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A B S T R A C T

Leaf area index (LAI) is a required input for various ecological and crop models. To investigate the application
conditions of various vegetation indices (VIs), especially the VIs constructed by red-edge band (VIRE) for esti-
mating LAI, six VIs derived from Medium Resolution Imaging Spectrometer (MERIS) data were used to construct
LAI seasonal trajectory for different vegetation types at 15 sites. The PROSAIL model combined with the
Extended Fourier Amplitude Sensitivity Test (EFAST) method was adopted to explore the influences and physical
basis of canopy biophysical and non-canopy variables on the construction of LAI seasonal trajectory using VIs.
For deciduous forests, the normalized difference vegetation index (NDVI) had the highest sensitivity to LAI when
LAI < 2, while the RE normalized difference vegetation index (NDVIRE) had the highest sensitivity when
LAI > 2. For evergreen forests, there were no obvious differences among the sensitivities of six VIs to LAI when
LAI < 5, while the RE chlorophyll index (CIRE) had the highest sensitivities when LAI > 5. For crops, all the
VIs had the similar sensitivities at LAI < 3, while the CIRE and MERIS terrestrial chlorophyll index (MTCI) were
most sensitive to LAI variations at LAI > 3. For all three types of vegetation, the VIRE maintained relatively high
sensitivity to LAI over the whole range of LAI, especially at high LAI values. The VIs were most affected by
chlorophyll content (Cab) and average leaf inclination angle (ALA); their total contribution was about 85%.
However, the influence of ALA on VIRE was relatively weak, implying that the VIRE had the potential to establish
a universal model for LAI estimation among different vegetation types. Therefore, the optimal VIs over different
ranges of LAI were suggested to estimate LAI. In addition, the VIRE should be a preferred choice for estimating
LAI to reduce the simulation errors of seasonal LAI, if the RE band is available.

1. Introduction

Leaf area index (LAI) is usually defined as half the total green leaf
area per unit ground surface area (Chen and Black, 1992). It is one of
the representative vegetation biophysical parameters and the essential
climate variables (ECVs) (Brown et al., 2017). As a required input for
various terrestrial ecological and crop growth models, LAI is critical for
crop yield estimation, forest monitoring, ecological assessment and
carbon cycle research (Battaglia et al., 2004; Casa et al., 2012;
Richardson et al., 2011; Shang et al., 2014). LAI is a core canopy
structural variable that reflects the seasonal status of the vegetation
growth, and characterizes the canopy interception area of light and
water. In addition, it is also a key indicator that closely relates to var-
ious biophysical processes of the vegetation, including the processes of
evapotranspiration, respiration, photosynthesis and carbon or nitrogen

cycles (Garrigues et al., 2008; Tian et al., 2017; Viña et al., 2011; Xu
et al., 2018).

Currently, there are two main types of methods for LAI estimation
using remote sensing data: (1) statistical relationships between LAI and
spectral vegetation indices (VIs), and (2) vegetation radiative transfer
models (Atzberger et al., 2015; Campos-Taberner et al., 2016; Yan
et al., 2019). VI is the mathematical combination of different spectral
bands based on the absorption and reflection characteristics of vege-
tation. It is able to minimize the non-vegetation signals, thereby en-
hancing the vegetation information contained in spectral reflectance
data. Thus, VI is commonly used for monitoring the variability of the
vegetation characteristics (e.g., LAI) (Moulin, 1999; Viña et al., 2011).
Many studies successfully related VIs to LAI in various vegetation types,
such as grasslands, crops, deciduous forests and evergreen forests
(Atzberger et al., 2015; Delegido et al., 2013; Din et al., 2017; Korhonen
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et al., 2017; Kross et al., 2015; Nguy-Robertson et al., 2014). The
normalized difference vegetation index (NDVI) is the most widely used
VI for LAI estimation, but it is susceptible to the soil reflectance when
LAI values are relatively low, and its sensitivity decreases rapidly with
the increase of LAI (Gu et al., 2013). Some improved VIs, such as en-
hanced vegetation index (EVI), perpendicular vegetation index (PVI)
and atmospherically resistant vegetation index (ARVI) were therefore
developed to reduce the influences from soil background reflectance
and other factors. However, the saturation of the VIs at high LAI values
still exists. Besides, the LAI estimation models established by these
improved VIs are less generic (Birky, 2001; Cheng et al., 2003; Gu et al.,
2013).

Recently, the VIs constructed by the red edge band (VIRE) were
found to be effective in overcoming the saturation problem at high LAI
values. In addition, they were less affected by canopy structures.
Therefore, they have potential to develop a universal model for esti-
mating LAI (Eitel et al., 2011; Nguy-Robertson et al., 2014; Schuster
et al., 2012). However, most of these studies were based on the data in a
single vegetation type or a single phenological period, lacking a com-
prehensive analysis for the application conditions of various VIs (in-
cluding VIRE) in LAI estimation in the whole growing season for dif-
ferent vegetation types. Besides, most studies utilized the simulated red-
edge band reflectance for analysis (Nguy-Robertson and Gitelson, 2015;
Viña et al., 2011). Furthermore, the LAI-VI relationship is determined
by a variety of factors, including leaf properties (e.g., chlorophyll
content, water content and dry matter content), canopy structures (e.g.,
leaf inclination angle distribution and clumping index), soil background
properties, and sun-sensor geometry and illumination conditions (e.g.,
hotspot and solar zenith angle) (Liu et al., 2012; Xie et al., 2018). The
uncertainties in LAI-VI relationship increase due to the compounded
influence of these factors. Thus, it is need to quantitatively evaluate the
contributions and impact mechanism of relevant impact factors, espe-
cially how these factors affect the performances of VIRE. The types of
relationships between LAI and VIs are also diverse, including linear,
quadratic polynomial, cubic polynomial and logarithmic relationships
(le Maire et al., 2011; Li et al., 2016; Potithep et al., 2013). To clearly
understand the responses of various VIs to LAI, and further to obtain a
more stable LAI-VI relationship and the optimal VI in constructing the
LAI seasonal trajectory, it is necessary to analyze the LAI-VI relation-
ships for different vegetation types using multi-year and multi-site data.

In this study, continuous LAI observation data and six VIs calculated
from Medium Resolution Imaging Spectrometer (MERIS) data were
used to evaluate the performances of VIs in constructing the LAI sea-
sonal trajectory for different vegetation types. The specific objectives of
this study are (1) to investigate the application conditions for various
VIs in constructing the LAI seasonal trajectory for different vegetation
types; (2) to compare the performances of VIs constructed by the green,
red and red-edge bands, revealing the possible advantages of VIRE in
LAI estimation; and (3) to quantitatively assess the impact factors for
LAI-VI relationship, and investigate the physical basis of LAI estimation
using VIs and the feasibility of building a universal LAI estimation
model.

2. Material and methodology

2.1. Sites and data acquisition

2.1.1. Ground LAI data
Considering the availability of at least 3 years of ground-observed

LAI data within the operational period of MERIS, 15 study sites were
selected from database of AmeriFlux, Japan Long Term Ecological
Research Network and Chinese Ecosystem Research Network (Table 1).
These study sites are dominated by deciduous forest, evergreen forest
and crop. Their LAI data were measured in plots in fields of vegetation
every 10 to 30 days from the start of the growing season (SGS) to the
end of the growing season (EGS).

2.1.2. MERIS data and preprocessing
MERIS level 2 full-resolution full-swath (MER_FRS_2P) data were

used for VI calculation. They were obtained from the data website of
European Space Agency (https://earth.esa.int/). MER_FRS_2P data
contain 13 spectral bands of bottom-of-atmosphere (BOA) reflectance
with a spatial resolution of 300 m and a quality layer. And its temporal
resolution is 3 days. The BOA reflectance values of each band are the
results of a partial atmospheric correction, eliminating the influences of
gaseous absorption and Rayleigh scattering. The spectral range of the
13 bands covers the visible to near-infrared (NIR) region, including a
red-edge band.

Some preliminary data processing such as geometric correction and
reprojection were carried out using ESA’s Sentinel Application Platform
(ESA-snap). To ensure the spatial consistency of the LAI and MERIS VI
data, the mean value of 9 pixels within the 3 × 3 window was extracted
centered on the pixel corresponding to each site, except for where cloud
was present according to the quality layer and visual interpretation. In
addition, a time-weighted linear interpolation was applied for VI data
to ensure the temporal consistent with LAI data (Viña et al. 2011).

2.2. Methodology

2.2.1. Calculations of spectral VIs
Six VIs, including NDVI, red edge normalized difference vegetation

index (NDVIRE), green normalized difference vegetation index
(NDVIgreen), MERIS terrestrial chlorophyll index (MTCI), red edge
chlorophyll index (CIRE) and green chlorophyll index (CIgreen), were
calculated from MERIS reflectance data (Table 2). The bands used to
compute VIs include the green band: b5 (555–565 nm), red band: b8
(677.5–685 nm), red-edge band: b9 (703.75–713.75 nm), and near-
infrared band: b10 (750–757.5 nm) and b12 (771.25–786.25 nm).

2.2.2. Performance evaluations of VIs in constructing LAI seasonal
trajectory

The SPSS software (version 20.0) was utilized to evaluate the per-
formances of VIs in constructing LAI seasonal trajectory. Firstly, the
quadratic polynomial model was selected for fitting the LAI-VI re-
lationships at the sites after some initial tries, and to evaluate the
performances of VIs in constructing LAI seasonal trajectory at sites.
Then the multi-site LAI and VI data for the same vegetation type were
pooled together to evaluate the performances of VIs in constructing LAI
seasonal trajectory for different vegetation types (the data for decid-
uous forests only included data from four sites: US-Ha1-EMS, US-Ha1-
LPH, US-UMB and US-MMS, because the geographic locations of CA-
Oas and JP-Tak sites are too far away from those four sites, besides, the
meteorological conditions and tree species of these two sites are com-
pletely different from others); and the linear and quadratic polynomial
models were selected for fitting the LAI-VI relationships for different
vegetation types. The coefficient of determination (R2) and root mean
square error (RMSE) for these models were calculated simultaneously.

A paired T-test was conducted for the LAI-VI regressions at the sites
to examine whether there were significant differences in the perfor-
mances of various VIs in constructing LAI seasonal trajectory for mul-
tiple sites. In addition, an F-test was performed to examine whether
there were significant LAI-VI regressions in the models.

2.2.3. Sensitivities analysis of VIs against LAI
The sensitivities of different spectral VIs against LAI changes were

assessed by the Noise Equivalent ΔLAI of the LAI-VI relationships
(Equation (1)). The higher the NEΔLAI value is, the lower the sensitivity
is (Viña et al., 2011; Xie et al., 2018).

=NE LAI RMSE VI vs LAI
d VI d LAI

Δ { . }
( )/ ( ) (1)

where RMSE and d(VI)/d(LAI) are, respectively, the root mean square
error and the first derivative of the best-fit function in the relationship
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“VI vs. LAI”.

2.2.4. Radiative transfer modelling and global sensitivity analysis
To investigate the influences of canopy biophysical parameters, soil

parameters and other environmental parameters on the construction of
LAI seasonal trajectory with VIs, PROSAIL model was utilized to si-
mulate the spectral reflectance to calculate six VIs. Firstly, the leaf re-
flectance and transmittance were simulated using the leaf biophysical
variables (i.e., chlorophyll content (Cab), carotenoid content(Car), dry
matter content (Cm), water content (CW), structure parameter (N))
with PROSPECT-5 model. Then leaf reflectance and transmittance with
average leaf inclination angle (ALA), soil coefficient (Psoil), solar zenith
angle (SZA) and LAI were put into the SAIL model to simulate the ca-
nopy reflectance (Supplementary Materials, Table S1). Next, the si-
mulated results of PROSAIL model combined with the Extended Fourier
Amplitude Sensitivity Test (EFAST) method were used to evaluate the
relative contributions of leaf and canopy parameters to the VIs in
constructing the LAI seasonal trajectory. This method divides the con-
tribution of variables into two sets, the first order indices give the
contribution of individual variable, and the total order indices give the
contribution of the interaction between variables (Saltelli et al., 2008).
2500 samples were randomly generated using EFAST for analysis
(Supplementary Materials, Table S1).

3. Results

3.1. Seasonal trajectories of LAI and VI

Asymmetric seasonal trajectories of LAI were observed in most sites.
The seasonal changes were distinct at deciduous forest and crop sites,
while they were not obvious at some evergreen forest sites and no
seasonal patterns at some other evergreen forest sites (Fig. 1(I)–(III)). At
deciduous forest sites (Fig. 1(I)), the SGS occurred between April and
May, and the EGS occurred between October and November. At crop
sites (Fig. 1(III)), SGS occurred between May and June, and EGS oc-
curred between September and October.

The seasonal trajectories of MERIS VIs were generally consistent
with those of LAI. Especially the seasonal trajectories of CIRE at

Table 1
Descriptions of study sites.

Site ID Study site Country Longitude Latitude Elevation (m) Dominant vegetation Measurement interval (years)

US-Ha1-EMS Harvard forest USA −72.171 42.538 340 DF 2006–2011
US-Ha1-LPH Harvard forest USA −72.183 42.541 340 DF 2007–2010
US-UMB University of michigan biological station USA −84.714 45.560 243 DF 2003–2011
US-MMS Morgan monroe state forest USA −86.413 39.323 275 DF 2003–2006
CA-Oas SSA Old aspen Canada −106.200 53.63 601 DF 2002–2004
JP-Tak Takayama Japan 137.423 36.146 1420 DF 2007–2008, 2010–2011
CN-XSBN1 Xishuangbanna tropical monsoon forest China 101.200 21.961 750 EF 2005–2011
CN-XSBN2 Xishuangbanna tropical artificial rubber forest China 101.274 21.911 580 EF 2005–2011
CN-XSBN3 Xishuangbanna tropical artificial rainforest China 101.268 21.922 570 EF 2005–2011
CN-XSBN4 Xishuangbanna karst monsoon forest China 101.283 21.912 640 EF 2005–2011
CN-HT1 Huitong broad-leaved evergreen forests China 109.608 26.843 358 EF 2007–2008, 2010–2011
CN-HT2 Huitong chinese fir plantation China 109.605 26.851 520 EF 2007–2008, 2010–2011
US-Ne1 Mead-irrigated continuous maize site USA −96.476 41.165 361 CRO 2003–2007
US-Ne2 Mead-irrigated maize-soybean rotation site USA −96.470 41.165 362 CRO 2003–2007
US-Ne3 Mead-rainfed maize-soybean rotation site USA −96.440 41.180 363 CRO 2003–2007

DF: Deciduous forest; EF: Evergreen forest; CRO: Crop.

Table 2
The spectral vegetation indices used in the study.

Index Formulation Reference

Normalized difference vegetation index (NDVI) Rouse et al. (1974)
Red edge normalized difference vegetation index (NDVIRE) Gitelson and Merzlyak (1994); Kross et al. (2015)
Green normalized difference vegetation index (NDVIgreen) Gitelson et al. (1996); Nguy-Robertson et al. (2012)
MERIS terrestrial chlorophyll index (MTCI) Dash and Curran (2004); Nguy-Robertson et al. (2012)
Red edge chlorophyll index (CIRE) Gitelson (2005); Gitelson et al. (2003a,b); Heiskanen et al. (2013)
Green chlorophyll index (CIgreen) Gitelson (2005); Gitelson et al. (2003a,b); Heiskanen et al. (2013)

Fig. 1. Seasonal trajectories of LAI and VIs at the deciduous forest site: US-Ha1-
EMS (I), evergreen forest site: CN-XSBN2 (II) and crop site: US-ne1 (III).
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deciduous forest and crop sites were the most consistent with that of
LAI. Although similar seasonal trajectories were observed between
MERIS VIs and LAI, the seasonal pattern was more clearly resolved by
LAI than by MERIS VIs, and the temporal profiles of MERIS VIs and LAI
were subject to substantial differences in width. For the SGS, increases
in VI occurred earlier than those in LAI. Conversely, for the EGS, the
decreases of LAI occurred earlier than those of VI. Thus, the length of
the growing season (LGS) calculated using VI was longer than that using
LAI. These differences were especially apparent for the deciduous forest
sites. In addition, the decreases of the peak values in LAI occurred
earlier than those in VI, with more obvious differences for NDVIgreen
and NDVI than other VIs (Fig. 1).

3.2. Performances of VIs in constructing the LAI seasonal trajectory

3.2.1. Performances of VIs in constructing LAI seasonal trajectory for each
site

The VIs at deciduous forest (i.e., US_Ha1_EMS, US_Ha1_LPH,
US_UMB, US_MMS, JP_TKY and CA_Oas) and crop sites (i.e., US_ne1,
US_ne2 and US_ne3) showed strong relationships with LAI, while the
VIs at evergreen forest sites (i.e., CN_XSBN1, CN_XSBN2, CN_XSBN3,
CN_XSBN4, CN_HT1 and CN_HT2) showed weak relationships with LAI
(Fig. 2). But RMSE values for the LAI-VI relationships in evergreen
forests sites are comparable to those for the LAI-VI relationships in
deciduous forest and crop sites, because there is little differences among
the LAI values in evergreen forest sites, leading to a low RMSE for LAI-
VI relationships. For all sites, CIRE and NDVIRE fitted best to the LAI
values, with a rank of mean R2 by CIRE > NDVIRE > NDVI >
MTCI > CIgreen > NDVIgreen (Fig. 3). Overall, the VIRE (i.e., CIRE,
NDVIRE and MTCI) had better performances than other VIs in site-level
LAI-VI regressions.

3.2.2. Performances of VIs in constructing LAI seasonal trajectory for
different vegetation types

All the six VIs had significant relationships with LAI for all vege-
tation types (Fig. 4). For deciduous forests, NDVIRE fitted best to LAI in
the linear regressions, with a rank of R2 by NDVIRE > NDVI >
CIRE > CIgreen > NDVIgreen > MTCI, while for the quadratic
polynomial regressions, CIRE fitted best to LAI, with a rank of R2 by
CIRE > NDVI > NDVIRE > CIgreen > NDVIgreen > MTCI. For
evergreen forests, there were no significant differences among the
performances of six VIs. NDVIRE had a slightly better performance than
other VIs in the linear regressions, while CIRE had a slightly better
performance than other VIs in the quadratic polynomial regressions.
For crops, NDVIRE fitted best to LAI in the linear LAI-VI regressions,
with a rank of R2 by NDVIRE > CIRE > MTCI > NDVI > NDVI-
green > CIgreen, while for the quadratic polynomial LAI-VI

regressions, CIRE fitted best to LAI, with a rank of R2 by CIRE >
NDVIRE > MTCI > NDVI > CIgreen > NDVIgreen (Fig. 4). In
short, the quadratic polynomial regressions showed better results than
the linear regressions.

3.2.3. Sensitivities of VIs to LAI seasonal variations
The sensitivities of six VIs to LAI variations in different vegetation

types were quite different (Fig. 5). For deciduous forests, the NDVI
exhibited the lowest values at LAI < 2, indicating the highest sensi-
tivity; the NDVIRE had the highest sensitivity at LAI > 2; the CIRE,
CIgreen and NDVIgreen exhibited higher sensitivities than NDVI when
LAI > 3; and the MTCI exhibited higher sensitivity than NDVI when
LAI > 4. For evergreen forests, there were no obvious differences
among the sensitivities of six VIs to LAI when LAI < 5; and the CIRE
and CIgreen had the highest sensitivities when LAI > 5, followed by
MTCI, NDVIRE, NDVIgreen and NDVI. For crops, the sensitivities of all
the VIs were similar at LAI < 3; and CIRE and MTCI had the highest
sensitivities when LAI > 3, followed by CIgreen, NDVIRE, NDVIgreen
and NDVI.

3.3. Effects of interfering factors on the construction of LAI seasonal
trajectory with various VIs

3.3.1. The contributions of factors responsible for the variations of canopy
reflectance

The contributions of canopy biophysical and non-canopy variables
to different bands reflectance were quite different (Fig. 6). Psoil con-
tributed most (> 40%) to the variations of green, red, red-edge and NIR
bands reflectance at LAI < 1.0, but its contribution decreased with
LAI. The green and RE bands reflectance were most affected by Cab (RE
band: ~60% and green band: ~75%) at LAI > 1.0. Although the
contributions of ALA and N increased with LAI when LAI > 2.0, Cab
was still the greatest impact factor for green and RE bands reflectance,
followed by ALA and N. The contributions of ALA (~10%) and N
(~10%) to green band reflectance was obviously less than that to RE
band (ALA: ~20% and N: ~20%), and they increased faster at relatively
low LAI values. The red band reflectance was most affected by ALA
when LAI > 1.0 (~60%). However, the contribution of ALA decreased
with LAI, and the contribution of Cab gradually increased, replacing
ALA as the greatest impact factor (~25%) for red band reflectance.
Besides, the interaction between variables was also a significant impact
factor for red band reflectance. The NIR band reflectance was most
affected by ALA when LAI > 1.0 (~65%). When LAI > 2.0, the
contribution of Cm increased rapidly with LAI, however, ALA still had
the greatest contribution to NIR band reflectance, followed by Cm
(~30%) and N (~7%).

Fig. 2. Statistical results of the LAI-VI regressions in each site. The color scale of chart represents different values of the R2 and RMSE (red: high values, white:
medium values, green: low values). *p < 0.05; **p < 0.01; ***p < 0.001.
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3.3.2. The contributions of factors responsible for the variations of
vegetation indices

The contributions of canopy biophysical and non-canopy variables
to different VIs differed a lot (Fig. 7). NDVI was most affected by ALA
(> 30%), and followed by Cab. Although the contribution of ALA de-
creased, and that of Cab gradually increased with LAI, ALA still had a

much greater contribution to NDVI than Cab. The contribution of ALA
to NDVI was about 30% when LAI = 8. Except for NDVI, Cab had the
greatest impact on other VIs, and its contribution was about 70%. In
particularly for MTCI, the contribution of Cab could reach 90%. These
VIs were also sensitive to ALA, but the contribution of ALA gradually
decreased with LAI. Besides, N and Cm also had great impacts on VIs,
and their contributions ranged between 5% and 10%. In addition, ex-
cept for MTCI, other VIs were all affected by Psoil to different extent
when LAI < 1.0.

4. Discussion

4.1. Application conditions and impact factors for various VIs in
constructing the LAI seasonal trajectory

Six VIs were all closely related to LAI, and exhibited similar seasonal
trajectories to LAI. Previous studies also confirmed that various VIs
showed significant relationships with LAI in various vegetation types,
including deciduous forests, boreal forests, mixed forests, crops and
grasslands. In addition, both LAI and VIs had clear seasonal variations
(Heiskanen et al., 2013; Heiskanen et al., 2012; Potithep et al., 2013;
Tillack et al., 2014). However, some inconsistencies were also observed
between the trajectories of LAI and VIs. At the SGS, increases in VI
occurred earlier than those in LAI. Conversely, at the EGS, the
minimum values of LAI occurred earlier than those of VI. This is mainly
because LAI only reflects the information contained in the upper layers
of vegetation, while VI reflects the mixed spectral information of ca-
nopy and understory vegetation, especially at the SGS and EGS periods
(Nagai et al., 2010; Tillack et al., 2014). Thus, these differences are
greater for VIs because VIs are susceptible to the influences of back-
ground information and soils.

The sensitivities of six VIs to LAI differed a lot over different ranges
of LAI. For deciduous forests, NDVI had the highest sensitivity to LAI
when LAI < 2, while NDVIRE had the highest sensitivity when
LAI > 2. For crops, all the VIs had the similar sensitivities at LAI < 3,
while CIRE and MTCI were most sensitive to LAI variations at LAI > 3.
Viña et al. (2011) and Nguy-Robertson et al. (2012) also demonstrated
that different VIs had different sensitivities to LAI for two crops (i.e.,
maize and soybean), and there were also great differences in the per-
formances of various VIs in LAI estimation. Thus, the optimal VIs over
different ranges of LAI are suggested to estimate LAI.

Tillack et al. (2014) pointed out that the construction of LAI tra-
jectory with VIs was affected by diverse factors, such as growth period,
vegetation composition, tree age, and background reflectance. Most VIs
did not always have stable performances, when they are applied to
constructing LAI seasonal trajectory for different vegetation types with
various canopy and leaf structures. From the point view of radiative
transfer, the construction of LAI seasonal trajectory using VIs is mainly

Fig. 3. Statistical results of the LAI-VI regressions at the sites. Two ends of the boxes represent the 25th and 75th percentiles; the bands in the box correspond to the
median value; the ends of the whiskers indicate the lowest/highest value; and the open square denotes the mean value.

Fig. 4. The LAI-VI relationships for deciduous forests (I), evergreen forests (II)
and crops (III). The blue and red lines are the linear and quadratic polynomial
fitting LAI-VI relationships, respectively.
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affected by leaf properties (e.g., chlorophyll content, water content and
dry matter content), canopy structures (e.g., leaf inclination angle dis-
tribution and clumping index), soil background reflectance, sun-sensor
geometry and illumination conditions (Jacquemoud et al., 2009; Liu
et al., 2012; Xie et al., 2018). A quantitative analysis was conducted for
these impact factors in this study, and we found that Cab had the
greatest contribution to the variations of VIs (except for NDVI), fol-
lowed by ALA. NDVI was most affected by ALA and also greatly affected
by Cab. In addition, N and Cm were also important factors influencing
the variations of VIs. In the ranges of low LAI values, Psoil had a re-
lative greater contribution to VIs. The results are highly consistent with
many previous studies, in which they declared that VI is a complex
indicator affected by many factors, and Cab and ALA were the main
contributors, and the contributions of other factors were relatively
weak (Dong et al., 2019; Liu et al., 2012; Xie et al., 2018).

4.2. Potential advantages and impact factors for VIRE in constructing LAI
seasonal trajectory

Green, red and RE bands are all sensitive to the vegetation in-
formation, however, the VIs constructed by RE bands are more effective
in LAI estimation than that by other spectral bands, and can sig-
nificantly improve the accuracy of LAI estimation (TIan et al., 2017;
Korhonen et al., 2017; Nguy-Robertson and Gitelson, 2015). We also
found that no matter in the construction of LAI seasonal trajectory at

Fig. 5. The sensitivities of VIs to LAI variations for deciduous forests (a), evergreen forests (b) and crops (c).

Fig. 6. Contributions of canopy biophysical and non-canopy variables responsible for the variations of spectral reflectance; “Inter” represents the contribution of the
interaction between variables.

Fig. 7. Contributions of canopy biophysical and non-canopy variables re-
sponsible for the variations of vegetation indices.
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the sites or for different vegetation types, VIRE (i.e., CIRE and NDVIRE)
performed more stable and better than other VIs in the construction of
LAI seasonal trajectory. Moreover, the VIRE maintained relatively high
sensitive to LAI over the whole range of LAI, and were effective in
partly overcoming the saturation problem at high LAI values. These
results are highly agreement with those of previous studies; they found
the VIRE can give a quick response to the small variations of spectral
reflectance, environmental stress and LAI (Delegido et al., 2011;
Schuster et al., 2012; Viña et al., 2011). This is because the RE band is
at the wavelength between red and NIR bands and there has a sharp
variation in vegetation spectral reflectance, characterizing the transi-
tion from strong absorption of chlorophyll to cellular scattering
(Delegido et al., 2013; Hatfield et al., 2008; Nguy-Robertson et al.,
2012).

Using GSA, we found that the VIRE was greatly affected by Cab and
ALA. However, the contribution of ALA decreased with LAI, especially
for when the canopy is quite dense and the canopy transmittance is low
(LAI > 2). Thus, the LAI-VI relationship was mainly controlled by Cab
But in fact, the dynamic range of Cab in vegetation is relative narrow
(Dong et al., 2019; Féret et al., 2011), besides, the influence of other
factors (e.g., ALA and N) on VIRE were relatively weak. Thus, the VIRE
had the potential to establish a universal model to estimate LAI for
crops or forests with different canopy structures. The results were
consistent with previous studies. Nguy-Robertson et al. (2014) revealed
the red edge constructed VIs were promising for establishing a universal
algorithm for LAI estimation in four crops including maize, soybean,
wheat and potato. Dong et al. (2019) also found similar results that a
universal model for estimating LAI can be developed using the red edge
constructed VIs derived from RapideEye data for crops. Although the
VIRE performed better in constructing LAI seasonal trajectory for de-
ciduous forests and crops, their advantages in LAI estimation for ever-
green forests were not obvious. This may be due to the unapparent
seasonality of evergreen forests, so that the weak seasonal signals are
not easily captured by MREIS due to the compounding influences of
atmosphere, BRDF and shadows (Brown et al., 2017).

4.3. Application prospects and uncertainties

We found that the VIRE were more sensitive to LAI variations than
other VIs. Besides, they had the potential to develop a universal model
for estimating LAI in forests or crops with different canopy structures.
The results further demonstrate a great potential of VIRE in crop growth
monitoring, ecological model simulation and biomass estimation, as
previous studies have proved (Bobée et al., 2012; Claverie et al., 2012;
Richardson et al., 2011; Shang et al., 2014). Recently, more and more
high-resolution remote sensing data with RE band are available, such as
Sentinel-2 and GF-6. These satellite sensors with RE band are expected
to provide high-accuracy LAI products for environmental, agricultural
and forestry applications.

Although many factors affected the construction of LAI seasonal
trajectory with VIs were discussed in this study, there still some other
aspects are not considered, such as the measurement methods and
sampling strategies of LAI data, they are key issues for obtaining LAI
observed data accurately, and may be different at each site, which will
bring uncertainties to our analysis. In addition, the LAI-VI relationships
for three vegetation types were discussed in the study, however, the
number of sites for each vegetation type is limited, and the influences of
meteorological factors on the construction of LAI seasonal trajectory
with VIs were ignored. But the meteorological factors such as tem-
perature, precipitation and photoperiod have significant influence on
vegetation growth (Buyantuyev and Wu, 2012; Hu et al., 2011), and
most biological processes of vegetation can be explained by the varia-
tions of meteorological factors (Jolly et al., 2005; Zhang et al., 2012). In
the future, more observed data will be available for the study with the
development of data sharing policies and information technology, thus,
the meteorological data should be considered in the construction of LAI

seasonal trajectory with VIs. In addition, the findings of this study
should also be tested in more sites for different vegetation types in
various climate zones, to further improve the accuracy of LAI seasonal
estimation.

5. Conclusions

The performances of six vegetation indices (VIs) (i.e., Normalized
difference vegetation index (NDVI), Red edge normalized difference
vegetation index (NDVIRE), Green normalized difference vegetation
index (NDVIgreen), MERIS terrestrial chlorophyll index (MTCI), Red
edge chlorophyll index (CIRE) and Green chlorophyll index (CIgreen))
in constructing LAI seasonal trajectory for deciduous forests, evergreen
forests and crops were evaluated in this study. Besides, we also quan-
titatively analyzed the various factors which may affect the construc-
tion of LAI seasonal trajectory using VIs. There were great differences in
the performances of six VIs in constructing LAI seasonal trajectory. The
sensitivities of various VIs to LAI also differed over different ranges of
LAI. The VIs constructed by the red edge band (VIRE) maintained re-
latively high sensitivity to LAI over the whole range of LAI, showing
advantages in constructing LAI seasonal trajectory. Moreover, VIRE had
the potential to develop a universal model for estimating LAI. From the
radiative transfer prospective, chlorophyll content (Cab) and Average
leaf inclination angle (ALA) had the greatest impacts on VIs. NDVI was
most affected by ALA, and other VIs were most affected by Cab. Besides,
structure parameter (N) and dry matter content (Cm) also had great
impacts on VIs, and all the VIs at low values were affected by Psoil to
different extent.

In summary, the optimal VI over different ranges of LAI is suggested
to estimate LAI for different vegetation types. In addition, the VIRE
should be a preferred choice for estimating LAI to reduce the simulation
errors of seasonal LAI, if the RE band is available.
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