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• SM is more sensitive to climate changes
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• A sensitivity-based approach is pro-
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Soilmoisture (SM) is a key variable in the climate system as it regulates the latent and sensible heat partition and
influences eco-hydrological processes. A few studies have highlighted the increasing frequency of SMdroughts at
the river basin scale in China, however, little is known about the SM response to precipitation (P) and near-
surface temperature (T) at national and regional scales. In this study, the long-term SM dynamics based on a so-
phisticated land surface hydrological model (i.e., the Variable Infiltration Capacity, VIC) were identified after
model evaluation. A simple but effective sensitivity-based approach was developed to quantify the elasticity
(ε) and sensitivity (S) of SM to P and T, and the SM was projected for the near future at the regional scale. The
results indicate that China has experienced slightly wetter soil conditions during the past five decades and the
SM has increased in the arid and semi-arid regions of China, i.e., the North East (0.11 mm/yr) and the North
West (0.047 mm/yr). The elasticity and the sensitivity of SM are the highest in the humid region (i.e., South
East China), indicating that small increases of P and T are likely to induce considerable changes in the SM relative
to other regions. The sensitivity-based approach could perform SMestimation similar to the complex VICmodel-
ing. This approach projected that North China (−5.05±2.31%) and SouthWest China (−5.95±2.04%) are likely
to experience dryingwith a considerable decline in SMdue to reduction in P and rise in T in the near future period
from 2020 to 2050. The slightlywet soil conditions in the past and a drying future scenariomay imply a contrast-
ing consequence for the regional-scale hydrological cycles.

© 2019 Elsevier B.V. All rights reserved.
hina.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2019.135774&domain=pdf
https://doi.org/10.1016/j.scitotenv.2019.135774
mailto:xianhong@bnu.edu.cn
https://doi.org/10.1016/j.scitotenv.2019.135774
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


2 B. Zhu et al. / Science of the Total Environment 705 (2020) 135774
1. Introduction

Soil moisture (SM) in the climate system imposes considerable im-
pacts on water, energy, and biogeochemical cycles (Seneviratne et al.,
2010). It can regulate vegetation dynamics (Alamusa et al., 2017) and
also plays an irreplaceable role in maintaining the sustainability of eco-
systems in arid regions (Zhang et al., 2017). The SM controls interaction
of the land with the atmosphere and its dynamics are dominated by a
range of geophysical parameters such as regional climate (Li et al.,
2016b), soil properties and vegetation density (She et al., 2014). Thus,
it is important to quantify SM variability and its response to climatic fac-
tors considering the changing environmental conditions.

China has experienced significant climate change with regard to
temperature (T) and precipitation (P) in the recent decades. For exam-
ple, the North East region of China is warmingwith T increase of 0.38 °C
per decade (Chen et al., 2011), southern China has experienced a T in-
crease at the rate of 0.29 °C/decade and a slight decrease in P by
6.07 mm/decade (Liu et al., 2016). The changes in P and T can reshape
the water balance (Touhami et al., 2015) and have a considerable im-
pact on streamflow, groundwater, and SM dynamics (Stoll et al., 2013).

The dynamics of SM are primarily driven by P and evapotranspira-
tion (Jia et al., 2018; Rushton et al., 2006), and both of which have a
coupled interaction with rising T. As a result, SM has been severely al-
tered to adapt to the warming climate system. In the recent years, SM
has shown significant downward trends in northern and northeastern
China (Wang et al., 2011). However, in the context of global change,
most research has mainly focused on hydrological budgets changes
and the response of vegetation and agriculture to climate change during
the past decades, while the sensitivity of SM to climate change and SM
changes in the future in Chinahave not yet been adequately understood.

In general, SM can be estimated by three approaches: in-situ mea-
surements, remote sensing (RS), and hydrological modeling (Jia et al.,
2018). In-situ measurements can provide the most reliable estimates
at point scale but are limited by the number stations worldwide includ-
ing regions in China (Cao et al., 2015). In contrast, the RS technique is ca-
pable of monitoring SM states at large scales, however, the RS data
products only represent the first few centimeters of the soil layer
(Zribi, 2003), therefore the products may hold considerable biases (Jia
et al., 2018). Moreover, most RS products are available for a short time
period. For example, the products from the Soil Moisture and Ocean Sa-
linity (SMOS) are available since November 2009 and the Soil Moisture
Active Passive (SMAP) data can be obtained for the period after January
2015 (Karthikeyan et al., 2017a; Karthikeyan et al., 2017b; Mishra et al.,
2017). Alternately, hydrological modeling is capable andwidely used to
assess the SMdynamics (Koch et al., 2016). In particular,field and basin-
scale hydrological models have been frequently employed to study eco-
hydrological processes (Li et al., 2016b; She et al., 2014). Li et al. (2016b)
applied Soil and Water Assessment Tool (SWAT) model to explore
spatio-temporal variations in SM of the Yellow River basin of China.
She et al. (2014) used the Soil Water-Carrying Capacity for Vegetation
(SWCCV)model as a diagnostic tool to explore the distinguishing effects
of vegetation density and land use on soil water dynamics in the Loess
Plateau, northwestern China. Large-scale hydrologically-based land sur-
face models are more suitable to diagnose SM related processes at re-
gional or national scales (Jia et al., 2018).

Based on land surface models and related climate forcing data, SM
and other hydrological variables can be projected for future scenarios.
Extensive studies have employed off-line modeling to assess the im-
pacts of climate change on SM, in which land surface models were
driven by outputs from global climate models (Tang and Dennis,
2014). (Amin et al., 2017; Chiristensen and Lettenmaier, 2007). Never-
theless, this approach entails considerable computational costs and rig-
orous data management since reliable projections depend on repeated
model runs when new climate datasets are released (Vano et al.,
2012; Vano and Lettenmaier, 2013). Moreover, only SM trends and
changes instead of the sensitivity of SM to P and T were examined at
the regional scale from previous studies. To alleviate this issue, Vano
and Lettenmaier (2013) proposed a sensitivity-based method to ex-
plore the response of runoff to climate change. This method produces
first-order estimates to determine the bounds of uncertainties with re-
gard to long-term runoff response to climate change. It is able to effec-
tively capture the relationships between hydrological budgets and
climate factors, and it is also flexible to allow SM projections after rea-
sonable adaptions (Vano et al., 2012; Vano and Lettenmaier, 2013).

The main objectives of this study were: (1) to identify the spatio-
temporal variability in the SM across China during the 1960–2014 and
its correlations with P and T; (2) to quantify the precipitation elasticity
(ε) and the temperature sensitivity (S) of SM; and (3) to project the SM
through a simple sensitivity-basedmethod under future climatic condi-
tions. A large-scale distributed hydrologicalmodel, i.e., the variable infil-
tration capacity (VIC) model (Liang et al., 1994; Liang et al., 1996) was
used to investigate the response of the SM to climate change in China.
Based on this land surface modeling, the sensitivity-based approach
was extended to conduct SM projections.

This paper is structured as follows. The inputs and validation data for
the VIC model and methods are introduced in Section 2. The climate
change, SM response andprojection are presented in Section 3, followed
by a discussion of evidence from other studies and limitations in
Section 4. Finally, Section 5 summarizes the conclusions.
2. Data and methods

2.1. Large-scale hydrological model

The VIC model is a macro-scale model which resolves the hydrology
and energy balance within each grid cell at each time step (Liang et al.,
1994; Liang et al., 1996; Liang and Xie, 2003). It has been successfully
applied to many hydrological simulations during droughts and floods
and for water resource management. Additionally, it has also been ap-
plied at scales ranging from a watershed (Liang and Xie, 2001) to re-
gional and global scales (Nijssen et al., 2001; Tang and Dennis, 2014;
Tang and Piechota, 2009; Xie et al., 2015).

The meteorological forcing data for the VIC model will be described
in Section 2.2. The data for the VIC parameters regarding vegetation
types were derived from the University of Maryland global cover classi-
fications (Hansen et al., 2010) and soil texture was based on the dataset
obtained from the Food and Agriculture Organization of the United Na-
tions (FAO, 1998) which have been successfully used in Zhang et al.
(2014). The model was run at a spatial resolution of 0.25° × 0.25° for
the period of 55 years (1960–2014). It was cold started on January 1,
1960 and spun up for the period off 5 years from 1960 to 1964. The
model state at the end of this period served as the initial condition for
all subsequent model experiments. The soil profile was divided into
three layers. The depth of the top layer was constant (0.1 m) and thick-
nesses of the other two layers were designated by the soil properties.
2.2. Meteorological forcing data

In this study, the meteorological forcing data for the VIC model in-
cluded daily P, wind speed, and maximum, minimum, and mean Ts.
These forcing data were produced from 752 stations of observations
which were obtained from the China Meteorological Administration
(CMA) for 1960–2014. The meteorological station observations were
quality controlled and interpolated at a resolution of 0.25° × 0.25° into
a gridded data set (Xie et al., 2015). The same CMA data and the inter-
polation method to generate gridded forcing data have been success-
fully applied to hydrological simulations of the VIC model in previous
studies (Xie et al., 2015; Xie et al., 2007). Thus, the input forcing data
created in this study were expected to be of high quality and suitable
for conducting SM simulations for China.



3B. Zhu et al. / Science of the Total Environment 705 (2020) 135774
2.3. Data for model evaluation

In this study, the SM data used for model evaluation included two
datasets: In-situ observations and RS retrievals. The in-situ data were
obtained from the CMA from 1991 to 2014. The dataset consisted of
SM values at different depths (i.e. 10 cm, 20 cm, 50 cm, 70 cm and
100 cm) at a sampling interval of 10 days during the crop growing sea-
son. Only the data for the 10 cm and the 100 cm depths, which can cap-
ture surface and deep-depth changes of the SM, were considered to
validate the VIC results. After data quality control, 156 stations (Fig. 1)
with data length N 10 years were selected for model evaluation. Their
spatial distribution coversmost areas in China, and each is close to a tar-
get grid cell.

The RS SM data were available from the European Space Agency
(ESA)'s Water Cycle Multimission Observation Strategy and Climate
Change Initiative projects (ESA-CCI SM). The ESA-CCI SM consisted of
three data sets: the “active product”was based on backscattermeasure-
ments, the “passive product” was derived from brightness and T mea-
surements, and the “combined product” was a blended product based
on the former two datasets. In this study, the combined product was
adopted, as it has the consistent spatial resolution (0.25°) and a daily
time step spanning period ranging from 1978 to 2013. This product
has been extensively evaluated worldwide, including regions in China,
with ground-based observations (Wang et al., 2016). To ensure compa-
rability with the sensing depth of the satellite sensors, simulated SM
within the upper 10 cm was considered (Dorigo et al., 2015).

2.4. Sensitivity analysis and projection methods

Dynamics of SM are sensitive to P and T. According to the method
proposed by Vano et al. (2012), we developed a simple sensitivity-
based approach to reflect the SM responses to changes in P and T, re-
spectively. As described in Eq. (1), the precipitation elasticity ε is amea-
sure of the fractional change in SMdivided by the fractional change in P.
Similarly, the temperature sensitivity S is a measure of percent change
Fig. 1. The distribution of elevation in China and the SMobservation stations. The areawas divid
and South West (SW).
in SM divided by the per degree change in T (Eq. (2)).

ε ¼ SMhistþΔP−SMhist

ΔP
∙

1
SMhist

ð1Þ

S ¼ SMhistþΔT−SMhist

ΔT
∙

1
SMhist

ð2Þ

where SMhist is the SM from a baseline simulationwith the historical cli-
mate condition, which represents the long-term average results (i.e.
1960–2014). SMhist+ΔP and SMhist+ΔT are from simulation scenarios
with perturbations of precipitation and temperature, respectively
(Vano and Lettenmaier, 2013; Vano et al., 2015). To detect the stability
of ε and S, multiple simulation scenarios were designed with different
perturbations of P (ΔP = −20%, −10%, 1%, and 10%) and increments
of T (ΔT = 0.1 °C, 1 °C, 2 °C, and 3°C) relative to the historical P and T
conditions.

As the SM is primarily driven by P and T, it was assumed to be a func-
tion of P and T, i.e., f(P, T). Based on the work by (Vano et al., 2012), a
simple sensitivity-based approach (Eq. (3))was used to estimate SM re-
sponses to future climate changes in China.

SMfuture ¼ f Pfuture;Tfuture
� �

¼ f Phist ; Thistð Þ þ ∂f
∂P

ΔP þ ∂f
∂T

ΔT þ Rn

¼ SMhist þ ε � SMhistð ÞΔP þ S � SMhistð ÞΔT þ Rn;

ð3Þ

where SMfuture, Pfutureand Tfuture are future SM, P and T projections, re-
spectively, ΔP andΔT denote changes in P and T, relative to their histor-
ical values (Phist, Thist), and Rn is the Taylor's expansion remainder which
can be neglected. This approach can also be defined as the response of a
particular hydrological model to a known quantum of climate change
(Jones et al., 2006). In this study, we first evaluated the performance
of this sensitivity-based approach in comparison to the VIC modeling
and subsequently, we applied the approach to project future SM
changes.
ed into five regions: North East (NE), North China (NC), NorthWest (NW), South East (SE),



4 B. Zhu et al. / Science of the Total Environment 705 (2020) 135774
3. Results

3.1. Evaluation of SM simulations

3.1.1. Evaluation using in-situ observations
The VIC performance has been extensively evaluatedwith respect to

streamflow and evapotranspiration in China. Xie et al. (2007) used
streamflow data from 33 stations across China to calibrate and validate
the VIC model and acceptable performance was achieved for
streamflow simulations. Zhang et al. (2014) conducted VIC simulations
across China and evaluated the VIC model with regard to streamflow.
Xie et al. (2015) indicated the VIC model to show favorable evapotrans-
piration (as well as streamflow) estimation (for stations in the Three-
North region of China) when evaluated using eddy covariance. How-
ever, to our best knowledge, the VIC model for SM estimation in China
has not been adequately evaluated.

This study focused on evaluating the VIC for SM estimation instead
of streamflowand evapotranspiration. First, the SM simulationwas con-
ducted using in-situ observations. Considering the scale difference be-
tween the VIC simulations (0.25° grid scale) and the in-situ
observations (point scale), the simulated SMwas interpolated to the ob-
servation sites using the bilinear interpolation approach. Moreover, at
each observation site, the VIC simulated SM was linearly interpolated
to the depths of 10 cm and 100 cm which represent depths at which
measurements were conducted. To represent the agreement between
the simulation and the in-situ observations, two commonly used met-
rics were computed, i.e., the Spearman rank correlation coefficient (R)
and the percentage bias. The coefficient R is an indication of temporal
agreement and the bias was used tomeasure the relative difference be-
tween the simulation and the observations at sites.
Fig. 2. Correlation coefficient and bias between observations and simul
Fig. 2 shows the two metrics for the 156 observation sites. With re-
gard to the correlation coefficient, R values for most stations were N0.5
and the highest reached around 0.9. The bias ranged from −10%–10%
for both soil depths of 10 cm and 100 cm. Additionally, the bias for the
10 cm depth was smaller than that for the 100 cm depth, indicating
that the VIC model better simulated the upper-layer soil. Despite dis-
crepancies between simulations and observations at some sites, the
VIC generally provided acceptable estimates of SM in the top and deep
layers.

3.1.2. Evaluation using RS data
The ESA-CCI SM data were used to evaluate the VIC simulated top-

layer (10 cm) SM, focusing on the temporal and spatial agreement be-
tween the two SM estimates. The absolute differences (simulation
values minus the ESA-CCI SM values) and their relative differences (
absolute difference

ESA−CCI SM
) were calculated for each grid cell.

The average seasonal difference and standard deviations between
the VIC simulations and the ESA-CCI SM data for China were quite
small (Fig. S1). The differences between the two datasets were higher
in summer (June to August) when most P was input to subsequently
supplement the SM, while a better agreement was indicated in spring
(March, April, andMay) andwinter (December, January, and February).
With regard to the spatial differences (Fig. 3), SM estimates derived
from the RS data were higher than those simulated by the VIC for
most of South East China across all seasons and the relative bias ranged
from −10% to −20%. As shown in Fig. 3, the SM in south China was
underestimated by VIC in the summer and autumn, partly because the
VICmodel only simulated SM in the natural condition, while the impact
of human activities, such as irrigation, was not considered. The spatial
ations. A total of 156 stations were selected to make comparisons.
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pattern did not show an obvious seasonal change (a larger bias in South
than North China in each season) implying that the VIC simulated SM
gave the same seasonal pattern as the ESA-CCI SM data. Please note
the area (difference N 20%) is less 5% of the whole area, so the model
performance is acceptable for such a large domain. Additionally, it was
evident that the ESA-CCI SM data covered most areas in autumn (Sep-
tember, October, and November), while data were missing during the
other months. Overall, the results indicate that the VIC model produced
reliable SM estimates to a certain degree.

3.2. Changes in P, T and SM

To explore the spatial distributions of P, T, and SM trends based on
historical forcing data and simulations, the area of China was divided
into five regions: North East, North West, South East, South West, and
North China (Fig. 1). Each region represented a relatively-unique cli-
mate zone and enabled a better understanding of the SM changes
under different circumstance (Wang et al., 2011). The Tibetan Plateau
was excluded in this study because considerable SM simulation uncer-
tainties were possibly caused by the forcing data and the snow and ice
melting formulation in the VIC model. The Mann-Kendall test was
used to detect the annual trends for P, T, and SM from 1960 to 2014.

As shown in Fig. 4 and Table 1, P decreased over North China
(−1.12 mm/yr) and South West China (−2.10 mm/yr) but increased
dramatically in North West China (0.94 mm/yr), a pattern consistent
with the estimates from Zhai et al. (2005).With regard to T, considering
the current global warming, most regions in China exhibited a consider-
able increase in T (0.025 °C/yr) and North China experienced stronger
warming than South China (Yan et al., 2013).
Fig. 3. The spatial differences in SM between the VIC simulations and the ESA-CCI SM estimates
areas without available ESA-CCI SM data.
The trends of simulated SM for the total soil depth were generally
consistent with the P trends, except for some areas in the South East
coast where SM indicated a downward trend while P showed an up-
ward change. This may be caused by a significant increase in the T.
South West China indicated the highest downward trend in SM
(−0.20 mm/yr) and the highest increase in SM (0.047 mm/yr) was ob-
served inNorthWest China. Liu et al. (2015) analyzed the SMduring the
growing season in North China and concluded that the SM had de-
creased by 6% since 1983. These spatial distributions were similar to
those indicated by the ESA-CCI SM data as indicated by the Mann-
Kendall test and Spearman's Rho test (Qiu et al., 2016). Therefore, SM
trends were affected by P as well as T (Wang et al., 2011).

3.3. Correlation at regional scale

The SM correlations with P and T at a regional scale were identified
based on theR (Fig. S2). All six correlation coefficients for SMand Pwere
N0.6. The highestR appeared in theNorthWestwith a value of 0.90. This
region is characterized by low annual P (165 mm) compared to the
other regions, therefore, the recharge of the SM relied heavily on the
P. The SM correlationswith T for all regions were smaller than those ob-
servedwith P. Moreover, the SM and T exhibited a negative relationship
since soil water evaporation would be accelerated due to the rising T.
These results indicate that changes in P had positive influences and T
imposed negative effects on the SM dynamics despite the different cor-
relations in the five regionswhichwere partly attributed to the discrep-
ancy of the climatic background. Therefore, the sensitivity of SM to P
and T may vary in different regions. The SM sensitivity is further
discussed in Section 3.4.
(simulation valuesminus the ESA-CCI SM values) for the four seasons. The blank areas are



Fig. 4. Annual averages (left) and trends (right) in P, T and SM.
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3.4. Sensitivity and projection

3.4.1. SM sensitivity
We examined the SM sensitivity to climate change at regional scale

considering substantial uncertainties in SM estimation at each VIC
Table 1
Annual trends in P, T and SM in each region estimated by Mann-Kendall test.

Area Precipitation (mm/yr) Temperature (°C/yr) SM (mm/yr)

North East 0.061 0.025 0.11
North West 0.94 0.031 0.047
South East −0.59 0.018 0.069
South West −2.10 0.015 −0.20
North China −1.12 0.029 −0.13
China 0.22 0.025 0.0065
simulation grid cell. Moreover, we also applied the sensitivity approach
to make a regional-scale SM projection. The precipitation elasticity ε
was calculated using Eq. (1) by perturbing P at 80%, 90%, 101%, and
110% relative to the historical mean values. The temperature sensitivity
S was estimated using Eq. (2), using 0.1, 1, 2, and 3 °C increases to test
the effect of different change increments.

Fig. 5 indicates that the average ε varied from 0.15 in North West
(arid climate zone) to 0.48 in South East (humid climate zone), indicat-
ing that a 1% increase in P could increase the SM by 0.15% to 0.48%.
Therefore, the SM in the North West indicated a lower ε in comparison
to the South West. S presented negative values and showed an upward
trend with increasing increments of T. North West China showed the
lowest absolute S value, indicating that the SM was more stable when
T changed compared to other regions. In contrast, South East China indi-
cated the highest absolute S, suggesting the largest SM sensitivity to T.
Therefore, the SM in the humid region of China was more sensitive to
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P and T while the SM in the arid region of China showed less sensitivity
to P and T. In humid region, please also note that the soil profile can
store more water because of well planted vegetation and high density
agriculture (Thompson et al., 2010). Therefore, the soil profile gains
and loses watermore easily, indicating high sensitivity of SM to P and T.

The variation of ε (0.1 to 0.5) was smaller than that of S (from−1 to
−5), therefore, the average value of εwith regard to different levels of P
changes reasonably captured the regional-scale ε. However, S presented
a large variation with regard to different levels of T increases, therefore,
its averagewas not sufficient to represent the sensitivity. In this study, a
linear regressive function was employed to approximate the S
(Table S1) The five functions presented a favorable approximation of
variations in S and the coefficient of determination R2 N 0.7. North
China presented the largest slope according to the aggressive function,
which implies that the magnitudes of SM changes were more evident
when different T increments were used in this region. This is illustrated
by the climate change challenges, such as water shortage, food demand,
and high carbon emissions, experienced by North China (Zhang et al.,
2015)
3.4.2. Evaluation of the sensitivity-based approach
The above-mentioned sensitivity analysis indicates that it is possible

to use the simple sensitivity-based approach tomake SMprojections in-
stead of using the more complex land surface hydrological modeling
(e.g., the VIC modeling). Therefore, the sensitivity-based approach
using VIC simulations was evaluated for the historical period. Specifi-
cally, the values of ε and S were calculated from 1960 to 1984 to con-
struct the sensitivity-based model (Eq. (3)). Subsequently, this model
was used to make projections for the period between 1990 and 2014.
The projection accuracy could be evaluated using the VIC simulated
SM values from 1990 to 2014.

The average ε and the S regressive function for each regionwere pre-
sented in Table S2. ε and S indicated values different to the ones shown
in Table S1 because they were calculated for different time periods, as
indicated previously. However, the differences were very small. For ex-
ample, South East China was most sensitive to P and T changes. There-
fore, the SM sensitivity was found to be robust to a certain degree.
Fig. 5. Annual precipitation elasticity and temp
Based on the estimates of ε and the S, the SM projection could be
made from 1990 to 2014.

Fig. 6 (a) and (b) show the spatial distribution of SM changes from
the sensitivity-based approach as well as the VIC simulations which, in
most areas, ranged between −5 mm and 5 mm. The average changes
in the SM in China in comparison to the past decades were 3.02 mm
and 2.04 mm as estimated by the sensitivity-based approach and VIC
model, respectively. Although, there were some differences in North
West China where the results derived by the sensitivity method were
higher than those obtained from the VIC simulations, the SM changing
pattern was largely consistent between the two methods. As indicated
in Fig. 6 (c), the sensitivity-based approach generally presented a
good relationship with the VIC model projections with R value and
Nash Suffice coefficient of 0.67 and 0.38, respectively, indicating the ca-
pability of the sensitivity method to project the SM reasonably well.
Fig. 6 (d) shows the specific changes in the SM of the five regions and
their spatial distributions across China. The results deduced from the
sensitivity method as well as the VIC simulations for North East and
North West China indicate that the SM has increased relative to the
past 25 years, while the other regions indicated a decline in the SM.
On the other hand, South West and North China indicated negative
values from 1960 to 2014 and the decreasing results indicate an acceler-
ating declining phenomenon in the overall trend of the SM in both
areas. Therefore, the sensitivity-based approach is capable of reasonable
SM projection.

3.4.3. Projection for future patterns
The reasonable projection capability of the sensitivity-based ap-

proach, as described previously, enables it to project the SM patterns
for the near-future from 2020 to 2050. Therefore, the sensitivity-based
model was re-constructed with new ε and S values that were computed
from simulation data from 1960 to 2014 (Fig. 5 and Table S1). Based on
this model, along with the projected future changes in T and P, the
regional-scale SM pattern was projected for the period from 2020 to
2050. The future changes in T and P were abstracted from Leng et al.
(2015) and Zhang et al. (2015). Given the substantial uncertainties in
the projected T and P at grid cell scale, we focused on regional-scale
SM projection.
erature sensitivity in the different regions.



Fig. 6. SM changes from 1990 to 2014 and 1960–1984 obtained from (a) the sensitivity method, and (b) the VIC model. (c) Comparisons of predicted changes of annual average SM from
the VIC simulation and the sensitivity-based approach. The bar shows the density of all grids. (d) SM changes in different regions.
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According to themodel projections, western and northern China are
likely to experience an increase in future P by 5% to 15% (Leng et al.,
2015). Additionally, the model results showed a decrease in P of up to
10% in major areas of Central and parts of South West China, and the
largest decrease is expected in southwestern and northeastern China
(Leng et al., 2015). The multi-model ensembles predict a warmer cli-
mate for the entire country with increase in the T for the period from
2020 to 2050 ranging from 1 to 4 °C.

Based on these projections, different probable magnitudes changes
in P and T (Table 2) were evaluated to subsequently foresee the future
SM changes (ΔSMfuture) relative to the historical SM in each region.
Table 2 shows the results of annual SM changes under future climate
scenarios. The results indicate that the range of reduction of SM in con-
trast to the historical values will vary across most arid and semi-arid re-
gions, and the SouthWestwill experience the largest SMdecrease as the
evaporationwill likely increase and the relative humidity of air will con-
tinually decrease in this region resulting in intensified droughts (Wang
et al., 2014). Unlike the runoff pattern of the dry North, wetter condi-
tions in the South will be exacerbated in the future (Wang et al.,
2012); the SM will probably only increase in the humid region (South
East) and the arid region (North West) while other places, such as the
semi-arid region,will experience a decrease in the SMwhichwill induce
more agricultural drought events (Leng et al., 2015).
Table 2
Annual SM changes for the period 2020–2050.

Area ΔP ΔT ΔSMfuture

North East 5%–10% 2–3 °C −1.97% (±0.91%)
North West 5%–15% 2–3 °C −0.36% (±0.87%)
South East 10%–15% 1–2 °C 0.65% (±2.68%)
South West −10%–−5% 1–3 °C −5.95% (±2.04%)
North China −5%–0 1–2 °C −5.05% (±2.31%)
4. Discussions

4.1. SM response to P and T

This study identified the climate and the SM changes in China from
1960 to 2014 based on the VIC simulations. Recently, several studies
have assessed hydrological responses in the context of global climate
change by using in-situ measurements, RS data, and modeling
techniques.

As evidenced by groundweather stations in the arid region of North
West China, P indicated a significant increasing trend at a rate of
0.61 mm/year from 1960 to 2010 (Li et al., 2016a). In the southeastern
river basin, a warming-wetting tendency was observed from 1957 to
2013, while the central regions tended to be warmer and drier (Tian
et al., 2016). Over the same period, the mean warming rate in the Yel-
low, Yangtze, and Pearl River basins, which cover the majority China,
was 0.22 °C/decade (Tian and Yang, 2017). Overall, these trends are
highly consistent with our results. In addition, only a few studies have
reported the SM changes over a longer time period at regional and na-
tional scales.

Unlike previous studies, this study conducted model evaluations for
the SM using in-situ observations and RS data and identified the SM re-
sponse to climate change over the past 55 years. The results indicate
that the SM has experienced a period of decline during the past years
in North Central and North East China.

Climate change is one of the major challenges with regard to water
security in China (Piao et al., 2010). To have a better understanding of
changes ofwater budgets in the near future is benefit forwater resource
management. Several studies have focused on changes in runoff (Wang
et al., 2012), food security (Blum, 2013) and water demands (Jiang,
2015) in the future. However, the response of SM to climate change
has not been sufficiently discussed (Qiu et al., 2016), although SM is a
crucial factor in water and energy exchange and it controls the partition
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of P between runoff and infiltration. The hydrological sensitivity-based
approach is capable of projecting future SM changes under different cli-
mate change scenarios. Nakaegawa (2017) used a multi-model ensem-
ble analysis that showed significant increases in the SM in a NorthWest
inland area, and significant decreases were projected in southern and
northern China which are consistent with our future projections. Our
findings are also consistentwith the research of Tao et al. (2003) that in-
dicated water-related challenges in the coming decades in the northern
China plain and North East China due to the expected SM deficit.

4.2. Potential limitations

In this study, the VICmodel was utilized to estimate the SM changes.
Like several other studies (Haddeland et al., 2007; Wu et al., 2014), the
VIC model simulations only considered natural forcing, i.e., climate
change, rather than anthropogenic actives and land cover changes
such as afforestation practices, urbanization, and agricultural water
management. The changes in land use and land covermay be significant
as the population growth and climate change, which will bring influ-
ences on water and energy cycle. The impact of these activities on the
SM have been well illustrated in a few studies (Jia et al., 2017; Liu
et al., 2015; Qiu et al., 2016). One of the possible ways to reduce
model uncertainties is by coupling other processes (e.g., dynamic vege-
tation and agricultural irrigation) in the VIC model which could poten-
tially improve model performance for detecting hydrological systems
and the disturbance from human activities (Luo et al., 2013; Xie et al.,
2015).

The hydrological sensitivity-based approach adopted in our work is
a simple way that can approximate estimates of future SM changes.
This approach is advantageous because it is applicable at various scales
and, unlike the VICmodel, it does not needmodel parameter calibration
(Vano et al., 2012; Vano and Lettenmaier, 2013).Moreover, thismethod
is less time consuming than the full-simulation methods of conven-
tional hydrological models. However, this approach may have substan-
tial uncertainties in determining the effect of climate on the SM which
may arise from various sources such as emission scenarios (Maurer,
2007). The selection of various climate scenarios is also one of the un-
certainties for off-line modeling. Some other climate factors, such as
short and long wave radiation, humidity, and wind field, may also im-
pose effects on SM dynamics. Therefore, more factors related to the
SMdynamics should be included in the approach.Moreover, the perfor-
mance of this approach depends on the effectiveness of land surface
models (the VIC simulation in this study) and the future climate scenar-
ios. The land surface models may achieve different simulations due to
different physics process and structures. Therefore, uncertainty exists
in future SM estimation. It is necessary to compare those outputs in
the following studies to deepen the understanding about SM sensitivity
in response to P and T.

Piao et al. (2009b) indicated the amount of P in summer and the fre-
quency were important factors of climate change that can induce SM
changes. For example, the changes of P frequency could significantly af-
fect hydrological and carbon cycles. However, only the amount of P was
considered in this study which may not explain the SM dynamics
completely. This also raised the uncertainty of results to analyze SM
changes and sensitivity. Therefore, the amount and frequency of P, T
and other related factors (e.g., humid, irrigation) should be considered
in the sensitivity-based approach. Nevertheless, we provided a reliable
range, instead of a single value, for projection of the SM dynamics as a
response to climate change. Additionally, the results are consistent
with the estimates from other studies that were based on complex
land surface process models (Nakaegawa, 2017; Tao et al., 2003).

5. Conclusions

During the past decades, the SM in China has exhibited obvious
spatio-temporal changes in response to climate change. In this study,
the VICmodel was applied to simulate the SM in China and its sensitiv-
ities to two critical climate factors, i.e., P and T, were quantified. More-
over, a sensitivity-based approach that is simple but effective to
project future patterns of SM changes at the regional scale was pre-
sented. The conclusions from this study are as follows:

1. The VIC simulated SM was successfully evaluated using in-situ SM
observations and satellite RS product (ESA-CCI SM). The results indi-
cate that the simulations were capable of capturing the SM state in
different layers and its seasonal variations. Therefore, the VIC simula-
tions are suitable for projecting SM changes and conducting sensitiv-
ity analyses.

2. The temporal trend of SM showed obvious spatial heterogeneity as a
response to P and T during the past five decades. Despite the rising T
in China, SM continued increase at an average rate about 0.0065mm/
yr because of the increasing P (0.22 mm/yr). In particular, the SM in
NorthWest China increased to 0.047mm/yr corresponding to the in-
creasing P (0.94mm/yr). In contrast, the SM in SouthWest China has
significantly decreased at a rate of −0.20 mm/yr. Therefore, the SM
variation was primarily dominated by P as indicated by their strong
correlation in each region.

3. The ε and S for each region were formulated to quantify the strength
of the SM response to climate change in China andwere calculated to
be 0.25 (1% ΔP) and −3.21 (0.1 °C ΔT), respectively. The highest
values were indicated in South East China (characterized by humid
climate), indicating that the SM was most sensitive to P and T in
the humid region.

4. The simple sensitivity-based approach could provide SM estimates
consistent with the VIC simulations. Therefore, it is capable of
projecting the SM values. Considering the expected changes in P
and rise in the T from 2020 to 2050, SM is likely to decline signifi-
cantly in SouthWest China (−5.95%±2.04%), while a slight increase
may occur in the humid regions, i.e., South East China.

Uncertainties may exist in this study with respect to the SM re-
sponse to climate change and the sensitivity-based projection. The VIC
simulation did not consider the land use and land cover changes con-
tributed by the climate system and anthropogenic activities (Xie et al.,
2015). This study only quantified the impact of P amount rather the fre-
quency, which may lead to significant consequences for SM dynamics
(Piao et al., 2009a; Wu et al., 2012).

Moreover, the sensitivity-based approach only presented a regional
scale projection and its performance depended on the hydrological
model and climate scenarios. Our futurework is expected to couple veg-
etation dynamics and anthropogenic activity impacts (e.g., urbanization
and agricultural irrigation). The sensitivity-based approach should be
evaluated with a full-simulation approach which is driven by output
from GCMs.
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