IPCC 2013), especially in areas

supporting habitats suitable for T wallichiana in HHM

(Fig. S1). Globally, this is affecting the distribution and

abundance of species (Hughes 2000; Root et al. 2003;

Pacifici et al. 2015; Asner et al. 2016), and is leading to

increasing challenges for the conservation of biodiversity

(Myers et al. 2000; Pereira et al. 2010; Garcia et al. 2014).

Thus, it is important to accurately predict the impact of

climate change on species distribution to as a basis for the

planning of nature reserves and to protect priority areas for

endangered species (Pyke et al. 2005).

Species distribution models (SDMs) which can be

drived by Global Climate Model (GCMs) data are powerful

tools for predicting species distribution, genetic and evo-

lutionary research, zoning management and protection in

the face of climate change. For example, Liu et al. (2013)

used molecular biology theories and the MaxEnt model to

analyze cryptic speciation and predict changes in the

potential distribution of two T. wallichiana lineages [i.e.,

EH lineage (East Himalaya to the Yunnan Plateau region)

and HM lineage (South Hengduan Mountains region)] from

the Last Interglacial (LIG, ca. 120 ka) and Last Glacial

Maximum (LGM, ca. 21 ka) to the present (ca. 1950–2000)

in the HHM region. In a warming climate, Poudel et al.

(2014) used similar methods to examine genetic diversity

and population differentiation, and to predict current and

future distributions of three Taxus species (T. contorta, T.

mairei and T. wallichiana) in the Central Himalayas.

Gajurel et al. (2014) input climatic variables generated by

the HadGEM2-ES climate model into the MaxEnt model to

predict the current and future potential distribution of T.

wallichiana in the Nepal Himalayas. In general, previous

predictions of the potential distribution of Taxus species

were mainly based on climate scenario datasets generated

by single or several climate models. However, due to the

complexity of earth’s climate systems, as well as the high

uncertainty surrounding climate modeling for mountainous

regions (due to the paucity of weather stations) (Hijmans

et al. 2005), we set out to integrate multiple scenario

datasets from multiple climate models to predict the

potential distribution of Taxus species.

Our objectives were to: (1) investigate changes in the

potential distribution of T. wallichiana between current

(1960–1990) and future (2050s and 2070s) climate sce-

narios by integrating three Representative Concentration

Pathway (RCP) (i.e., RCP2.6, RCP4.5, RCP8.5) datasets

from 14 GCMs of CMIP5 (Coupled Model Intercompar-

ison Project, Phase 5); (2) to quantify the major climatic

factors influencing the distribution; and (3) to propose

management interventions based on the resulting

predictions.

Materials and methods

Study area

We set our study area boundaries as 17�5004100N to

33�4304000N, and 75�5505200E to 107�3801500E based on the

current distribution region of T. wallichiana (Liu et al.

2012, 2013, 2018; Poudel et al. 2014), the species distri-

bution database of the Chinese Virtual Herbarium (CVH),

P. Li et al.
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and the Global Biodiversity Information Facility (GBIF).

This covered an area of 5,478,120 km2, ranging in eleva-

tion from 0 to 8000 m above sea level (Fig. 1). Globally, T.

wallichiana is mainly distributed in the HHM region. The

general circulation pattern in this region is characterized by

the influence of Indian and East Asian monsoons in sum-

mer, and Westerlies in winter (An et al. 2001; Yao et al.

2012). The habitats currently suitable for T. wallichiana in

the HHM region are expected to experience intense

warming and slight humidification in the future scenarios

(Fig. S1).

Data

Sample data of T. wallichiana

Records for the geographical distribution of T. wallichiana

were collected from the literature based on the most recent

knowledge of the taxonomy of Taxus species in the study

area (Liu et al. 2012, 2013, 2018; Poudel et al. 2014).

Sixty-nine records were found with species name, longi-

tude, and latitude (Table S1). These data were used to train

and validate the current and future distribution simulations

of T. wallichiana.

Climate data

Global climatic data were downloaded from WorldClim

(www.worldclim.org) (Hijmans et al. 2005). Among them,

the current climate data (1960–1990) were produced based

on the observed data in the weather stations using the thin-

plate smoothing spline algorithm implemented in ANUS-

PLIN (Hutchinson 2004). The cross-validation error is

between 0 and 1 �C for temperature in most area and less

than 10 mm/month for precipitation in the vast majority of

places, respectively, despite the high uncertainty in

mountainous areas (see details in Hijmans et al. 2005). The

future climate data (outputs of GCMs) were downscaled

(interpolated) and calibrated from its original resolution

(about two to three geographical degree) to 30 arc-second

(0.93 km 9 0.93 km = 0.86 km2 at the equator) using

current climate data as the baseline. We downloaded one

geographical variable and 19 climatic variables (including

the current conditions and predictions for future scenarios

(outputs from 14 GCMs)) at a spatial resolution of 30 arc-

seconds (Table S2). All global spatial data adopted a

WGS84 coordinate system and a cylindrical orthographic

projection. The climatic data from 1960 to 1990 were used

to generate the current potential distribution of T.

Fig. 1 Study area and sample points of T. wallichiana

Integration of multiple climate models to predict range shifts and identify management…

123

http://www.worldclim.org


wallichiana, and the climatic data for three scenarios

(RCP2.6, RCP4.5, RCP8.5) in the 2050s (2041–2060) and

2070s (2061–2080) outputted from 14 GCMs (Table S3)

were used to generate future potential distribution. A total

of 20 Climatic and Geographical Variables (20 CGVs) for

the HHM region were clipped and extracted, and their

spatial resolution, coordinate system and projection were

the same as the original spatial data.

To remove multicollinearity among variables, a Pear-

son’s correlation (r) matrix (Table S4) was computed with

SDMtoolbox 2.0 software (Brown et al. 2017) for all

CGVs. Then, the input variables for distribution simulation

were selected according to the rule |r|\ 0.80 (Yang et al.

2013; Bosso et al. 2017) combined with the following

ecological features of T. wallichiana. In Table S4, CGVs

BIO2, BIO3, and BIO15 were reserved according to the

rule |r|\ 0.80. BIO1 was selected among BIO5, BIO6,

BIO8, BIO9, BIO10, BIO11 and elevation (topographic

variable) because the annual average temperature has a

more general and direct impact on plant survival and

growth than extreme temperature and elevation (Theurillat

and Guisan 2001). Because the study area has a monsoon

climate (An et al. 2001; Yao et al. 2012; Schickhoff et al.

2015) (Fig. 1), BIO4 (temperature seasonality) is a more

accurate indicator for plant growth and development than

BIO7 (annual temperature range). Therefore, BIO4 was

reserved. BIO12 was also selected because precipitation is

a useful ecological index of T. wallichiana’s survival.

BIO14 (the driest monthly precipitation) and BIO19 (the

coldest seasonal precipitation) were also selected as they

are the stress variables of T. wallichiana under low tem-

perature and dry conditions. As a result, eight CGVs

(Table 1) were selected to simulate the current and future

potential distribution of T. wallichiana.

Methods

Figure 2 shows the overall technical flowchart. First, CGVs

were selected for inputting to the MaxEnt model after

eliminating multicollinearity among all variables. Then, the

MaxEnt model was parameterized to simulate the potential

distribution of T. wallichiana under current and future

climate scenarios. The Receiver Operator Characteristic

(ROC) analysis and uncertainty analysis (Spatial Incon-

sistency Rate and Coefficient of Variation for area) were

used to validate the simulation accuracy and assess the

simulation differences among the 14 climate models.

Finally, the spatial and temporal changes in the potential

distribution of T. wallichiana were investigated, and the

percent contribution rate and the response range of influ-

encing factors were detected.

Predicting the potential suitable distribution

and the factor contribution rate of T. wallichiana

Based on ecological theories and statistical analyses, SDMs

simulate species distribution by relating species observa-

tions with environmental variables (Guisan and Zimmer-

mann 2000). The MaxEnt model (Elith et al. 2006; Phillips

et al. 2006, 2017) is one SDM which has been widely and

successfully applied to the prediction of plant habitats

worldwide (Costion et al. 2015; Bocksberger et al. 2016;

Booth 2018; Zhang et al. 2018; Dyderski et al. 2018). It is

particularly suitable for the prediction of scarce distribution

points compared to other presence-only SDMs (Elith et al.

2006; Hernandez et al. 2006; Wisz et al. 2008). Therefore,

we used the MaxEnt model (version 3.4.1) to simulate the

potential distribution of T. wallichiana.

The MaxEnt model was parameterized according to

Bosso et al. (2017). First, the sample points of T. wal-

lichiana and the selected eight CGVs for the current and

for one of the future scenarios were input to the MaxEnt

model. The cross-validation method was adopted for each

simulation (Bosso et al. 2017) and 30 replicates were set.

There was a total of 84 simulations (14 GCMs 9 3

RCPs 9 2 periods). Each simulation simultaneously gen-

erated both current and future potential distributions.

Because there were 30 replicates for each simulation, the

final results could be statistically represented as the mean

of 30 replicates to reduce random error. The final average

map had a complementary log–log (cloglog) output format

Table 1 List of CGVs selected

to predict the current and future

potential distribution of T.

wallichiana

Code CGVs Unit

BIO1 Annual mean temperature �C
BIO2 Mean diurnal range (mean of monthly (max temp–min temp)) �C
BIO3 Isothermality (BIO2/BIO7) (* 100) –

BIO4 Temperature seasonality (standard deviation * 100) �C
BIO12 Annual precipitation mm

BIO14 Precipitation of driest month mm

BIO15 Precipitation seasonality (coefficient of variation) mm

BIO19 Precipitation of coldest quarter mm

P. Li et al.
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with continuous suitability values from 0 (completely

unsuitable habitat) to 1 (most suitable habitat) (Phillips

et al. 2017).

The contribution rate for each factor is automaticall

computed with the MaxEnt model. It can derive many

features for each predictive variable, each of which is a

simple mathematical transformation of the predictive

variable (Merow et al. 2013). The model assigns the

increase in the gain to the predictive variable(s) on which

the feature depends. Finally they are converted into per-

centages to represent the contributions rates (Phillips

2005).

Verifying the simulation performances

and differences

The performance of simulation and the significance of each

environmental variable were evaluated by the Area Under

Curve (AUC) of ROC with the Jackknife test. Different

AUC values indicate different suitable levels: poor

(AUC\ 0.80), fair (0.80 B AUC\ 0.90), good

(0.90 B AUC\ 0.95), or excellent (0.95 B AUC B 1.00)

(Thuiller et al. 2005).

The Spatial Inconsistent Rate (SIR) was used to evaluate

the spatial distribution differences among simulations.

First, the common suitable area among the 14 GCMs out-

puts under the future scenarios was computed (the common

suitable area indicates the suitable area intersection of 14

GCMs outputs under the RCPs scenarios.). Then, the SIR

was calculated according to formula (1):

SIRi ¼ SAi�CAð Þ=CA� 100% ð1Þ

where i indicates a single simulation, SIRi the spatial

inconsistent rate for the i single simulation, SAi the pre-

dicted suitable area for the i single simulation, and CA the

common suitable area.

The Coefficient of Variation (CV) for area was used to

evaluate the differences of suitable areas at different levels

among future scenarios of 14 GCMs outputs. The CV of

area was calculated according to formula (2):

CVij = uij/бij ð2Þ

where i indicates a future scenario, j a suitable level, uij the

average area among 14 simulations for the i future scenario

at the j suitable level, and ,ij the standard error.

Classifying the climate suitability level

The climate suitability level was classified according to the

statement of ‘‘possibility’’ in IPCC AR5, which matched the

probability results of the MaxEnt model output. The study area

was first classified as either a non-suitable area (0 B P\0.05)

or a suitable area (0.05 B P B 1.00), and the suitable area was

further classified as a marginally suitable (0.05 B P\0.33),

moderately suitable (0.33 B P\0.66), and highly

suitable (0.66 B P B 1.00).

Computing the areas for different levels

of suitability

The predicted results from Maxent had the same spatial

resolution, geographic coordinate system and projection as

the original data. However, because all the spatial data

adopted a cylindrical orthographic projection, the areas for

each pixel at different latitudes were not equal. So we first

set the area of a pixel at the equator

(0.93 km 9 0.93 km = 0.86 km2) as the benchmark, and

the area of a pixel at other latitudes was then weighted by

the square root of the cosine of its corresponding latitude

(Wallace et al. 2000; Marshall et al. 2012).

Integrated st

MaxEnt

Current
BIO(19)

CMIP5
BIO(19)

Alt

Removing 
highly 

correlated 
viriables

Cross-
validation

Vadidation

Current and future
potential distribution

Influencing factors of  
potential distribution

ROC 
analasis,

AUC 
test,

Jacknife 
test

Uncertainty analasis

Spatial and temporal 
change statistic analysis

Percent contribution and
response range of factors Sample records of 

T. Wallichiana

Fig. 2 Technical flowchart
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Testing statistical significance

We used paired t test to compare mean simulated areas by

suitability level and by elevation between current and

future scenarios (Bosso et al. 2017; Liu et al. 2018). The

threshold p\ 0.05 was selected to indicate significance of

differences between means, and p\ 0.01 indicated extre-

mely significant difference.

Results

Simulation performances

Among the 84 simulations, the highest and lowest

AUCtraining mean ± standard values were 0.989 ± 0.000,

and 0.986 ± 0.000, respectively, and the highest and

lowest AUCtest values were 0.987 ± 0.012, and

0.984 ± 0.015, respectively (Table S5). All the simulations

showed excellent performance. Fifty-seven of the 69 actual

distribution points were located within the moderately and

highly suitable areas of the current predictions (Table S6).

Current and future potential suitable distribution

T. wallichiana was mainly distributed in the HHM region

according to the 84 simulations under the current

(1960–1990) condition and the future (2050s and 2070s)

scenarios (RCP2.6, RCP4.5, and RCP8.5) (Fig. 3, Fig. S2).

Among the 84 simulations, 57 showed a reduction of the

suitable area under future scenarios compared with the

current mean condition (Table S7, Table S9).

Significant reduction in suitable area was predicted

under the RCP2.5 and RCP4.5 scenarios for the 2050s. The

relative reduction ratios (area of reduction to current area,

or ratio of reduction) were 11% (p\ 0.05) and 9%

(p\ 0.05) (Table 2), respectively. The relative rates of

reduction (the linear regression slope of the relative

reduction ratio and year) were 2%/10a and 1%/10a,

respectively (Table 3). No significant reduction in the area

of suitable habitat was predicted in other future scenarios.

In contrast, a significant increase was predicted under the

RCP8.5 scenario for the 2070s, and the relative increase

ratio was 21% (p\ 0.05) (Table 2). The relative rate of

increase was 2%/10a (Table 3).

The predicted reduction in the area of highly suit-

able habitat was 11,682 (p\ 0.01) to 21,015 km2

(p\ 0.001), and the relative reduction ratio was 31–55%

(Table 2). The rate of decrease was 1230 (p\ 0.01) to

2802 (p\ 0.001) km2/10a, and the relative rate of decrease

was 3–7%/10a (Table 3). The predicted reduction in the

area of moderately suitable habitat was 15,768 (p\ 0.001)

to 24,064 km2 (p\ 0.001), and the relative reduction ratio

was 20–30% (Table 2). The rate of decrease was 1660

(p\ 0.001) to 3209 (p\ 0.001) km2/10a, and the relative

rate of decrease was 2–4%/10a (Table 3).

In contrast, for the marginally suitable area, a significant

increase was predicted under the RCP4.5 and RCP8.5

Fig. 3 Distribution of T. wallichiana at different suitable levels under the current condition and the future scenarios based on the BCC-CSM1-1

climate model

P. Li et al.
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scenarios for the 2070s. The relative rates of increase were

12% (p\ 0.05) and 49% (p\ 0.01) (Table 2, Fig. 4),

respectively. The relative rates of increase were 1%/10a

and 5%/10a, respectively (Table 3).

In the future scenarios (2050s and 2070s; RCP2.6,

RCP4.5, and RCP8.5), the potential habitat area of T.

wallichiana was predicted to shift upslope compared with

the current condition (Tables 4, 5, Figs. 3, 5, Table S8,

Table S10). The average elevation of the potential suit-

able area was 2633 ± 14 m in the current condition

(Table S10). It was predicted to shift upslope by 390 m

(p\ 0.001), 500 m (p\ 0.001), and 627 m (p\ 0.001)

under the RCP2.6, RCP4.5, and RCP8.5 scenarios,

respectively. In the 2070s, it was predicted to shift upslope

by 398 m (p\ 0.001), 602 m (p\ 0.001), and 948 m

(p\ 0.001), respectively (Table 4). The ratio of upslope

shift in the potential suitable area was 15–36%, and the rate

of upslope shift was 42 m/10a–100 m/10a (Table 5).

In the 2050s, the average elevation of the potential

highly suitable area was predicted to shift upslope by

288 m (p\ 0.001), 374 m (p\ 0.001), and 461 m

(p\ 0.001) under the RCP2.6, RCP4.5, and RCP8.5 sce-

narios, respectively. In the 2070s, it was predicted to shift

upslope by 308 m (p\ 0.001), 455 m (p\ 0.001), and

743 m (p\ 0.001), respectively (Table 4). The ratio of

upslope shift in the potential highly suitable area was

10–27%, and the rate of upslope shift was predicted to be

32–78 m/10a (Table 5).

The upslope shift of the moderately suitable and mar-

ginally suitable areas were predicted to be greater than the

predicted average elevation change of the highly suit-

able area (see details in Tables 4, 5, and Fig. 5).

Main climatic factors affecting distribution

of potentially suitable habitats

The potential distribution of T. wallichiana was mainly

influenced by the annual mean temperature (contribution

rate ca. 61 ± 3%), annual precipitation (ca. 17 ± 2%),

isothermality (ca. 10 ± 1%), and temperature seasonality

(ca. 10 ± 2%), which indicated that annual mean temper-

ature and its seasonal variation, as well as annual precipi-

tation, were the main climate variables affecting the habitat

of T. wallichiana (Table 6, Table S11). Seasonality of (ca.

1 ± 0%), the precipitation of the coldest quarter (ca.

1 ± 0%), mean diurnal range of temperature (ca. 0 ± 0%),

Fig. 4 Boxplot of marginally, moderately, highly suitable, and

suitable areas under the current condition and future (2050s, 2070s)

scenarios (RCPs) based on 14 GCMs. The bottom and top of the

boxes are the 25th and 75th percentiles; the bands near the middle are

the median; the ends of the whiskers represent the minimum and

maximum, and the crosses designate the mean value

Integration of multiple climate models to predict range shifts and identify management…
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and precipitation of the driest month (ca. 0 ± 0%) were

other important factors (Table 6, Table S11).

Discussion

Uncertainties in the simulated potential distribution

of T. wallichiana

Our models predicted substantial differences in the poten-

tial area and distribution range of T. wallichiana under

future climate scenarios (Table 7). Among the differences,

the CV for the simulated future suitable areas among 14

GCMs was large (12–29%), especially for the moderately

suitable areas (13–34%) and the highly suitable areas

(38–64%). Moreover, the SIR for the simulated future

suitable areas among 14 GCMs reached 91 ± 26% to

259 ± 104%. These results showed the considerable

uncertainty when a single GCM dataset was used, and

highlighted the need for integrating multiple scenario

datasets from multiple climate models. Some previous

research reported considerable uncertainty when using

Fig. 5 Boxplot of the elevation of marginally, moderately, highly

suitable, and suitable areas under the current condition and future

(2050s, 2070s) scenarios (RCPs) based on 14 GCMs. The bottom and

top of the boxes are the 25th and 75th percentiles; the bands near the

middle are the median; the ends of the whiskers represent the

minimum and maximum, and the crosses designate the mean value

Table 6 The contribution rate and probability response curve ([ 0.50) range of the main climate factors affecting the habitat of T. wallichiana

Code CGVs Unit Contribution rate (mean ± SD %) Presence probability range ([ 0.50)

BIO1 Annual mean temperature �C 61 ± 3 8.2–12.6

BIO12 Annual precipitation mm 17 ± 2 950–2450

BIO3 Isothermality – 10 ± 1 4.5–5.1

BIO4 Temperature seasonality �C 10 ± 2 39–49

BIO15 Precipitation seasonality mm 1 ± 0 79–116

BIO19 Precipitation of the coldest quarter mm 1 ± 0 28–92

BIO2 Mean diurnal range of temperature �C 0 ± 0 9.7–11.7

BIO14 Precipitation of the driest month mm 0 ± 0 5–18
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GCMs datasets to predict the potential future distribution

of species. Bosso et al. (2017) used six GCMs to predict the

current and future potential suitable area of the Italian tree

pathogen, Diplodia sapinea, and the simulations with dif-

ferent climate models showed large differences. Ikegami

and Jenkins (2018) used 14 GCMs to predict the current

and future risks of pine wilt disease for 21 pine species

based on the MaxEnt model, and the predicted risk area

change rate (max–min) was greater than 20% for nearly

half of the species among 14 GCMs. Cuyckens et al. (2016)

used three GCMs (MIROC-ESM, HAdGEM2-ES, IPSL-

CM5A-LR) to predict future changes in suitable habitat for

Polylepis tarapacana forest in the semi-arid mountainous

region of South America. Under the RCP6.0 scenario in

2080, the predicted area with IPSL-CM5A-LR decreased

by 42%, while the predicted area with MIROC-ESM

decreased by 83%. Wenger et al. (2013) reported that the

greatest contribution to uncertainty in predictions of area of

suitable habitat was climate uncertainty, followed by the

parameter uncertainty and model uncertainty. The variance

of future climate (GCMs and SRES) is the largest con-

tributor to the overall uncertainty of the impact of climate

change (Bagchi et al. 2013). Integrated forecasting is a

promising approach to deal with this uncertainty (Araújo

and New 2007). It uses the multi-model inference or multi-

model averaging value.

In general, the predictions that use more environmental

factors (assuming that multicollinearity is eliminated) can

be closer to an actual species ecological niche when con-

sidering the uncertainties of environmental factors in sim-

ulating potential distribution. Our simulations were mainly

based on climatic variables because they are the dominant

factors affecting species distribution and change on a

regional scale ([ 200 km) (Pearson and Dawson 2003).

However, on a local scale (\ 10 km), the growth of a plant

species is affected by other environmental factors, such as

soil characteristics (Pearson and Dawson 2003), biological

traits (Wang et al. 2018), interspecific competition, and

disturbance (Liang et al. 2018). For example, Liang et al.

(2016) pointed out that the upslope shift rate of a tree line

was largely determined by interspecific relationships (e.g.,

mutual benefits, interspecific competition and their inten-

sities) with future climate warming. Based on 10-year

micro-meteorological observations and a 4-year seedling

transplantation experiment of Smith-fir (Abies georgei var.

smithii) in the Sergyemla Mountains, southeast Tibet, it

was found that climate warming advanced the growth

season, which caused early-season freezing, low tempera-

ture photoinhibition, and high sunlight significantly

reduced seedling survival above the tree line (Shen et al.

2018). Thus, the upslope shift of the tree line will be

influenced by multiple factors and become lower than the

predicted value based on climate variables. The main dis-

tribution area of T. wallichiana is located in the high

vegetation cover area of southwest China which is an

important biodiversity hotspot (Myers et al. 2000). Climate

oscillations here have a profound effect on population size

(i.e., change, extinction, or promoting local adaptation)

(Davis and Shaw 2001), as do the ecological relationships

between plant species and other trophic levels (Parmesan

and Hanley 2015). Human over-exploitation is an impor-

tant factor affecting the population of wild T. wallichiana,

so the current distribution of the species might not coincide

with the most suitable habitat. However, loggers are unli-

kely to deforest all T. wallichiana in the short term (there

are no records of deforestation), and the sampling points

from the literature were mainly collected in 2010, when the

actual distribution of T. wallichiana should have been more

widespread but was constricted by deforestation. So the

simulated current distribution of the species still repre-

sented the most suitable and available habitat, and simu-

lated current distribution tended to reflect the potential

Table 7 Coefficient of variation by suitability level and spatial inconsistent rate for suitable area under future scenarios of 14 GCMs

RCPs Year Coefficient of variation (%) Common

suitable area (km2)

Maximum union

suitable area (km2)

SIR

(mean ± SD)

(%)Marginally

suitable

Moderately

suitable

Highly

suitable

Suitable

2.6 2050 19 21 53 17 164,424 621,858 93 ± 34

2.6 2070 21 14 40 17 168,755 674,525 100 ± 34

4.5 2050 17 13 38 13 170,667 540,053 91 ± 26

4.5 2070 15 13 43 12 165,549 620,319 109 ± 25

8.5 2050 27 20 56 23 152,326 723,429 129 ± 52

8.5 2070 30 34 64 29 120,857 1,001,640 259 ± 104

Common suitable area and maximum union suitable area indicate the intersection and union of suitable area from 14 GCMs outputs under the

RCPs scenarios, respectively
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niche of the species rather than the real one, since the

biological factors and human activities were not

considered.

Comparison and integration of multi-SDMs can help

reduce uncertainty in the prediction of species distribution

and can optimize prediction results compared with a single

SDM. Guo et al. (2018) used 9 SDMs (MaxEnt, SRE, FDA,

MARS, GBM, CTA, GLM, ANN and RF) to simulate

suitable habitats for Populus euphratica in the Heihe River

Basin of China. They found that the spatial distribution of

suitable habitats for P. euphratica output from 9 SDMs

varied widely, while only the simulation of MaxEnt model

accurately depicted the distribution characteristics along

the river for P. euphratica (verified by remote sensing

images). The simulated results in our study also achieved a

high accuracy, 83% observed sample points lay within the

moderately and highly suitable areas under the current

condition. Moreover, the probability response range

(presence probability range[ 0.50) for annual mean tem-

perature was 8.2–12.6 �C, similar to the result of Su et al.

(2005) (7.8–11.2 �C).

Changes in the horizontal and vertical potential

distribution of T. wallichiana

Compared with the current condition, there were significant

and rapid decreases in the highly and moderately suit-

able habitats for T. wallichiana in the future climate sce-

narios. Poudel et al. (2014) also reported that the potential

suitable areas of three yew species in the Central Himalaya

would decrease substantially in the future (year 2080)

under the A2A and B2A scenarios. Liu et al. (2013) pre-

dicted the potential suitable areas of two T. wallichiana

lineages in the HHM region with the MaxEnt model and

showed that the potential suitable areas in the Last Glacial

Maximum (LGM, ca. 21 ka) were significantly greater than

those in the Last Interglacial Period (LIG, ca.120 ka) and

in the current climate conditions. Moreover, the potential

suitable areas in the Last Interglacial were significantly less

than the current climate condition because the temperature

in the Last Interglacial was at least 5 �C higher than the

current temperature, which was consistent with the trend of

reducing suitable area of T. wallichiana due to climate

warming (Table 2). There was, however, a significant

increase in suitable habitat area for T. wallichiana under

the RCP8.5 scenario during the 2070s, and this can be

related to the change of structure and composition of ter-

restrial vegetation under a high GHG (global greenhouse

gas) emission scenario. IPCC (2013) reported that the rate

of warming under the RCP8.5 scenario will be 65 times as

high as the average warming during the last deglaciation,

and the probability of large compositional changes and

large structural changes in terrestrial vegetation are both

greater than 60% under the RCP8.5 scenario (Nolan et al.

2018).

The study also showed that the mean elevations of

suitable habitats for T. wallichiana would shift upslope in

the future scenarios based on the outputs from multiple

climate models. During the Quaternary climatic oscilla-

tions, the unique topography in the HHM region provided a

climatic gathering place for plant migration (Liu et al.

2013). Global climate warming has promoted plants to

migrate to higher elevations and latitudes and this has been

confirmed by worldwide observations (Parmesan and Yohe

2003; Lenoir et al. 2008, 2009). Some studies have also

predicted that global climate warming will continue to

change the distribution of plants by forcing them to move

to higher elevations (Huang et al. 2018; Du et al. 2018;

Broadhurst et al. 2018). These shifts would lag behind

those of climatic changes (Bertrand et al. 2011; Alexander

et al. 2018) and significant shifts in elevation would occur

only over the long-term (Schickhoff et al. 2015). With

global climate warming, Chen et al. (2011) reported that

the average upslope shift rate was ca. 11 m/10a based on a

meta-analysis of 1367 species. Lenoir et al. (2008)

observed that the average upslope shift rate of tree species

was ca. 29 m/10a in Western Europe. Huang et al. (2018)

predicted that future warming could cause Chinese sea

buckthorn to shift upslope by 43–128 m/10a. Our results

suggested that the potential distribution of T. wallichiana

could shift upslope by 42–100 m/10a. The larger upslope

shifts of suitable habitats in high elevation regions such as

the HHM region were related to the strong sensitivity of

habitat factors to global warming (Kohler et al. 2010) as

well as monsoon interactions (Schickhoff et al. 2015;

Huang et al. 2018).

Main climatic factors affecting the potential

distribution of T. wallichiana

In general, terrestrial ecosystems are highly sensitive to

temperature change (Nolan et al. 2018). As mean annual

temperature increases, other ecologically important vari-

ables, such as seasonal temperatures, seasonal precipita-

tion, climatic extremes, and degree of variability will

change, often in multivariate, complex (Jackson and

Overpeck 2000; Jackson et al. 2009), episodic, and non-

linear ways (Millar and Stephenson 2015; Johnstone et al.

2016).

In our study, annual mean temperature consistently

contributed 61% towards the formation of potential suit-

able habitats for T. wallichiana. Moreover, variation in

isothermality and temperature seasonality contributed 20%.

This means that with warming climate, the shift in potential

suitable habitats for T. wallichiana in the HHM region was

mainly controlled by the annual average temperature and
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by temperature variation. On the other hand, the BIO1

(annual mean temperature) was strongly correlated with

these variables including BIO5 (maximum temperature of

warmest month), BIO6 (minimum temperature of coldest

month), BIO8 (mean temperature of wettest quarter), BIO9

(mean temperature of driest quarter), BIO10 (mean tem-

perature of warmest quarter), and BIO11 (mean tempera-

ture of coldest quarter), whose Pearson’s correlation

coefficients were 0.96, 0.99, 0.98, 0.98, 0.99, and 0.99,

respectively (Table S4). This indirectly showed that

extreme temperatures also played an important role in the

formation of potential suitable habitats for T. wallichiana.

In addition, this study showed that annual precipitation

contributed 17% to the formation of suitable habitats for T.

wallichiana. Su et al. (2005) also concluded that the three

main climatic factors affecting the geographical distribu-

tion of T. wallichiana were low temperatures, humidity,

and high temperature, in that order.

Management priorities of T. wallichiana

under climate change

Areas of highly and moderately suitable habitats for T.

wallichiana would sharply decline and would shift upslope

in future climate scenarios. Therefore, the effective ex situ

measures for the scattered mature individuals and seedlings

in marginally suitable areas may need to plan based on field

investigation and planting experiments.

Macroscopically, a map of potentially suitable areas for

T. wallichiana was created by integrating multi-climate

model results (Fig. S3–S6). The intersection area of the

suitable area at different levels, for example, under the

RCP4.5 scenario in 2050s, was more credible than the

differential area (union-intersection) and should have pri-

ority for protection to ensure the survival of habitats and

trees occupying areas that are currently over-exploited due

to unprotected. The suitable areas at higher elevations

should be prioritized for management. The differential area

(union—intersection) has uncertainty, but it retains poten-

tial for secondary protection and development in terms of

climate suitability. These areas take the intersection as the

core area, expand to surrounding areas of mountains and

foothills, extend to upper reaches of rivers, or continue to

stretch over the high elevation mountainous areas. This

accommodates the ecological requirements of T. wallichi-

ana under climate warming. However, planting tests are

needed to verify this.

The potential suitable habitats for T. wallichiana were

mainly located in China, Nepal, India, and Bhutan in the

HHM region, so the statutory protection and planting of T.

wallichiana requires coordinated action between these

countries. It is reported that the unlawful logging of yew in

China has been severe for nearly a decade, and the number

of criminal cases exceeded 1000 (Wang 2018). The

exploitation of wild resources must be strictly prohibited

through the implementation of laws and policies. Mean-

while, although the cultivation of yew and the industrial

extraction of taxol was launched in the late 1990 s, the

management of conservation, cultivation, and commer-

cialization still need multi-sectoral efforts. At present,

cultivation of yew can be one of the most effective means

of utilizing sustainably and protecting the yews what

remain in the wild (Thomas and Farjon 2011; TRAFFIC

East Asia Report 2007). Among these, the delineation of

planting areas will be an important link based on survival

rate of yew with respect to climate change. For example,

Duque-Lazo et al. (2018) found there was a significant

linear positive correlation (r2 = 0.414, p\ 0.05) between

the survival rate of cork oak afforestation and the potential

probability of presence by predicting the suitable area

distribution of cork oak based on SDMs.

Conclusions

In the future (2050s, 2070s) scenarios (RCP2.6, RCP4.5,

RCP8.5), the potentially highly and moderately suit-

able habitats for T. wallichiana would decline in area, and

would shift upslope. Annual mean temperature and sea-

sonal variability in temperature, combined with annual

precipitation were the main climate variables affecting the

habitat of T. wallichiana. Prior protected areas and suit-

able planting areas must be delimited from the future

potential distributions, especially the intersection areas at

different suitability levels. It is helpful to promote the

sustainable utilization of this precious resource by pro-

hibiting exploitation and ex situ restoring wild resources, as

well as artificially planting considering climate suitability.
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Araújo MB, New M (2007) Ensemble forecasting of species

distributions. Trends Ecol Evol 22:42–47

Integration of multiple climate models to predict range shifts and identify management…

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin

RE (2016) Progressive forest canopy water loss during the

2012–2015 California drought. Proc Natl Acad Sci USA

113:E249–E255

Bagchi R, Crosby M, Huntley B, Hole DG, Butchart SHM, Colling-

ham Y, Kalra M, Rajkumar J, Rahmani A, Pandey M, Gurung H,

Trai LT, Quang NV, Willis SG (2013) Evaluating the effective-

ness of conservation site networks under climate change:

accounting for uncertainty. Glob Change Biol 19:1236–1248

Bertrand R, Lenoir J, Piedallu C, Riofrı́o-Dillon G, de Ruffray P,

Vidal C, Pierrat JC, Gégout JC (2011) Changes in plant

community composition lag behind climate warming in lowland

forests. Nature 479:517–520

Bocksberger G, Schnitzler J, Chatelain C, Daget P, Janssen T,

Schmidt M, Thiombiano A, Zizka G (2016) Climate and the

distribution of grasses in West Africa. J Veg Sci 27:306–317

Booth TH (2018) Species distribution modelling tools and databases

to assist managing forests under climate change. For Ecol Manag

430:196–203

Bosso L, Luchi N, Maresi G, Cristinzio G, Smeraldo S, Russo D

(2017) Predicting current and future disease outbreaks of

Diplodia sapinea shoot blight in Italy: species distribution

models as a tool for forest management planning. For Ecol

Manag 400:655–664

Broadhurst LM, Mellick R, Knerr N, Li L, Supple MA (2018) Land

availability may be more important than genetic diversity in the

range shift response of a widely distributed eucalypt, Eucalyptus

melliodora. For Ecol Manag 409:38–46

Brown JL, Bennett JR, French CM (2017) SDMtoolbox 2.0: the next

generation Python-based GIS toolkit for landscape genetic,

biogeographic and species distribution model analyses. PeerJ

5:e4095

Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid

range shifts of species associated with high levels of climate

warming. Science 333:1024–1026

CITES (2007) Checklist of CITES species. Retrieved from http://

checklist.cites.org/#/en/search/output_layout=alphabetical&le

vel_of_listing=0&show_synonyms=1&show_author=1&show_

english=1&show_spanish=1&show_french=1&scientific_name=

Taxus&page=1&per_page=20

Costion CM, Simpson L, Pert PL, Carlsen MM, Kress WJ, Crayn D

(2015) Will tropical mountaintop plant species survive climate

change? Identifying key knowledge gaps using species distribu-

tion modelling in Australia. Biol Conserv 191:322–330

Cuyckens GAE, Christie D, Domic A, Malizia LR, Renison D (2016)

Climate change and the distribution and conservation of the

world’s highest elevation woodlands in the South American

Altiplano. Glob Planet Change 137:79–87

Davis MB, Shaw RG (2001) Range shifts and adaptive responses to

Quaternary climate change. Science 292:673–679
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