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ABSTRACT
A fractional vegetation cover (FVC) estimation method incorporating a
vegetation growth model and a radiative transfer model was previously
developed, which was suitable for FVC estimation in homogeneous
areas because the finer-resolution pixels corresponding to one coarse-
resolution FVC pixel were all assumed to have the same vegetation
growth model. However, this assumption does not hold over
heterogeneous areas, meaning that the method cannot be applied to
large regions. Therefore, this study proposes a finer spatial resolution
FVC estimation method applicable to heterogeneous areas using
Landsat 8 Operational Land Imager reflectance data and Global LAnd
Surface Satellite (GLASS) FVC product. The FVC product was first
decomposed according to the normalized difference vegetation index
from the Landsat 8 OLI data. Then, independent dynamic vegetation
models were built for each finer-resolution pixel. Finally, the dynamic
vegetation model and a radiative transfer model were combined to
estimate FVC at the Landsat 8 scale. Validation results indicated that the
proposed method (R2 = 0.7757, RMSE = 0.0881) performed better than
either the previous method (R2 = 0.7038, RMSE = 0.1125) or a commonly
used method involving look-up table inversions of the PROSAIL model
(R2 = 0.7457, RMSE = 0.1249).
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1. Introduction

Fractional vegetation cover (FVC), defined as the fraction of green vegetation in the nadir view, is an
important indicator for the assessment and characterization of land surface vegetation conditions
(Gitelson et al. 2002; Baret et al. 2013; Camacho et al. 2013). Many fields of research require accurate
FVC estimates, because FVC serves as a key parameter in many land surface processes and meteor-
ological models (Hirano, Yasuoka, and Ichinose 2004; Ghulam et al. 2007; Colaizzi et al. 2012). These
research areas include drought monitoring, agricultural monitoring, soil erosion assessment, climate
change, and the Earth’s energy balance. Therefore, the development of a high-quality land surface
FVC estimation method at the regional and global scales is essential.
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Remote sensing is the only effective means of generating FVC products at the regional and global
scales. Three typical FVC estimation methods using remote-sensing data have been developed and
are commonly used, including empirical methods, the pixel un-mixing model, and physical methods.
The core of empirical methods is to construct the statistical relationships between FVC and remote
sensing data, which include the reflectance of spectral bands and vegetation indices (Carlson and
Ripley 1997). For example, a regression model is built using known FVC and paired vegetation
index as training data, and then it could be used to estimate FVC based on vegetation index of
each pixel (Xiao and Moody 2005). The empirical methods are simple to use, computational efficient
and suitable for use in regional scale. However, they have limitations that the statistical relationships
are established with training data acquired at specific times and regions, thus are not suitable for
transferring to other regions. The pixel un-mixing model is based on the assumption that the photon
multiple scattering between the macroscopic materials is relatively inadequate, and the sum of fluxes
from the cover types, makes up the fluxes received by the sensor (Jimenez-Munoz et al. 2009; John-
son, Tateishi, and Kobayashi 2012). The proportion of vegetation cover is considered as FVC. How-
ever, the endmembers are difficult to determine and extract over large areas because of the
complexity of land surface conditions and varied spectral characteristics. The physical methods
are based on the inversion of canopy radiative transfer models, which are capable of simulating
the physical relationships between the vegetation canopy reflectance and FVC (Kimes et al. 2000;
Jia et al. 2015). The physical significance is clear for these models, and they are feasible to be applied
for FVC estimation in large scale. However, the physical models are always complex and direct inver-
sion is generally difficult. To simplify the process, the look-up table (LUT) methods or machine
learning methods could be adopted. Several large-scale FVC products have been generated using
remote-sensing data based on these FVC estimation methods, such as the MEdium Resolution Ima-
ging Spectrometer (MERIS) (Baret et al. 2006), Spinning Enhanced Visible and Infrared Imager
(SEVIRI) (Martinez et al. 2007), Change in Land Observational Products from an Ensemble of Sat-
ellites (CYCOLPES) (Baret et al. 2007), Geoland2/BioPar version 1 (GEOV1, an improved version of
the CYCLOPES FVC product) (Baret et al. 2013), and Global LAnd Surface Satellite (GLASS) FVC
products (Liang et al. 2013; Jia et al. 2015). These products contain useful information on the general
temporal trends of vegetation change at their respective scales. However, because of the coarse spatial
resolution of these products (ranging from 500 m to 6 km), they do not include detailed surface
spatial information, and thus the application of these products is limited (Garrigues et al. 2008).
Hence, a finer-resolution FVC estimation method is needed.

Vegetation growth characteristics are crucial to describing the process of vegetation growth,
estimating vegetation parameters, and discriminating vegetation types (Jia et al. 2014). A pre-
vious study improved the accuracy of a coarse-resolution (500 m) FVC estimation method by
incorporating vegetation growth characteristics from a dynamic vegetation model into the
FVC estimation process (Wang et al. 2016). The dynamic vegetation model was built from
field-measured FVC data and the radiative transfer model was integrated using a dynamic Baye-
sian network (DBN). The validation results suggest that the accuracy of the FVC estimate was
improved by incorporating vegetation growth information. Based on this method, a finer spatial
resolution (30 m) FVC estimation method was proposed that combined the finer spatial resol-
ution reflectance data and coarse-resolution FVC product (Wang et al. 2017). Due to the lack
of field-measured data, the GLASS FVC product was used as the coarse-resolution FVC product
to build the regional-scale dynamic vegetation model, and Landsat 7 ETM+ reflectance data were
used for the finer spatial resolution reflectance data. The dynamic vegetation model built from
one GLASS FVC pixel is considered to represent the corresponding 15 × 15 Landsat pixels,
which are assumed to have similar vegetation growth characteristics. However, this method is
mainly suitable for a homogeneous region in which the GLASS pixel is pure and it is therefore
reasonable to use the dynamic vegetation model built for that pixel for the 15 × 15 Landsat pixels.
In heterogeneous areas, using a single dynamic vegetation model may influence the accuracy of
the FVC estimate, because there may be multiple Landsat land cover types within a single GLASS
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pixel. This is mainly caused by different vegetation types or growth conditions occurring within
one GLASS pixel. Under these circumstances, the GLASS pixel would no longer be considered as
a pure pixel but instead would be considered as a mixed pixel. This becomes a limitation when
extending the method to a large area, because most of the Earth’s surface is complex and hetero-
geneous. It is thus necessary to build a separate dynamic vegetation model for each Landsat pixel
to generate accurate FVC estimates using a combined radiative transfer and the dynamic veg-
etation model.

Therefore, the objective of this study is to develop a finer spatial resolution FVC estimation
method for heterogeneous areas by combining the radiative transfer and dynamic vegetation models
using the GLASS FVC product and Landsat 8 OLI reflectance data. The accuracy of the dynamic
vegetation model built for each pixel of Landsat 8 OLI reflectance data is improved comparing to
the previous method. Instead of several finer-resolution pixels sharing one dynamic vegetation
model built by the corresponding GLASS pixel, each Landsat 8 OLI pixel has its own unique dynamic
vegetation model. The proposed method is validated over a vegetation transitional region with com-
plex land cover types in northern China and is compared to a similar previously developed method
(Wang et al. 2017) and a commonly used method involving look-up table (LUT) inversions of the
PROSAIL model (Ding and Zheng 2016).

2. Study area and data

2.1. Study area

The selected study area is in Weichang county, Hebei Province, North China, and belongs to the
semi-humid and semi-dry climate region of the temperate zone (Figure 1). The average annual temp-
erature in the study area ranges from −1.4 °C to 4.7°C and total annual precipitation is approxi-
mately 500 mm. The study area contains a complex distribution of many different land types,
including broad-leaf and coniferous forest, both high and low FVC grassland, low FVC cropland,
and residential areas (Jia et al. 2016). The land cover distributions are shown in Figure 1(b) with
a land cover map from the global 30 m land cover dataset (GlobeLand30) in the year 2010
(Chen, Yifang, and Songnian 2015). The study area is a typical heterogeneous area with diverse
types of vegetation, and can be used for validating the FVC estimation result using the proposed
method.

2.2. Landsat 8 OLI reflectance data

Landsat 8 OLI surface reflectance data (Path 123, Row 031) from 2014 for day of year (DOY) 87–295
were selected as the finer-resolution remote-sensing observations. Heavy cloud contaminated Land-
sat 8 OLI images (cloud cover more than 80% over the study area) were pre-screened and not used in
this study (Table 1). The Landsat 8 OLI sensor consists of nine spectral bands with 30 m spatial res-
olution (15 m for the panchromatic band) with a time interval of 16 days (Ali, Darvishzadeh, and
Skidmore 2017). The main bands used in this study were bands 4 (Red) and 5 (NIR). These images
were downloaded from the U.S. Geological Survey’s (USGS) EarthExplorer (https://earthexplorer.
usgs.gov/).

Table 1. The main data used in this study.

Data type DOY Temporal resolution Spatial resolution

Landsat 8 OLI reflectance 71/87/103/119/135/199/231/247/279/295 16 days 30 m
GLASS FVC 73/89/105/121/137/201/233/249/281/297 8 days 500 m
Field measured FVC 204/205/206/207/208 -- --

*DOY: Day of Year. Heavy cloud contaminated Landsat 8 OLI images (DOY 151/167/183/215/263) were not used in this study.
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2.3. GLASS FVC product

The GLASS FVC product was chosen as the coarse-resolution FVC product in this study. The
GLASS FVC product was generated from MODIS surface reflectance data (MOD09A1) at a resol-
ution of 500 m every 8 days using machine learning algorithms based on the training samples gen-
erated from global distributed Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper
plus (ETM+) data (Jia et al. 2015). The general regression neural networks (GRNNs) method was
firstly used to generate GLASS FVC product using MODIS data. However, due to the unsatisfactory
computational efficiency of GRNNs method, four machine learning methods were assessed to find a
suitable one and the multivariate adaptive regression splines (MARS) method was determined as the
final method for generating GLASS FVC because of its satisfactory computational efficiency and
accuracy (Yang et al. 2016; Jia et al. 2018). The validation results showed satisfactory accuracy

Figure 1. The geographic location of the study area (the blue rectangle in the administrative map). The images on the left are the
study area shown by the Landsat 8 OLI image with standard false color composition (a) and the land cover map from the global 30
m land cover dataset (GlobeLand30) in the year 2010 (b). The points with different colors and shapes on the Landsat 8 image (a) are
the locations of the sample sites.
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and spatial and temporal continuity of the GLASS FVC product (Jia et al. 2015). Therefore, the
GLASS FVC was a suitable choice as the coarse resolution FVC product in this study. The
GLASS FVC data were re-projected from the sinusoidal projection to the Universal Transverse Mer-
cator (UTM) projection using the MODIS Reprojection Tools (MRT) for consistency with the Land-
sat 8 OLI reflectance data.

2.4. Field-measured FVC data

A ground survey was conducted to obtain field-measured FVC data. Several sample sites were
selected, based on the ground survey conditions from July 23, 2014 to July 27, 2014. Basic infor-
mation about the sample sites is shown in Table 2. The size of each site was approximately 30
m × 30 m. The sample sites, which had a variety of growth conditions, contained the following veg-
etation types: grass, maize, wheat, potato, wetland, pine, and white birch. The geographic coordinates
at the central point of each sample site were measured with a hand-held global positioning system
receiver that had a positioning accuracy of approximately ±3 m. Five photographs were taken at each
sampling site, one at the center of the square and one each at the mid-point of the diagonal between
the center point and each corner. For low-growing vegetation (such as grass and crops), the photo-
graphs were taken from the nadir approximately two meters above the ground at each survey point.
For tall trees such as pine and white birch, photographs were taken facing up and facing down to
capture the tree canopy and the low near-ground vegetation, respectively. To eliminate distortion

Table 2. Basic information on the sample sites.

Site number Latitude(°) Longitude(°) Land cover Sampling date

1 42.2374 117.0719 Grass 2014/7/23
2 42.2391 117.0716 Grass 2014/7/23
3 42.2392 117.081 Grass 2014/7/25
4 42.2335 117.0944 Grass 2014/7/25
5 42.2297 117.0932 Grass 2014/7/25
6 42.2317 117.089 Grass 2014/7/25
7 42.2333 117.0854 Grass 2014/7/25
8 42.2361 117.0781 Grass 2014/7/25
9 42.2344 117.0827 Grass 2014/7/25
10 42.2408 117.0647 Maize 2014/7/24
11 42.2395 117.0631 Maize 2014/7/24
12 42.2405 117.0626 Maize 2014/7/24
13 42.2545 117.0844 Wheat 2014/7/25
14 42.2533 117.0858 Potato 2014/7/25
15 42.2514 117.086 Potato 2014/7/25
16 42.4307 117.2403 Wetland 2014/7/26
17 42.4269 117.2464 Wetland 2014/7/26
18 42.4318 117.2447 Wetland 2014/7/26
19 42.4135 117.2411 Pine 2014/7/24
20 42.4264 117.2496 Pine 2014/7/26
21 42.4298 117.252 Pine 2014/7/26
22 42.4328 117.2492 Pine 2014/7/26
23 42.4337 117.2369 Pine 2014/7/26
24 42.4192 117.2429 Pine 2014/7/26
25 42.3992 117.317 Pine 2014/7/27
26 42.3975 117.3111 Pine 2014/7/27
27 42.3994 117.3163 Pine 2014/7/27
28 42.3979 117.3041 Pine 2014/7/27
29 42.3973 117.308 Pine 2014/7/27
30 42.399 117.3041 Pine 2014/7/26
31 42.3987 117.317 Pine 2014/7/26
32 42.4237 117.2403 White birch 2014/7/26
33 42.3979 117.3154 White birch 2014/7/27
34 42.3882 117.3128 White birch 2014/7/27
35 42.3975 117.3165 White birch 2014/7/26
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effects in the digital images, the edges of the photographs were cut. Then the FVC of each edge-cut
photograph was extracted using an automatic shadow-resistant algorithm in the Internationale de
L’Eclairage (CIE) L*a*b* color space (SHAR-LABFVC) (Song et al. 2015). For pine trees, the maxi-
mum likelihood classifier (Duda and Hart 1973) was used instead of the automatic FVC extraction
method, as the latter was sometimes biased low due to interruptions by arborous branches and uni-
dentified dark leaves. In forest regions, the field FVC was calculated using the following equation:

FVC = fup + (1− fup)× fdown (1)

where fup and fdown are FVC values extracted from the upward-facing and downward-facing photo-
graphs, respectively.

3. Methods

A flowchart of the proposed finer spatial resolution FVC estimation method is shown in Figure 2.
First, the GLASS FVC product is decomposed so that it has the same spatial resolution as the Landsat
8 OLI reflectance data. The normalized difference vegetation index (NDVI) of Landsat 8 OLI pixels

Figure 2. Flowchart of the proposed method based on the radiative transfer model and the dynamic vegetation model.
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was used to address the problem of heterogeneity when decomposing the GLASS FVC product. Then
the time series of the decomposed GLASS FVC data are used to build the dynamic vegetation model
for each Landsat 8 OLI pixel. Finally, the dynamic vegetation model is combined with the radiative
transfer model to estimate FVC using the DBN.

3.1. GLASS FVC decomposition method for finer resolution background FVC

To build an independent dynamic vegetation model for each Landsat 8 OLI pixel, a method for the
decomposition of the GLASS FVC data was developed, allowing background FVC values to be
obtained for each Landsat 8 OLI pixel in this study. Assuming that the coarse-resolution FVC
pixel is a linear combination of the FVC of the land-cover components, all the finer-resolution reflec-
tance data pixels corresponding to one pixel of coarse-resolution FVC data can be regarded as end-
members of the coarse-resolution FVC pixel. The weight of each endmember in the linear
combination can be determined by their growth conditions. NDVI is a widely used vegetation
index for describing vegetation growth conditions and a candidate variable for the weight of end-
members. To demonstrate the approximate linear relationship between FVC and NDVI, NDVI
values are obtained from PROSAIL model simulations (in which NDVI values are calculated
from the simulated red and NIR reflectance data) and the scatter plots between FVC and NDVI
values are shown in Figure 3. FVC and NDVI are well-correlated (R2 = 0.9644), supporting the
use of NDVI for the weight of the endmembers in this study.

Based on the assumption that the GLASS FVC pixels are linear combinations of the FVC of
the land-cover components, the GLASS FVC data can be decomposed so that they have the same
spatial resolution as the Landsat 8 OLI reflectance data. Figure 4 shows the approach used for the
decomposition of the GLASS FVC pixels. The GLASS FVC time series data are first smoothed
using a Savitzky–Golay filter (Chen et al. 2004). Then, the GLASS pixel is resampled to a 30
m × 30 m spatial resolution to match the Landsat 8 OLI reflectance data using a nearest-neighbor
sampling algorithm. Meanwhile, the NDVI of the Landsat 8 image was calculated using red and
NIR bands’ reflectance for each pixel. Then a moving window matching the size of the GLASS

Figure 3. Scatter plots between FVC and the corresponding NDVI based on PROSAIL simulations, which demonstrates the approxi-
mate linear relationship between FVC and NDVI.
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FVC pixel is used to determine the value of the decomposed result of the central pixel of the
moving window as follows:

FVCk = NDVIk
∑M

i=1 fvci∑M
i=1 NDVIi

(2)

where M is the total number of endmembers within a moving window (set to the number of
Landsat 8 OLI pixels within one GLASS pixel), fvci denotes the resampled FVC value of an end-
member within the moving window from the coarse-resolution FVC product, NDVIi is the NDVI
value of the finer-resolution pixel, FVCk represents the decomposed FVC value of the central
pixel of the moving window, and NDVIk is the NDVI value of that pixel. NDVIk is calculated
from the finer-resolution reflectance pixel that serves as the weight of the central pixel in the
decomposing process. Finally, the moving window moves to finish determining the decomposed
FVC of every Landsat 8 OLI pixel.

Decomposing the GLASS FVC pixel for the Landsat 8 OLI pixels can improve the accuracy of the
background FVC over heterogeneous areas, allowing a more accurate dynamic vegetation model to
be obtained. The decomposition procedure will have less influence on the background FVC in homo-
geneous landscapes, because the NDVI of finer spatial resolution reflectance pixels within a coarse-
resolution FVC pixel are very similar within a homogeneous area.

3.2. Dynamic vegetation model

A dynamic vegetation model was used as a dynamic process model that could describe the dynamic
change of FVC. Two kinds of dynamic vegetation models have been developed to describe the veg-
etation growth process: models with clear physical mechanism describing the intrinsic properties of
vegetation growth (Ritchie 1985; Boogaard 1998; Jones et al. 2003) and models that rely on statistical
analyses of time series data (Gregorczyk 1998; Bindraban 1999; Wu et al. 2003). The use of the first
kind is limited by its complexity, as it requires a large number of input parameters, although the bio-
mechanism of the plant is relatively clear in the model. In the second kind, observational time series
data, including field-measured data or remote-sensing products, are used to construct a statistical

Figure 4. Diagram of the GLASS FVC decomposition approach, which allocates background FVC from GLASS FVC pixels to every
Landsat 8 pixel based on its NDVI.
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dynamic vegetation model, which is easy to implement and has acceptable performance. For these
reasons, this study employs the second kind of model. Specifically, the modified Verhulst logistic
equation (Lin et al. 2003) was selected to construct the dynamic vegetation model as follows:

FVC = d
1+ exp (a∗t2 + b∗t+ c)

(3)

where a, b, c, and d are the coefficients, and t is DOY.
For each Landsat 8 OLI pixel, the Universal Global Optimization (UGO) algorithm was used to

identify the best initial value for the model parameters and the Levenberg-Marquardt (LM) algor-
ithm was used to fit the model parameters to the decomposed GLASS FVC data. The LM algorithm
combines the steepest descent and the Gauss–Newton methods and is widely used to address non-
linear least-squares problems (Lourakis 2005). For each fitting process, an initial value was provided
for the coefficients and the iteration was stopped when the sum of squares reached a minimum.

3.3. Radiative transfer model

In this study, the simulated vegetation canopy reflectance was obtained from the coupled PRO-
SPECT leaf optical properties model and the SAIL canopy bidirectional reflectance model, which
is referred to as the PROSAIL model. Due to its simplicity, accuracy and general robustness, the
PROSAIL model has become one of the most popular model to develop vegetation parameter esti-
mation methods (Jacquemoud et al. 2009). The PROSPECT model assumes a leaf as one or several
absorbing thin, rough-surface plates that produce isotropic scattering. It simulates directional-hemi-
spherical reflectance and transmittance by describing leaf optical properties at the leaf level (Jacque-
moud and Baret 1990; Jacquemoud et al. 2000). The PROSPECT model generates leaf reflectance
and transmittance with a spectral range of 400–2500 nm, using input parameters including leaf
structure parameter (N), leaf chlorophyll a + b concentration (Cab), dry matter content (Cm),
water content (Cw), carotenoid content (Car), and brown pigment content (Cbrown) (Jacquemoud
et al. 2009). Then the output of PROSPECT is used as input to the SAIL model. The SAIL model,
which is a canopy bidirectional reflectance distribution function model, assumes that canopy is hori-
zontal and infinitely extended (Verhoef 1984). Its input parameters include leaf reflectance, leaf
transmittance, leaf area index (LAI), average leaf angle inclination (ALA), hot-spot parameter
(Hot), viewing zenith angle (VZA), relative azimuth angle (RAZ), and soil reflectance.

The PROSAIL input parameters are shown in Table 3. LAI was converted from reasonable range
FVC (Table 3) using the classical gap fraction relationship between LAI and ALA under the

Table 3. The input variables of the PROSAIL model.

Parameters Value range Step Units

FVC 0.01–0.99 0.01 –
ALA 30–60 10 °
N 2 – –
Cab 30–60 10 µg/cm2

Cm 0.005 – g/cm2

Car 4.4 – µg/cm2

Cw 0.01 – cm
Cbrown 0–0.05 0.05 –
Hot 0.1 – –
SZA 25–60 5 °
VZA 0 – °
RAZ 135–160 5 °

*ALA: average leaf inclination angle; N: leaf structure parameter; Cab: leaf chlorophyll a + b con-
centration; Cm: dry matter content; Car: carotenoid content; Cw: water content; Cbrown: brown
pigment content; Hot: hot-spot parameter; SZA: solar zenith angle; VZA: viewing zenith
angle; RAZ: relative azimuth angle.
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assumption of a turbid medium, which can be expressed as follows:

Po(u) = exp −G(u, LIDF)
cos (u)

( )
∗LAI (4)

FVC = 1− Po(0o) (5)

where Po(θ) is the gap fraction in the direction θ (θ equals 0° at the nadir view), G(θ, LIDF) is the
projection function, and LIDF is the leaf inclination distribution function characterized by the ALA
and ellipsoidal distribution. In addition, soil reflectance (G) was simulated using Price’s model,
which constructs high-spectral-resolution soil reflectance with four spectral eigenvectors (Price
1990). The remaining input parameters were fixed to a single value or a logical range, mainly accord-
ing to the Leaf Optical Properties Experiment 93 (LOPEX’93) database (Feret et al. 2008). The solar
zenith, viewing zenith, and relative azimuth angles can be acquired from the metadata file of the
Landsat 8 OLI scenes. The high-resolution canopy reflectance computed using PROSAIL was
then resampled to simulate the Landsat 8 observations in the red and near infrared (NIR) bands
based on the relative spectral response profiles. Then, the simulated red and NIR band reflectance
and their corresponding input variables in different permutations and combinations were saved
in the LUTs. The LUT were used to generate the 2-D conditional probability distributions
(CPDs), which describe the probability of capturing each discrete red and NIR reflectance value
by the OLI sensor at a certain FVC value in a step of its range for a Landsat 8 OLI pixel. The
CPDs were saved in conditional probability tables (CPTs) with discrete reflectance values along
one dimension and discrete FVC values along the other.

3.4. Dynamic Bayesian network for finer spatial resolution FVC estimation

The DBN is used to combine all the information from the Landsat 8 OLI reflectance data, dynamic
vegetation model, and radiative transfer model to obtain optimal FVC estimates with a finer spatial
resolution. The main structure of the DBN (further details may be found in Ref. Wang et al. 2016)
can be described as follows:

P(FVCT|RefT) =
P(refT|FVCT)

∑
FVCT−1

P(FVCT|FVCT−1)P(FVCT−1|RefT−1)∑
FVCT

P(refT|FVCT)P(FVCT|RefT−1)
(6)

where P(FVCT|RefT) is the state estimate of FVC at time T, RefT represents the reflectance data,
FVCT donates the FVC value, and P(refT|FVCT) is the likelihood probability of the dynamic process
and is calculated in the following manner. First, the probabilities of observed reflectance are calcu-
lated based on the assumption that the remote-sensing data uncertainties obey the Gaussian distri-
bution. Then, the calculated probabilities located in discrete intervals (the variable FVC is discretized
from continuously distributed into discrete intervals, and each discrete interval is set to 0.05 such
that there are 20 intervals for an FVC range of 0 to 1) are combined with the CPTs generated by
the simulations of the PROSAIL model. P(FVCT|FVCT−1) is the state transition probability obtained
from the dynamic vegetation model. P(FVCT−1|RefT−1) can be obtained by the DBN at time T−1.
Finally, the minimummean square error (MMSE) estimation method is used to calculate the optimal
FVC value from P(FVCT|RefT) at the current time.

In this study, the error in remote-sensing observations and the dynamic vegetation model were
both assumed to obey the Gaussian distribution. The normal cumulative distribution function
was used to calculate the likelihood probabilities and the state transition probability. Finally, because
the posterior probability also meets the Gaussian distribution (Wikle and Berliner 2007; Qu and
Zhang 2009), a 90% confidence interval of the estimated FVC value was calculated using the normal
cumulative distribution function to illustrate the associated uncertainties of FVC estimates for each
pixel using the DBN method.
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4. Results

Time series of the FVC estimates were generated from the Landsat 8 OLI data and the dynamic veg-
etation model constructed from the decomposed GLASS FVC data. Figure 5(a1–a3) shows the esti-
mated finer spatial resolution FVC images on DOY 135, 199, and 231, which represent low, high, and
medium vegetation growth conditions, respectively. The textural information is rich, and the charac-
teristics of the small land patches are successfully captured. In addition, the results show a trend of
vegetation growth in the time series. The northern and eastern parts of the region are mainly in
mountainous areas covered by forests, whereas the remaining parts are plains with grassland and
cropland. The FVC changes rapidly in the plain regions, whereas the FVC variation is comparably
slow in the mountainous areas, because some of the coniferous forests are evergreen and lack of
obvious seasonality. For the visual interpretation of the estimated FVC results, the GLASS FVC
on DOY 137, 201, and 233 are also shown in Figure 5 (b1–b3). The FVC estimates using the pro-
posed method are practically consistent with the GLASS FVC on the corresponding dates. In
addition, to determine whether the temporal trajectories of the estimated FVC being conform to
the vegetation growth characteristics, four typical sites were selected to compare the time-series
GLASS FVC, decomposed GLASS FVC, the FVC predicted by the dynamic vegetation model, and
the FVC estimated using the proposed method (Figure 6). The temporal trajectories of the FVC esti-
mation are conform to the vegetation growth characteristics.

In order to assess the performance of the proposed method over heterogeneous areas, the FVC
estimation result obtained by the previous method (Wang et al. 2017), in which coarse FVC data
were not decomposed, was used for comparison. Figure 7 shows the FVC estimation result on
DOY 103 using both methods. It is clear that the FVC estimation from the proposed method reflects
more spatial detailed information and shows much more heterogeneity and granularity, better
reflecting the heterogeneity of natural environments, while the result from the previous method
has obvious ‘mosaicking’ and some spatial details are missing. This is due to the presence of

Figure 5. FVC estimated using the proposed method at DOY 135 (a1), DOY 199 (a2), and DOY 231 (a3). GLASS FVC images at DOY
137 (b1), DOY 201 (b2) and DOY 233 (b3).
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mixed pixels over these heterogeneous landscapes, as mentioned in section 3.1. The decomposition
approach helps reducing errors in each finer-resolution pixel and presenting reasonable FVC esti-
mates as determined by visual comparison.

To quantitatively evaluate the performance of the proposed method, a direct validation compari-
son between the performance of the proposed method and the previous method (Wang et al. 2017)
was conducted using the field-measured FVC data collected during DOY 204–208. The cubic spine
interpolation method was used to match the time of the resultant FVC and field survey data, where
the average and maximum gap in time between the two is 7.5 days and 9 days, respectively. Figure 8
shows the relationship between the FVC estimates and the field measured data. The FVC estimates
using the proposed method achieved satisfactory performance (R2 = 0.7757, RMSE = 0.0881), and
fell close to the 1:1 line. The FVC estimates of the pine sites are distributed around 85%, which is
reasonable due to the similar forest canopy structure of these planted trees in the study area. In
addition, the maize and potato sites were in their growth peak and their FVC was relatively high.
The FVC of the grass sites was lower than the aforementioned vegetation types owing to their
thin leaves. In addition, the performance of FVC estimates using the previous method is inferior
to the results of the proposed method. The proposed method has a slightly better fit in the lower
FVCs while this appear opposite in the previous method, and the previous method may be reaching
an asymptote at around 0.8. Therefore, these results indicate the proposed method is reliable for FVC
estimation in heterogeneous areas.

To further compare the performance between the proposed method and currently existing FVC
estimation methods, the commonly used LUT method was also conducted for comparison. The LUT
method, which uses inversions of the PROSAIL model (Ding and Zheng 2016) from Landsat 8 OLI

Figure 6. Comparison of the temporal trajectories of GLASS FVC, decomposed GLASS FVC, the FVC predicted by the dynamic veg-
etation model, and the FVC estimated using the proposed method.
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reflectance data, was also validated by field-measured FVC data (Figure 9). Because the uncertainty
of the LUT method is difficult to quantify, no error bars are shown in Figure 9. The validation results
of the LUT method (R2 = 0.7457, RMSE = 0.1249) were inferior to the proposed method. The LUT

Figure 7. The FVC estimation on DOY 103 using the proposed method (a) and the previous method (c). The right column presents
close-up images of a forested area for the proposed method (b) and the previous method (d).

Figure 8. Scatter plots of the field-measured FVC and estimated FVC using the proposed method (a) and the previous method (b).
Error bars indicates a 90% confidence interval of the FVC estimation at each point.
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method FVC estimates were biased high, as evidenced by most points falling above the 1:1 line. This
comparison further indicates the reliability of the proposed method.

5. Discussion

This study proposed a method to overcome the difficulties in estimating finer spatial resolution FVC
over heterogeneous areas. Instead of several Landsat 8 OLI pixels sharing one dynamic vegetation
model built by the FVC data of their corresponding GLASS FVC pixel, the proposed method
built a dynamic vegetation model for each Landsat 8 OLI pixel by decomposing the GLASS FVC
product. This method uses multiple information including the Landsat 8 OLI reflectance data,
GLASS FVC product, dynamic vegetation model and radiative transfer model, takes the character-
istics of heterogeneous areas into consideration, and is shown to be reliable for regional FVC esti-
mation. It also has the advantage of requiring neither human interaction nor many of the
parameters required by the empirical method and pixel un-mixing models. The decomposition
approach reduces the mixed-pixel problem in dynamic vegetation modeling and improves the accu-
racy of finer spatial resolution FVC estimates at a region scale with complex land-cover types. Fur-
thermore, the proposed method is simple and easily constructed. It not only produced good results in
reducing the mixing phenomenon within the mixed GLASS FVC pixels but was also highly efficient.
This method is suitable for both homogeneous and heterogeneous landscapes, thus widening the
scope of its potential applications.

Both this study and its predecessor take advantage of the DBN, which is a probabilistic framework
that combines a process model (in this study, a dynamic vegetation model) with observations. How-
ever, the present study assumes that the GLASS FVC pixels were mixed and composed of a linear
combination of FVC values from Landsat 8 pixels, whereas the previous study considered the
GLASS FVC pixels to be pure pixels. In this study, NDVI is used to weight the endmembers of
the linear combination. Other vegetation indices that have the potential to represent growth con-
ditions should also be investigated in future. Furthermore, the previous method (Wang et al.
2017) is only suitable for FVC estimation in a small region with certain types of land cover (mainly
uniform croplands). This becomes a limitation when trying to apply the method for FVC estimation
on a larger scale. By taking into consideration heterogeneous landscapes, the decomposition

Figure 9. Scatter plots of the field-measured FVC and estimated FVC using the LUT method from the PROSAIL model.
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approach presented here generates more precise background FVC values for finer spatial resolution
pixels, allowing a more accurate dynamic vegetation model to be built. The proposed method can
now be applied for FVC estimation in extensive regions.

In this study, validation of the FVC estimates was mainly conducted by scatter plots. Although
various vegetation types and vegetation conditions were considered, the field measurements were
mainly conducted on DOY 204–208, 2014. More time series field measurements are needed to
further assess the accuracy of this method. In addition, within-canopy upward-facing photographs
were used to estimate tree FVC. This may cause underestimation for dense tree canopies, where the
upper leaves may be shielded by branches and trunks. This limitation could potentially be overcome
in future studies by using an unmanned aircraft system to take photographs from the nadir above the
tall tree canopies.

The proposed method is demonstrated to successfully estimate FVC at the regional scale. When
applied to a larger scale, the land surface conditions are even more complex. A more accurate and
computationally efficient dynamic vegetation model building method should be developed. In
addition, the FVC value is related to the vegetation growth characteristics which are influenced
by the climatic conditions such as temperature or precipitation. Therefore, when applying the
method to a larger or the global scale, using semi-empirical dynamic vegetation model with input
parameters including climatic factors might improve the description about vegetation growth
characteristics under different climate conditions and potentially improving the FVC estimation
accuracy. The proposed method was used for FVC estimation at the Landsat resolution. It is also
suitable for other finer spatial resolution data for FVC estimation such as HJ-1, Sentinel-2, GF-1,
and CBERS. Furthermore, the Landsat (or similar) high-resolution satellite data usually have low
temporal resolution and their quality is also often influenced by cloud contaminations, which
bring difficulties on high temporal resolution FVC estimation at large scales. Jointly using other simi-
lar or higher spatial resolution data (such as finer spatial resolution data mentioned above) to pro-
mote the amount of temporal reflectance observation may overcome this issue and will be the further
work of this study. In addition, interpolation method based on the dynamic vegetation model may
also be adopted to obtain high temporal resolution FVC estimations.

6. Conclusion

A fractional vegetation cover estimation method for heterogeneous areas that combines a radiative
transfer model and a dynamic vegetation model using a DBN was proposed in this study. Unlike
previous methods, the proposed method does not use a single dynamic vegetation model to represent
several finer spatial resolution pixels corresponding to one coarse-resolution FVC pixel, which is
only reasonable for homogeneous regions. Instead, the coarse-resolution FVC pixel is decomposed
to build a dynamic vegetation model for each finer-resolution pixel by accounting for the differences
among these pixels in heterogeneous areas. The Landsat 8 OLI reflectance data and the GLASS FVC
product were used to evaluate the proposed method in a heterogeneous region with various land-
cover types. The validation results showed that the proposed method could effectively address het-
erogeneous landscapes and could achieve satisfactory FVC estimates. Future work will focus on
further assessment of the proposed method based on more field measured data as well as applying
it for high-spatial-resolution FVC estimation at regional scales.
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