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Abstract: The leaf area index (LAI) is a crucial structural parameter of forest canopies. Light Detection
and Ranging (LiDAR) provides an alternative to passive optical sensors in the estimation of LAI from
remotely sensed data. However, LiDAR-based LAI estimation typically relies on empirical models,
and such methods can only be applied when the field-based LAI data are available. Compared with
an empirical model, a physically-based model—e.g., the Beer–Lambert law based light extinction
model—is more attractive due to its independent dataset with training. However, two challenges are
encountered when applying the physically-based model to estimate LAI from discrete LiDAR data:
i.e., deriving the gap fraction and the extinction coefficient from the LiDAR data. We solved the first
problem by integrating LiDAR and hyperspectral data to transfer the LiDAR penetration ratio to
the forest gap fraction. For the second problem, the extinction coefficient was estimated from tiled
(1 km × 1 km) LiDAR data by nonlinearly optimizing the cost function of the angular LiDAR gap
fraction and simulated gap fraction from the Beer–Lambert law model. A validation against LAI-2000
measurements showed that the estimates were significantly correlated to the reference LAI with an
R2 of 0.66, a root mean square error (RMSE) of 0.60 and a relative RMSE of 0.15. We conclude that
forest LAI can be directly estimated by the nonlinear optimization method utilizing the Beer–Lambert
model and a spectrally corrected LiDAR penetration ratio. The significance of the proposed method
is that it can produce reliable remotely sensed forest LAI from discrete LiDAR and spectral data when
field-measured LAI are unavailable.

Keywords: leaf area index; Light Detection and Ranging (LiDAR); gap fraction; extinction coefficient;
spectral correction

1. Introduction

The vegetation leaf area index (LAI), defined as one half of the total leaf area per unit ground
surface area [1], is one of the important variables related to many ecological applications [2]. Remote
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sensing technology offers a cost-effective method for surveying LAI in a large coverage area of land.
Passive remote sensing data from sensors such as MODIS are routinely used to estimate vegetation LAI
for large areas [3]. Active Light Detection and Ranging (LiDAR) sensors are alternatives in estimating
forest LAI [4]. The most commonly used method to estimate LAI from LiDAR data is based on fitting
empirical models linking field-measured LAI to LiDAR-derived metrics. These metrics include cover
fractions [5,6], height [7] or height percentiles [8], and varied penetration metrics [9,10]. However,
in the above empirical methods, the field-measured LAI data are required as training data, and such
data sets are not always available.

Physically-based methods are attractive because they do not rely on empirical relations but
attempt to model the underlying physical processes, which can be extended across space and time.
Most physically-based methods that link LAI with LiDAR-measured variables rely on the light extinction
models, such as the Beer–Lambert Law [11,12], in which the vegetation gap fraction in a given direction
is proportional to the exponential function of canopy LAI and the light extinction coefficient.

The canopy gap fraction is defined as the amount of open area within a canopy in a certain viewing
angle [13]. A commonly used approach is to estimate the forest canopy gap fraction from the LiDAR
pulse penetration ratio, which typically describes the fraction of LiDAR pulses with returns from
ground level [14]. Although the percentage of ground returns is related to the canopy gap fraction,
it is not equivalent to the actual gap fraction, so numerous studies have linked different penetration
ratios with the gap fraction or gap fraction-like variables (e.g., cover fraction) using linear [15] or
nonlinear [16] regression methods. The difference between the penetration ratio and gap fraction also
hampers the use of physically-based models in the direct estimation of vegetation LAI at the regional
scale [17].

To fill the gap between the LiDAR-derived penetration ratio and canopy gap fraction,
Lefsky et al. [5] suggested that the penetration ratio could be adjusted as a function of spectral
properties of soil and vegetation. However, they did not provide a physically-based approach to
obtain a spectral calibration coefficient. Instead, they used an empirical constant. Ni-Meister et al. [18]
proposed a physically-based model for the simulation of waveform LiDAR data, and Tang et al. [4]
inverted this model to estimate the LAI in a tropical forest using waveform LiDAR data. In this model,
the LiDAR penetration ratio derived from accumulated power of returns from vegetation and ground
was corrected with a spectral coefficient. Armston et al. [17] and Chen et al. [19] further investigated
the sensitivity of the model while they retrieved the gap fraction from the waveform LiDAR data.
However, their methods were applied with waveform LiDAR data, which is not available as frequently
as discrete return data. There are no reports considering the application of their methods in the direct
estimation of LAI using discrete LiDAR data.

Another factor that prevents the LiDAR data from being directly used in the physically-based
estimation of LAI is the difficulty of estimating the extinction coefficient, which is defined as the
mean projection of the unit leaf area on the plane perpendicular to the direction of light beam [20,21].
For simplicity, the extinction coefficient is often assigned a value of 0.5 following an assumption of
a spherical leaf distribution and a near-vertical viewing angle [22]. In practice, spherical leaf angle
distribution is not always valid for all the tree species [23]. For example, Korhonen and Morsdorf [24]
suggested that the average value of 0.38 for a vertical viewing angle is suitable for the boreal forest.

The estimation of the extinction coefficient requires information about the leaf angle distribution,
which can be estimated by measuring the angular gap fractions. The difficulty of obtaining the angular
gap fraction has resulted in fewer studies considering the estimation extinction coefficient from airborne
LiDAR data. Zheng et al. [25] used overlapping airborne LiDAR flight lines to calculate the angular
gap fraction, and then derived the plot-level extinction coefficient and corresponding LAI. However,
most airborne LiDAR systems are designed for measuring surface elevation rather than vegetation
structure, so the range of the scan zenith angles observed in plot level is usually limited due to the
small area of the plot.
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The main overall objective of this work is to develop a physically-based method that is capable
of the direct estimation of LAI from airborne LiDAR data. The specific objective is to link discrete a
LiDAR penetration ratio with the canopy gap fraction with the help of the target spectral information,
and to derive the canopy extinction coefficient from angular gap fraction data. This is obtained by
using a Beer–Lambert law-based light extinction model. To calculate the forest gap fraction, we follow
the theory of Lefsky et al. [5] and Ni-Meister et al. [18], but extend their work from waveform to
discrete LiDAR data, and apply hyperspectral data to calculate the spectral reflectivity of vegetation
and background. To calculate the extinction coefficient, we use tiled (1 km × 1 km) LiDAR data,
where a larger range of scan zenith angles is available in the estimation of the angular distribution of
gap fractions. A nonlinear optimization method is then employed to construct a reliable estimate of
leaf angle distribution for the research area. Finally, we average the extinction coefficient from tiled
LiDAR data, and use it as input to a Beer–Lambert law-based model in the estimation of plot level LAI.

2. Materials

2.1. Study Area

The study area (34◦36′40”N, 81◦42′50”W) is located in the state of South Carolina, USA (Figure 1a,b)
and the field experiment was conducted in the Calhoun Experimental Forest over an area of 13 km
× 15 km [26] (Figure 1c). This investigation was conducted as part of the Calhoun Critical Zone
Observatory (CZO). The dominant tree species is Loblolly pine (Pinus taeda L.), and there is a varying
degree of hardwood species (e.g., Quercus). The mean tree height is 21.4 ± 6.4 m (mean ± standard
variance), and the mean basal area is 0.08 ± 0.07 m2 [27].

Figure 1. Location of the research area in the USA (a) and in South Carolina (b), and Light Detection
and Ranging (LiDAR) coverage overlaid by forest tree height (c), where white grids indicate that LiDAR
data are unavailable. The red dots in (c) are the leaf area index (LAI)-2000 sampling plots.

2.2. Datasets and Preprocessing

All the data in this study were downloaded from the Calhoun CZO program website (http:
//criticalzone.org). The dataset includes the field LAI of LAI-2000 measurement, airborne discrete
return LiDAR point cloud data and hyperspectral imagery.

http://criticalzone.org
http://criticalzone.org
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2.2.1. Field Measured Data

Field LAI data were collected in July–August 2014 using the LAI-2000 (LI-COR Inc., Lincoln,
NE) instrument. Six repeats with different directions were made for each plot. There were 35 LAI
plots deployed in the research area; however, four of them were out of the LiDAR data coverage area
(Figure 1c). Therefore, we reported the result on the 31 plots while conducting a comparison with the
LiDAR results.

In the field-collected LAI dataset, the LAI, mean tilt angle, and diffuse non-interceptance were
reported for every measurement. Though the gap fraction is one of the key variables in the raw
LAI-2000 output file, unfortunately, it is not included in the published dataset. Thus, we reproduced
the field gap fraction following the below steps.

Firstly, the field mean tilt angle was used to calculate the leaf angle distribution (LAD) parameter.
According to the generalized LAD ellipsoidal model [28], the leaf mean tilt angle can be calculated
using the following equation:

α = 9.65(3 + χ)−1.65, (1)

From the inverted form of the Equation (1), LAD parameter χ can be derived as

χ = exp(−
1

1.65
ln

α
9.65

) − 3, (2)

where χ is the LAD model parameter and is defined as the ratio of vertical to horizontal projections of
canopy elements, and α is the leaf mean tilt angle which is reported in the LAI-2000 output file.

Secondly, the extinction coefficient can be approximated as [21]

k(θ) =
[χ2 + tan2 θ]

1/2

1.47 + 0.45χ+ 0.1223χ2 − 0.013χ3 + 0.000509χ4
, (3)

where k(θ) is the extinction coefficient at the zenith angle θ.
Then, based on the light extinction model of the Beer–Lambert law, in the case of a random spatial

distribution of infinitely small leaves and assuming leaf random azimuth distribution, the gap fraction
can be related to the LAI and extinction coefficient using the Poisson Model [12],

Pgap(θ) = e−k(θ)LAI, (4)

where Pgap(θ) is the gap fraction at the scan zenith angle θ. Thus, the gap fraction value corresponding
to the measured LAI is reproduced. It should be noted that we use the concept of effective LAI here
without the consideration of clumping correction for the nonrandomized forest leaves [29], so the
clumping index is not included in the equation.

The statistics of measurements taken at individual sample points within a plot were taken as the
indicator of the spatial variance of the forest structure. At the plot level, we take the averaged LAI
and gap fraction from the sample point data within the plot as the reference data while evaluating the
LiDAR result.

2.2.2. LiDAR Data

The LiDAR survey was performed with an Optech Gemini Airborne Laser Terrain Mapper (ALTM)
which operated at a wavelength of 1064 nm. The LiDAR survey took place over 2 days, starting
on August 5 and finishing on 6 August 2014. The 3-D point cloud in LAS format (Version 1.2) was
classified as ground or non-ground in 1 km square tiles. Survey parameters for the LiDAR portion are
provided in Table 1. The LiDAR elevation data were normalized to the height above ground according
to the classification of ground and vegetation and the algorithm of Parkan [30].
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Table 1. LiDAR platform and sensor parameters.

Nominal Flight Parameters Equipment Settings

Flight altitude 500 m Laser PRF * 100 kHz
Flight speed ±65 m/s Beam Divergence 0.80 mrad
Swath width 268 m Scan frequency 60 Hz

Swath overlap ≥50% Mean scan angle ±16◦

Point density 10.7 p/m2 Scan cutoff 1.0◦

* PRF: pulse repetition frequency.

Two levels of LiDAR gap fractions were generated: plot and tile level. For the field plot level
(red square in Figure 2), to match the field LAI-2000 measurement, the LiDAR data were clipped as 40
× 40 m2 plots, where the centroids were the field plot locations. The size is larger than the field plot
diameter, which ensures that the LiDAR data encompasses the ground measurements considering the
geo-registration error. Figure 2 visualizes the difficulty of obtaining a sufficient range of angular gap
fractions for plot-level LiDAR data due to the limited spatial size of the plots. Thus, at the plot level,
only an averaged gap fraction was calculated. On the other hand, at the tile level, larger areas were
available, with more variation in the scan zenith angles. At the tile level, all points were grouped into
different sliced bins as a function of the scan zenith angle. Then, the points in each bin were used to
calculate the angular gap fraction at that specific angle. Here, the range of scan zenith angles within
each bin was set as 3 degrees.

Figure 2. Sketch plot for the calculation of the angular gap fraction from tile-level (1 × 1 km2) LiDAR
data. The bin size of the scan zenith angle was set as 3 degrees. The plots (40 × 40 m2) corresponding
to the field measurements are indicated as a red square.

2.2.3. Airborne Hyperspectral Data

We extracted the soil–vegetation reflectivity ratio from the airborne hyperspectral survey acquired
on 30 July 2014. The hyperspectral-imaging mission was acquired by the CASI 1500 (ITRES, Calgary,
Alberta, Canada) sensor, which was flown at an altitude of 2150 m above ground level. The central
wavelengths of the hyperspectral image bands ranged from 368 to 1041 nm, and the Full Width Half
Maximum (FWHM) of bands were approximately 7.2 nm. The spatial resolution was one meter.
The hyperspectral data were delivered as digital numbers (DN) that were directly used to identify the
soil and vegetation pixels and to calculate the spectral ratio of the targets [31].
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2.3. Methodology

2.3.1. Overview

The focus of this study is to analyze the LiDAR and hyperspectral data to extract the forest gap
fraction and extinction coefficient independently to ultimately estimate the LAI. Gap fractions are
obtained by utilizing a combination of the LiDAR penetration ratio and soil–vegetation reflectivity
ratio obtained from hyperspectral data. The forest extinction coefficient is obtained from tiled LiDAR
data through a nonlinear optimization procedure, which utilizes the large angular variation present
in tiled LiDAR data. The flowchart of the methodology is outlined in Figure 3 and is explained in
detail below.

Figure 3. Flowchart of the methodology.

2.3.2. Spectral Correction Coefficient

When the hyperspectral image is available, the calculation of the spectral ratio coefficient is
reduced to the extraction of the target optical properties in the given image. We begin this procedure
by classifying the image pixels as vegetation and soil. The classification is implemented by the
identification of soil and vegetation lines.

The soil and vegetation lines represent a linear relationship for bare soil and fully vegetated pixels,
respectively [32]. As indicated in Figure 4, in the two-dimensional space of the red and NIR band, the
soil or vegetation line can be characterized by slope and intercept parameters:

rnir = a× rred + b, (5)

where rnir and rred are the DN value red and near infrared bands, respectively, a is the slope of the soil
or vegetation line and b is the intercept of the soil or vegetation line. The automatic extraction method
estimates the soil and vegetation line parameters by deriving a set of maximum and minimum red
bands across the range of near-infrared band values [33].

Assuming that all the pixels located around the soil line or the vegetation line are pure pixels,
we can calculate the averaged digital number of soil and vegetation in the near-infrared band; i.e., DNgrd
and DNveg, respectively. Since we focus on the relative value of the soil and vegetation reflectance
rather than the absolute value, we take the ratio of DN value as the approximation to the ratio of
reflectance of soil and vegetation (rgrd, rveg); i.e.,

rnir = a× rred + b. (6)
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Figure 4. An example of the soil line and vegetation line. The origin and green points are the pixels
used to fit the soil and vegetation lines, and these points, together with all the pixels below the soil line
and above the vegetation line, are used to calculate the soil and vegetation reflectance ratio.

We use an iterative procedure for soil and vegetation line extraction in the two-dimensional
space of the red and near-infrared band [33]. The wavelength range of the hyperspectral image was
368–1041 nm. Here, we select the 24th band (697.9 nm) as the red band, and the 48th band (1041 nm) as
the NIR band. The wavelength of the NIR band differs from the LiDAR sensor that operates at 1064 nm,
but the difference in reflectance caused by the bias of the wavelength can be ignored, according to the
statistic on the reflectance data from the spectral library of SPECCHIO (Spectral Input/Output) [34].

2.3.3. Gap Fraction from Spectrally Corrected LiDAR Penetration Ratio

The foundation of calculating the gap fraction from the LiDAR penetration ratio is based on the
assumption that the number of returns is related to the gap fraction; i.e., a bigger forest gap results in
more returns from the ground and fewer returns from leaves, and vice versa [35]. The above concept
can be formulated as

Ngrd ∝ Pgap

Nveg ∝ 1− Pgap

}
, (7)

where Ngrd and Nveg are the return numbers of the ground and vegetation, respectively, and Pgap is the
gap fraction.

However, the above concept formulation neglects the spectral difference of the vegetation and
ground. We can imagine an extreme case where the ground reflectance is zero and will produce a Ngrd
value of zero; i.e., all the signals will be absorbed by ground surface even though they can penetrate to
pass leaves through canopy gap. Apparently, this result contradicts the concept of the equation.

To account for the target optical difference while calculating the LiDAR gap fraction, we revised
the above conceptual formulation equation as

Nveg ∝
(
1− Pgap

)
× ρveg

Ngrd ∝ Pgap × ρgrd

, (8)

where ρveg is the leaf volume backscattering coefficient, which is the function of the LAD, the phase
function of leaf scattering and the optical properties [18], and ρgrd is the backscattering coefficient of the
ground. It is worth pointing out that the number of returned points not only relates to the gap fraction
and the optical property of the target, but also to other parameters, such as the flight height [36] and
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the LiDAR sensor characteristics. However, the influence of these parameters can be neglected because
in a certain survey campaign they will be kept stable or less varied across different fly strips.

The above formulation can be further simplified as

Pgap =
Plidar

γ+ (1− γ)Plidar
, (9)

where Plidar is the penetration ratio, which can be directly derived from the return numbers of ground
and vegetation according to the following expression:

Plidar =
Ngrd

Nveg + Ngrd
, (10)

and γ is the spectral correction coefficient as the rate of the soil and vegetation backscattering coefficient;
i.e., γ = ρgrd/ρveg. The spectral correction coefficient can be estimated from hyperspectral images as

γ ≈ 1.5
rgrd

rveg
= 1.5R, (11)

with the assumption of Lambertian ground and randomly oriented Lambertian leaves [18–37], where R
is the ratio of target reflectance.

The equation provides an opportunity to combine the LiDAR and hyperspectral data in this
study. It should be noted that the equation is similar to the gap fraction calculation equation of
Ni-Meister et al. [18], except that we come to this equation using the discrete LiDAR return count
rather than the return power.

To calculate Ngrd and Nveg, a weight was calculated for each return as 1/n, where n is the number
of returns detected for the given pulse [38]:

Ngrd = 1g1 +
1
2 g2 +

1
3 g3 +

1
4 g4

Nveg = 1v1 +
1
2 v2 +

1
3 v3 +

1
4 v4

}
, (12)

where v1, v2, v3, v4 are the vegetation return numbers with 1, 2, 3, . . . n returns, and g1, g2, g3 are the
ground return numbers with 1, 2, 3, . . . n returns.

One special case can be inferred from the equation: when λ = 1, i.e., ρg = ρv, then Pgap = Plidar.
This deduction implies that the LiDAR penetration ratio can be taken as a gap fraction only when the
vegetation and soil have an identical back scatter coefficient [39].

2.3.4. LiDAR Extinction Coefficient

When the sensor scan zenith angle is known, the extinction coefficient is a function of the canopy
leaf angle distribution [21], which is mainly controlled by plant species [23]. With the assumption that
the forest in a certain area is comprised of a constant combination of tree species, the extinction coefficient
for this forest is relatively stable compared with the variation of LAI [35]. Thus, we hypothesize that
the forests in the research area share a stable but unknown leaf angle distribution but with varied LAI.
Therefore, from a statistic point of view, the extinction coefficient in the tile level is one of the samples
from the population of the whole research area, and so the averaged value of all the samples will be
the best estimation of the extinction coefficient in this research area.

When the forest multi-directional gap fraction is calculated from LiDAR and spectral data in the
equations, then the leaf area index and the parameter (χ) of the leaf angle distribution can be retrieved
through a nonlinear optimization of the equations, with y minimizing the following cost function

cost =
n∑

i=1

(Pgap(θi) − Pgap(θi)BLL)
2, (13)
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where θi is the scan zenith angle at the ith bin, as illuminated in Figure 2, and Pgap(θi) and Pgap(θi)BLL
are the gap fraction derived from LiDAR data and the Beer–Lambert law based model in the equation,
respectively.

To reduce the search space and improve the probability of finding the optimized solution,
we constrain the search space within the boundary [0.5, 2.5] for χ, which corresponds to a mean leaf
angle from 30 to 70 degrees, and this leaf angle range can cover most of naturally developed tree
types [38]. With a similar method, the boundary of LAI is defined as [0.5, 9.0], and this range covers
85% of the LAI data in the global LAI dataset [40].

The above procedure was implemented in Matlab R2017 (The Mathworks, Massachusetts, USA)
and the constrained nonlinear multivariable function with the sequential quadratic programming
algorithm was selected to find the minimum of cost function (Equation (13)). The initial values for χ
and LAI were set to the mid-points of the boundary constraints, i.e., 1.25 and 4.75 respectively, and we
found the result was insensitive to the selection of initial values.

After the LiDAR extinction coefficient is estimated at tiled level, then the mean tilt angles for all
the tiles can be calculated from the equation. The averaged leaf angle was taken as the result of the
mean tilt angle in the research area.

2.3.5. Plot Level LiDAR LAI

The plot-level LAI is estimated using the LiDAR data corresponding to the ground plot location
using the Equation (14):

LAI = −
1

k(θ)
ln Pgap(θ), (14)

where Pgap(θ) is calculated using the Equation (9), and θ is the averaged scan zenith angle in the
plot level LiDAR data. The extinction coefficient is calculated using the mean value of the leaf angle
distribution parameter χ which is derived from nonlinear optimization.

2.4. Evaluation

We calculate the root mean square error (RMSE) and relative RMSE (RRMSE) as a measure of the
differences between values estimated by the Beer–Lambert law and the values actually observed by
LAI-2000:

RMSE =

√√
1
n

n∑
i=1

(ŷi − yi)
2, (15)

RRMSE =
RMSE

y
, (16)

where n is number of data points, ŷi and yi are the estimated and ground-measured LAI, respectively,
and y is the mean value of reference LAI.

We also studied the correlations between errors from the fitted model using simple linear models.
We calculate the R2 as a statistical measure of how close the LiDAR-estimated LAIs are to the fitted
line regression.

3. Results

3.1. Statistical Features of Field Measurement

Among all the field point measurements, there were six outliers that had invalid mean tilt angle,
so we did not include those points in the statistical results. As a result, there were 204 field LAI values
available. The shape of the LAI histogram (Figure 5a) approximates to a normal distribution but with
slight positive skewness of the mean value of 3.45, indicating that the forests in the research area are in
the near-normal natural growing status, and there is no extreme external disturbance.
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Figure 5. Distribution of the leaf area index (a), mean tilt angle (b) from LAI-2000 measurement.
The extinction coefficient at zenith angle = 0◦ is plotted in panel (c).

The mean tilt angle and the vertical extinction coefficient share common features that are
concentrated to the mean values (Figure 5b,c). These indicate that, for naturally growing trees, there is
a predominant leaf angle distribution, and this feature results in a more concentrated distribution
of extinction coefficient due to the nonlinear relationship between the mean tilt angle and leaf angle
distribution. This finding is also demonstrated by the decreasing coefficient of variation (CV) of the
LAI, mean tilt angle and extinction coefficient from 0.27 to 0.18 and 0.16. The result of the field LAI
and mean tilt angle supports our assumption that there is stable leaf angle distribution with a less
varied extinction coefficient and much more varied LAI in the study area.

3.2. Spectral Ratio of Soil and Vegetation

The pixels of hyperspectral data corresponding to the field plots were extracted and the soil and
vegetation lines were identified on hyperspectral images. The calculation of the spectral ratio of soil
and vegetation (rgrd/rveg) is illustrated in Figure 6. The value of rgrd/rveg lies in a narrow range from
0.35 to 0.68, but the highest probability occurs at 0.53 (Figure 6a). The 25th and 75th percentiles are 0.50
and 0.63, respectively (Figure 6b). We calculated the mean value of the spectral ratio as 0.55.

Figure 6. Spectral ratio of soil and vegetation (rgrd/rveg) indicated as (a) histogram and (b) boxplot.

3.3. LiDAR Gap Fraction

The nearly uniform LiDAR scan zenith angles lie in the range from -20 to 24◦ (Figure 7a), but the
frequency of the bins in the larger zenith angles was lower than the frequency of the bins in the smaller
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zenith angles. The total number of points in the zenith angles larger than 16 degrees is approximately
one-quarter of all the points.

Figure 7. Statistics for the LiDAR scan angle (a) and the negative logarithm of all gap fractions at
different scan zenith angles (b).

The gap fraction is nonlinear to the forest LAI, so we calculated the statistic for the negative
logarithm of the gap fraction (–lnPgap) as the proxy variable to indicate the distribution of the forest
LAI. As shown in Figure 7b, the histogram shape of –lnPgap is normally distributed with a mean of 1.55
and a CV of 0.29. The similar CVs of –lnPgap and field LAI (0.27 in Figure 5a) suggest that the data
measured by LiDAR has an ability to describe the variance of forest LAI on a regional scale.

3.4. Tile-Level LiDAR Extinction Coefficient and LAI

The histogram of the LiDAR extinction coefficient in Figure 8a suggests that, in most cases,
the LiDAR extinction coefficients fall into the range of field measured values, but have a slightly lower
mean compared with the result in Figure 5c. The estimated LAI shows a normal distribution with a
mean value of 3.36 and a CV of 0.32 (Figure 8b). A t-test demonstrated that there was no significant
difference in mean LAI estimates using LiDAR (3.36, σ = 1.08) and LAI-2000 (3.45, σ = 0.94).

Figure 8. Statistics for the retrieved extinction coefficient (a) and leaf area index (b).

3.5. Plot-Level LiDAR LAI and Gap Fraction

The statistical results on the input parameters of calculating the plot-level LAI are shown in Table 2
and the plot-level LAI is shown in Figure 9.
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Table 2. LiDAR gap fraction and scan angle to derive the plot-level LiDAR LAI.

Parameter Mean Min. Max. Std. Median

Gap Fraction 0.21 0.10 0.45 0.092 0.17
Scan Zenith Angle 7.92 4.34 10.29 1.43 8.22

Figure 9. Comparison of estimated result with the field LAI. (a) Scatter and (b) Q–Q plot.

At the plot level, the scan zenith angle of LiDAR data is limited to a small dynamic range, as shown
in Table 2, which means that, at the plot level, it is difficult to invert the physical model to derive the
plot-wise extinction coefficient. This is the main reason we inverted the model at the tile level and
used the mean extinction coefficient obtained from tile-level LiDAR data.

We compared the plot-level LiDAR LAI with the field measurement in Figure 9. The scatter plot
(Figure 9a) shows that there is a significant positive correlation between LiDAR and ground results
with a coefficient of determination (R2) of 0.66 and an RMSE of 0.60.

In this study, the regression line displays good adherence to the 1:1 line, which indicates that there
is no apparent bias between the LiDAR-based LAI and the field LAI, and it can also be manifested by
the Q–Q plot in Figure 9b. A Q–Q plot is a probability plot, and if the two distributions are similar,
the points will lie on or near the line y = x. As suggested by the Q–Q plot, we can conclude that the
LAI datasets have similar distributions.

4. Discussion

4.1. Performance of LiDAR LAI Estimation

In this study, we proposed a simple but valid method to estimate forest LAI from airborne discrete
return LiDAR data. As described in the introduction, the estimation of LAI from LiDAR data can be
based on empirical and physical methods. In the same research area, Majasalmi et al. [41] estimated
LAI using an empirical method and the same dataset as in our work. They used the LiDAR penetration
ratio without spectral correction, which was calculated using the method of Korhonen et al. [15] and
Solberg et al. [42]. Their result showed that the empirical method produced LiDAR LAI estimates with
a lower coefficient of determination of 0.56.

In our study, we explored the application of a physically-based method. For comparison purposes,
we collected previously published results estimated by a physically-based method using discrete or
waveform LiDAR data in other research areas and then compared the published work with our results
(Table 3). Though there may be incompatible factors that will influence the algorithm, the comparison
shown in Table 3 provides an overview of the performance of different algorithms.
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Table 3. Performance of LiDAR-derived LAI of different physically-based methods*. RMSE: root mean square error; RRMSE: relative RMSE.

# Forest Type a Min. LAI Max. LAI R2 RMSE RRMSE N b Sensor
Platform c Citation

1 BLF 0.10 9.60 0.5/0.63 d 1.79/1.36 d 0.45/0.34 546/185 d Waveform ALS Tang et al. [4] Figure 3
2 CLF 2.23 4.61 0.53 0.67 0.19 15 Waveform ALS Ma et al. [43] Figure 9
3 CLF 0.89 4.90 0.66–0.73 e 0.72–2.20 e 0.20–0.68 e 24 Waveform ALS Ma et al. [44] Figure 11
4 MLF 1.17 6.48 0.72 1.16 0.44 18 Discrete ALS Zheng et al. [25] Figure 6
5 CLF 0.27 8.77 0.62 1.59 0.42 30 Discrete TLS Ma et al. [45] Figure 12
6 BLF 1.30 1.90 0.64 1.20 0.76 8 Discrete TLS Hopkinson et al. [46] Figure 3
7 CLF 1.71 5.23 0.66 0.60 0.15 31 Discrete ALS This study

* The data were digitized and recompiled from the figures of the cited work, and there might be a slight bias to the original results. a: BLF: broad leaf forest, CLF: conifer leaf forest, MLF:
mixed leaf forest. b: The number of ground data points used for validation. c: ALS: Airborne Laser Scanning (ALS), TLS: Terrestrial Laser Scanning. d: The performance depends on the
ground data selection according to the distance with LiDAR location. e: The performance depends on the method of forest height retrieval.
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Among all the collected datasets, the LAI range in this study can represent the common situation in
a natural forest, except for the two cases that have an apparently larger maximum LAI (9.60 in recorder
1# and 8.77 in recorder 5#). As shown in Table 3, our results have a relatively high determination
coefficient R2 of 0.66 and the highest accuracy, with a lower RMSE of 0.60 and the lowest RRMSE
of 0.15.

4.2. Impact of Target Optical Property on LiDAR-Derived LAI

The variable describing the spectral properties of our method is the ratio of the vegetation and
soil reflectivity ρg/ρv. This parameter directly determines the gap fraction in the equation and further
influences LAI. For a randomly oriented leaf canopy, the ratio is a function of leaf reflectance and
soil albedo, as indicated in the Equation (9) [37]. In the context where there is no prior knowledge
of soil and leaf reflectance measurements, Ni-Meister et al. [37] suggested that a unity value should
be used for ρg/ρv. Results from Armston et al. [17] showed that the stability of ρg/ρv depends on the
footprint size of the LiDAR sensor and flight altitude. Chen et al. [19] reached a similar conclusion,
but their investigation on the aggregated 5 m footprint size showed that there is a relatively stable
value of ρg/ρv.

For the natural forest, on the fine scale, there may be a varied backscatter spectral property of
forest and background. However, in a specific research area and in the short flight duration time, it is
hypothesized that there is high probability that the spectral property retains stability and results in a
fixed ρg/ρv value. The statistical results support our assumption that there is a relatively stable ρg/ρv

value (Figure 6).

4.3. On the Constraints on Nonlinear Optimization

We set the prior knowledge with the bounds to constrain the target parameters (χ and LAI) for the
nonlinear optimization. A priori knowledge is useful when noise and poor angular sampling reduce
the accuracy of model inversion given a limited number of observations [47]. Prior knowledge may
be difficult to obtain for the specific research area. Fortunately, the retrieved result is still reasonable
even with a wider range of prior knowledge. This implies that, in the context where there is no exact
information on the target parameters, a relaxed constraint can produce acceptable results. In this study,
we provide loosely constrained knowledge. From the point of view of information accumulation [47],
a long-term field experiment and remote sensing observations may provide a useful source of the prior
knowledge. There are large volumes of datasets available, such as the historical leaf angle distribution
recorder [38], global leaf area index data from the field [40], the library of forest structure [48] and
the recently reported canopy structure in Finland [49]. All the above observation data can be used to
narrow the boundary of the knowledge and thus improve the probability of reaching an optimized
solution for the targeted parameters.

5. Conclusions

Our research is one of the few attempts to derive LAI using discrete LiDAR data based on a
physically-based model rather than empirical methods. This study has shown that forest LAI can be
directly estimated from discrete LiDAR data using the spectral corrected LiDAR penetration ratio and a
Beer–Lambert law-based physical model. The contribution of this work can be summarized as follows:

(1) It is feasible to retrieve forest LAI from discrete LiDAR data without field data when the forest
gap fraction and extinction coefficient can be appropriately calculated.

(2) Angular gap fractions can be obtained from large tiles of LiDAR data, which usually have a much
larger range of scan zenith angles than plot-level data.

(3) For tiled data, the inversion of the Beer–Lambert law-based model provides a feasible method to
retrieve tile-level LAI and extinction coefficients.
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(4) Statistics for the tile-level extinction coefficient are valid for the plot-level LiDAR to estimate LAI
corresponding to field measurements.

The proposed method is independent of the reference data; i.e., the method does not need a
field-based training dataset of the LAI or gap fraction. This feature makes it feasible to be developed
into an automatic method, which may be a promising solution to produce forest LAI from historical,
archived discrete LiDAR datasets, because there was scarce forest LAI measurement when LiDAR
data were sensed in the early period of discrete LiDAR development. For example, the Sustainable
Landscapes Project has documented a huge volume of discrete LiDAR data over 10 years in the
Americas [50]; however, only few ground LAI data are available. We believe that, with the help of the
direct estimation of forest LAI, the historic remotely sensed LiDAR data will play an import role in
supporting forest sustainable development.

Author Contributions: Conceptualization, Y.Q. and A.S.; Methodology, Y.Q.; Software, K.J.; Writing—original
draft preparation, Y.Q.; Writing—review and editing, L.K. and C.A.S.; visualization, L.T. and J.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grand number
41671333/41531174.

Acknowledgments: The dataset of LiDAR and forest LAI data were acquired with support from NCALM
(National Center for Airborne Laser Mapping).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429.
[CrossRef]

2. Myneni, R.B.; Yang, W.; Nemani, R.R.; Huete, A.R.; Dickinson, R.E.; Knyazikhin, Y.; Didan, K.; Fu, R.; Negron
Juarez, R.I.; Saatchi, S.S.; et al. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl. Acad.
Sci. USA 2007, 104, 4820–4823. [CrossRef] [PubMed]

3. Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.;
Smith, G.R. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data.
Remote Sens. Environ. 2002, 83, 214–231. [CrossRef]

4. Tang, H.; Dubayah, R.; Swatantran, A.; Hofton, M.; Sheldon, S.; Clark, D.B.; Blair, B. Retrieval of vertical LAI
profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sens. Environ. 2012,
124, 242–250. [CrossRef]

5. Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G.; Spies, T.A.; Harding, D. Lidar Remote Sensing of the
Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sens. Environ.
1999, 70, 339–361. [CrossRef]

6. Riaño, D.; Valladares, F.; Condés, S.; Chuvieco, E. Estimation of leaf area index and covered ground from
airborne laser scanner (Lidar) in two contrasting forests. Agric. For. Meteorol. 2004, 124, 269–275. [CrossRef]

7. Farid, A.; Goodrich, D.C.; Bryant, R.; Sorooshian, S. Using airborne lidar to predict Leaf Area Index in
cottonwood trees and refine riparian water-use estimates. J. Arid Environ. 2008, 72, 1–15. [CrossRef]

8. Qu, Y.; Shaker, A.; Silva, C.; Klauberg, C.; Pinagé, E. Remote Sensing of Leaf Area Index from LiDAR Height
Percentile Metrics and Comparison with MODIS Product in a Selectively Logged Tropical Forest Area in
Eastern Amazonia. Remote Sens. 2018, 10, 970. [CrossRef]

9. Alonzo, M.; Bookhagen, B.; McFadden, J.P.; Sun, A.; Roberts, D.A. Mapping urban forest leaf area index with
airborne lidar using penetration metrics and allometry. Remote Sens. Environ. 2015, 162, 141–153. [CrossRef]

10. Sasaki, T.; Imanishi, J.; Ioki, K.; Song, Y.; Morimoto, Y. Estimation of leaf area index and gap fraction in
two broad-leaved forests by using small-footprint airborne LiDAR. Landsc. Ecol. Eng. 2016, 12, 117–127.
[CrossRef]

11. Hopkinson, C.; Chasmer, L.E. Modelling canopy gap fraction from lidar intensity. In Proceedings of the
ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; ISPRS:
Espoo, Finland, 2007; pp. 190–194.

http://dx.doi.org/10.1111/j.1365-3040.1992.tb00992.x
http://dx.doi.org/10.1073/pnas.0611338104
http://www.ncbi.nlm.nih.gov/pubmed/17360360
http://dx.doi.org/10.1016/S0034-4257(02)00074-3
http://dx.doi.org/10.1016/j.rse.2012.05.005
http://dx.doi.org/10.1016/S0034-4257(99)00052-8
http://dx.doi.org/10.1016/j.agrformet.2004.02.005
http://dx.doi.org/10.1016/j.jaridenv.2007.04.010
http://dx.doi.org/10.3390/rs10060970
http://dx.doi.org/10.1016/j.rse.2015.02.025
http://dx.doi.org/10.1007/s11355-013-0222-y


Remote Sens. 2020, 12, 217 16 of 17

12. Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38.
[CrossRef]

13. Frank, T.D.; Tweddale, S.A.; Lenschow, S.J. Non-destructive estimation of canopy gap fractions and shrub
canopy volume of dominant shrub species in the Mojave desert. J. Terramech. 2005, 42, 231–244. [CrossRef]

14. Solberg, S. Mapping gap fraction, LAI and defoliation using various ALS penetration variables. Int. J.
Remote Sens. 2010, 31, 1227–1244. [CrossRef]

15. Korhonen, L.; Korpela, I.; Heiskanen, J.; Maltamo, M. Airborne discrete-return LIDAR data in the estimation
of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens. Environ. 2011, 115,
1065–1080. [CrossRef]

16. Heiskanen, J.; Korhonen, L.; Hietanen, J.; Pellikka, P.K.E. Use of airborne lidar for estimating canopy gap
fraction and leaf area index of tropical montane forests. Int. J. Remote Sens. 2015, 36, 2569–2583. [CrossRef]

17. Armston, J.; Disney, M.; Lewis, P.; Scarth, P.; Phinn, S.; Lucas, R.; Bunting, P.; Goodwin, N. Direct retrieval of
canopy gap probability using airborne waveform lidar. Remote Sens. Environ. 2013, 134, 24–38. [CrossRef]

18. Ni-Meister, W.; Jupp, D.L.B.; Dubayah, R. Modeling lidar waveforms in heterogeneous and discrete canopies.
IEEE Trans. Geosci. Remote Sens. 2001, 39, 1943–1958. [CrossRef]

19. Chen, X.T.; Disney, M.I.; Lewis, P.; Armston, J.; Han, J.T.; Li, J.C. Sensitivity of direct canopy gap fraction
retrieval from airborne waveform lidar to topography and survey characteristics. Remote Sens. Environ. 2014,
143, 15–25. [CrossRef]

20. Wang, W.M.; Li, Z.L.; Su, H.B. Comparison of leaf angle distribution functions: Effects on extinction coefficient
and fraction of sunlit foliage. Agric. For. Meteorol. 2007, 143, 106–122. [CrossRef]

21. Campbell, G.S. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination
angle distribution. Agric. For. Meteorol. 1986, 317–321. [CrossRef]

22. Martens, S.N.; Ustin, S.L.; Rousseau, R.A. Estimation of tree canopy leaf area index by gap fraction analysis.
For. Ecol. Manag. 1993, 61, 91–108. [CrossRef]

23. Pisek, J.; Sonnentag, O.; Richardson, A.D.; Mõttus, M. Is the spherical leaf inclination angle distribution a
valid assumption for temperate and boreal broadleaf tree species? Agric. For. Meteorol. 2013, 169, 186–194.
[CrossRef]

24. Korhonen, L.; Morsdorf, F. Estimation of canopy cover, gap fraction and leaf area index with airborne laser
scanning. In Forestry Applications of Airborne Laser Scanning- Concepts and Case Studies. Managing Forest
Ecosystems 27; Maltamo, M., Næsset, E., Vauhkonen, J., Eds.; Springer Science + Business Media: Dordrecht,
The Netherlands, 2014; p. 464.

25. Zheng, G.; Ma, L.; Eitel, J.U.H.; He, W.; Magney, T.S.; Moskal, L.M.; Li, M. Retrieving Directional Gap
Fraction, Extinction Coefficient, and Effective Leaf Area Index by Incorporating Scan Angle Information
From Discrete Aerial Lidar Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 577–590. [CrossRef]

26. Coughlan, M.R.; Nelson, D.R.; Lonneman, M.; Block, A.E. Historical Land Use Dynamics in the Highly
Degraded Landscape of the Calhoun Critical Zone Observatory. Land 2017, 6, 32. [CrossRef]

27. Cook, C.W.; Brecheisen, Z.; Richter, D.D. CZO Dataset: Calhoun CZO—Vegetation (2014–2017)—Tree Survey.
Available online: http://criticalzone.org/calhoun/data/dataset/4614/ (accessed on 6 January 2020).

28. Campbell, G.S. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions.
Agric. For. Meteorol. 1990, 49, 173–176. [CrossRef]

29. Chen, J.M.; Plummer, P.S.; Rich, M.; Gower, S.T.; Norman, J.M. Leaf area index of boreal forests: Theory,
techniques, and measurements. J. Geophys. Res. 1997, 102, 29429–29443. [CrossRef]

30. Parkan, M. Digital Forestry Toolbox for Matlab/Octave. 2018. Available online: http://mparkan.github.io/

Digital-Forestry-Toolbox (accessed on 6 January 2020). [CrossRef]
31. Fox, G.A.; Sabbagh, G.J.; Searcy, S.W.; Yang, C. An Automated Soil Line Identification Routine for Remotely

Sensed Images. Soil Sci. Soc. Am. J. 2004, 68, 1326–1331. [CrossRef]
32. Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible

spectral space: A concept and technique for remote estimation of vegetation fraction. Int. J. Remote Sens.
2002, 23, 2537–2562. [CrossRef]

33. Jia, K.; Li, Y.; Liang, S.; Wei, X.; Mu, X.; Yao, Y. Fractional vegetation cover estimation based on soil and
vegetation lines in a corn-dominated area. Geocarto Int. 2017, 32, 531–540. [CrossRef]

34. Bojinski, S.; Schaepman, M.; Schläpfer, D.; Itten, K. SPECCHIO: A spectrum database for remote sensing
applications. Comput. Geosci.-Uk 2003, 29, 27–38. [CrossRef]

http://dx.doi.org/10.1016/0002-1571(71)90092-6
http://dx.doi.org/10.1016/j.jterra.2004.10.013
http://dx.doi.org/10.1080/01431160903380672
http://dx.doi.org/10.1016/j.rse.2010.12.011
http://dx.doi.org/10.1080/01431161.2015.1041177
http://dx.doi.org/10.1016/j.rse.2013.02.021
http://dx.doi.org/10.1109/36.951085
http://dx.doi.org/10.1016/j.rse.2013.12.010
http://dx.doi.org/10.1016/j.agrformet.2006.12.003
http://dx.doi.org/10.1016/0168-1923(86)90010-9
http://dx.doi.org/10.1016/0378-1127(93)90192-P
http://dx.doi.org/10.1016/j.agrformet.2012.10.011
http://dx.doi.org/10.1109/TGRS.2016.2611651
http://dx.doi.org/10.3390/land6020032
http://criticalzone.org/calhoun/data/dataset/4614/
http://dx.doi.org/10.1016/0168-1923(90)90030-A
http://dx.doi.org/10.1029/97JD01107
http://mparkan.github.io/Digital-Forestry-Toolbox
http://mparkan.github.io/Digital-Forestry-Toolbox
http://dx.doi.org/10.5281/zenodo.1213013
http://dx.doi.org/10.2136/sssaj2004.1326
http://dx.doi.org/10.1080/01431160110107806
http://dx.doi.org/10.1080/10106049.2016.1161075
http://dx.doi.org/10.1016/S0098-3004(02)00107-3


Remote Sens. 2020, 12, 217 17 of 17

35. Solberg, S.; Næsset, E.; Hanssen, K.H.; Christiansen, E. Mapping defoliation during a severe insect attack on
Scots pine using airborne laser scanning. Remote Sens. Environ. 2006, 102, 364–376. [CrossRef]

36. Hovi, A. Towards an enhanced understanding of airborne LiDAR measurements of forest vegetation.
University of Helsinki. Diss. For. 2015. [CrossRef]

37. Ni-Meister, W.; Yang, W.; Lee, S.; Strahler, A.H.; Zhao, F. Validating modeled lidar waveforms in forest
canopies with airborne laser scanning data. Remote Sens. Environ. 2018, 204, 229–243. [CrossRef]

38. Fleck, S.; Raspe, S.; Cater, M.; Schleppi, P.; Ukonmaanaho, L.; Greve, M.; Hertel, C.; Weis, W.; Rumpf, S.;
Thimonier, A.; et al. Part XVII: Leaf Area Measurements. Available online: http://www.icp-forests.org/pdf/
manual/2016/ICP_Manual_2016_01_part17.pdf (accessed on 6 January 2020).

39. Hu, R.; Yan, G.; Nerry, F.; Liu, Y.; Jiang, Y.; Wang, S.; Chen, Y.; Mu, X.; Zhang, W.; Xie, D. Using Airborne
Laser Scanner and Path Length Distribution Model to Quantify Clumping Effect and Estimate Leaf Area
Index. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3196–3209. [CrossRef]

40. Scurlock, J.M.O.; Asner, G.P.; Gower, S.T. Global Leaf Area Index Data from Field Measurements, 1932–2000; Oak
Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2001; Available online:
https://daac.ornl.gov/ (accessed on 6 January 2020).

41. Majasalmi, T.; Palmroth, S.; Cook, W.; Brecheisen, Z.; Richter, D. Estimation of LAI, fPAR and AGB based on
data from Landsat 8 and LiDAR at the Calhoun CZO. In Proceedings of the Calhoun CZO 2015 Summer
Science Meeting, Union County, NC, USA, 29–30 June 2015; Calhoun Experimental Forest: Union County,
NC, USA, 2015.

42. Solberg, S.; Brunner, A.; Hanssen, K.H.; Lange, H.; Næsset, E.; Rautiainen, M.; Stenberg, P. Mapping LAI in a
Norway spruce forest using airborne laser scanning. Remote Sens. Environ. 2009, 113, 2317–2327. [CrossRef]

43. Ma, H.; Song, J.; Wang, J. Forest Canopy LAI and Vertical FAVD Profile Inversion from Airborne Full-Waveform
LiDAR Data Based on a Radiative Transfer Model. Remote Sens. 2015, 7, 1897–1914. [CrossRef]

44. Ma, H.; Song, J.; Wang, J.; Xiao, Z.; Fu, Z. Improvement of spatially continuous forest LAI retrieval by
integration of discrete airborne LiDAR and remote sensing multi-angle optical data. Agric. For. Meteorol.
2014, 189, 60–70. [CrossRef]

45. Ma, L.; Zheng, G.; Wang, X.; Li, S.; Lin, Y.; Ju, W. Retrieving forest canopy clumping index using terrestrial
laser scanning data. Remote Sens. Environ. 2018, 210, 452–472. [CrossRef]

46. Hopkinson, C.; Lovell, J.; Chasmer, L.; Jupp, D.; Kljun, N.; van Gorsel, E. Integrating terrestrial and airborne
lidar to calibrate a 3D canopy model of effective leaf area index. Remote Sens. Environ. 2013, 136, 301–314.
[CrossRef]

47. Li, X.; Gao, F.; Wang, J.; Strahler, A. A priori knowledge accumulation and its application to linear BRDF
model inversion. J. Geophys. Res. 2001, 106, 11925–11935. [CrossRef]

48. Teske, M.E.; Thistle, H.W. A library of forest canopy structure for use in interception modeling.
For. Ecol. Manag. 2004, 198, 341–350. [CrossRef]

49. Rautiainen, M.; Stenberg, P. On the angular dependency of canopy gap fractions in pine, spruce and birch
stands. Agric. For. Meteorol. 2015, 206, 1–3. [CrossRef]

50. Embrapa. Web System Offers LiDAR Data on Brazilian Biomes. Available online: https://www.embrapa.br/
en/busca-de-noticias/-/noticia/15706279/web-system-offers-lidar-data-on-brazilian-biomes (accessed on 12
July 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2006.03.001
http://dx.doi.org/10.14214/df.200
http://dx.doi.org/10.1016/j.rse.2017.10.028
http://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part17.pdf
http://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2016_01_part17.pdf
http://dx.doi.org/10.1109/TGRS.2018.2794504
https://daac.ornl.gov/
http://dx.doi.org/10.1016/j.rse.2009.06.010
http://dx.doi.org/10.3390/rs70201897
http://dx.doi.org/10.1016/j.agrformet.2014.01.009
http://dx.doi.org/10.1016/j.rse.2018.03.034
http://dx.doi.org/10.1016/j.rse.2013.05.012
http://dx.doi.org/10.1029/2000JD900639
http://dx.doi.org/10.1016/j.foreco.2004.05.031
http://dx.doi.org/10.1016/j.agrformet.2015.02.018
https://www.embrapa.br/en/busca-de-noticias/-/noticia/15706279/web-system-offers-lidar-data-on-brazilian-biomes
https://www.embrapa.br/en/busca-de-noticias/-/noticia/15706279/web-system-offers-lidar-data-on-brazilian-biomes
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials 
	Study Area 
	Datasets and Preprocessing 
	Field Measured Data 
	LiDAR Data 
	Airborne Hyperspectral Data 

	Methodology 
	Overview 
	Spectral Correction Coefficient 
	Gap Fraction from Spectrally Corrected LiDAR Penetration Ratio 
	LiDAR Extinction Coefficient 
	Plot Level LiDAR LAI 

	Evaluation 

	Results 
	Statistical Features of Field Measurement 
	Spectral Ratio of Soil and Vegetation 
	LiDAR Gap Fraction 
	Tile-Level LiDAR Extinction Coefficient and LAI 
	Plot-Level LiDAR LAI and Gap Fraction 

	Discussion 
	Performance of LiDAR LAI Estimation 
	Impact of Target Optical Property on LiDAR-Derived LAI 
	On the Constraints on Nonlinear Optimization 

	Conclusions 
	References

