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Semisupervised Hyperspectral Image Classification
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Generative Adversarial Net
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Abstract— Hyperspectral image classification is a challenging
task when a limited number of training samples are available.
It is also known that the classification performance highly
depends on the quality of the labeled samples. In this work,
a cluster-based conditional generative adversarial net (CCGAN)
is proposed as an effective solution to increase the size and
quality of the training data set. The proposed method is able to
automatically select the most representative initial samples with
a subtractive clustering-based strategy, which keeps the diversity
for sample generation. Moreover, compared to the traditional
semisupervised classification frameworks, the CCGAN is able to
generate realistic spectral profiles by considering the class-specific
labels. Experiments on well-known Pavia University data set
demonstrate that the proposed CCGAN can significantly boost
the classification accuracy, even using a small number of initial
labeled samples.

Index Terms— Generative adversarial nets (GANs),
hyperspectral images, image classification, semisupervised
learning (SSL).

I. INTRODUCTION

W ITH the fast development of remote sensing technol-
ogy, both the spectral and spatial resolution of remote

sensing image has been significantly improved. In this regard,
hyperspectral imagery may contain hundreds of spectral bands
whilst the spatial resolution can be as high as submeter for
each pixel. Therefore, fine-scale hyperspectral images play
an important role in urban mapping, environmental man-
agement, crop analysis, and mineral detection [1], [2]. The
accurate identification of the semantic label of each pixel
is a prerequisite to realizing these applications. However,
with the increased spectral resolution of hyperspectral images,
the difficulty of image interpretation also has significantly
elevated.

In general, there are two obstacles that prevent effi-
cient hyperspectral imagery interpretation. On the one hand,
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the ground truth data are quite scarce due to the expensive
and time-consuming process of human-based data labeling.
Given the limited number of training samples, the clas-
sification performance decreases as the dimensionality of
hyperspectral image increases, which is called the “Hughes
phenomenon” [3]. On the other hand, when the spatial resolu-
tion gets finer, the intraclass variation introduced by the com-
plex textures and illumination changes also have dramatically
increased. Different targets may share similar spectral prop-
erties that have greatly challenged the classification. In order
to decrease variability from the same class and increase the
separability between similar classes, it is important to select
the most representative samples [4]–[6]. Thus, the quality of
training samples also plays an important role in image classi-
fication, as it provides the separable boundary information in
the feature space [7], [8].

Hyperspectral images contain hundreds of continuous nar-
row spectral bands in the electromagnetic spectrum. Due to
the similarity between adjacent pixels, the randomly selected
samples may highly redundant in the spectral domain. Under
such circumstance, classifiers usually face the challenges that
come from the overfitting phenomenon. Moreover, redundant
samples provide highly correlated information that impacts
the performance of sample augmentation. In order to han-
dle these problems, there are two ways to find the most
representative samples, namely, unsupervised and semisuper-
vised methods [9]. The unsupervised methods can reveal data
structure of samples without any label information. It aims
to identify potential cluster centers to find the most rep-
resentative samples, such as k-means and subtractive clus-
tering. Therefore, unsupervised methods focus on finding
homogeneous clusters exploration on limited training samples
which can keep the diversity of samples. Complementary,
semisupervised learning (SSL) techniques offer a way to
generate new training samples from unlabeled samples. The
SSL methods try to find the most representative class-specific
samples from both labeled and unlabeled samples, such
as active learning (AL) [10]–[13] and generative adversarial
net (GAN) [14]. However, existing methods mainly focus
on exploring surface-type samples from the existing data
pool which locks the diversity of selected samples. There-
fore, how to find representative samples whilst keep them
in diversity are the most challenging tasks in the field of
hyperspectral image classification. Recently, few research
works have focused on GAN and its abilities in diversified
samples generation [15], [16]. Still, the diversity of input
samples is limited and it lacks class-specific structures that
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could further boost the hyperspectral image classification
accuracy.

In order to accurately classify hyperspectral images,
a cluster-based sample generation method is proposed
to increase the number of training samples in Fig. 1.
Different from the commonly used data argumentation strate-
gies, an unsupervised-based subtractive clustering is applied
to reduce the redundancy inside labeled training samples.
Based on unsupervised measurements, the most representative
samples can be automatically selected. Then, we propose
a cluster-based conditional GAN (CCGAN) framework to
combine the idea of conditional GAN and SSL strategy for
class-specific sample generation. The objective of CCGAN is
to generate labeled samples based on the limited number of
training samples. The contributions of this study are as follows.

1) The subtractive clustering strategy is applied to reduce
sample redundancy and find the most representative
samples for data structure exploration.

2) The CCGAN is proposed to automatically generate the
class-specific samples in the spectral domain.

3) An SSL framework is proposed to force CCGAN itera-
tively updates generated samples for efficient hyperspec-
tral image classification.

The rest of this letter is organized as follows. Section II
presents the proposed cluster-based spectral-spatial sample
generation method. Section III presents the data sets, while
the experimental results are discussed in Section IV. Final
conclusions are given in Section V.

II. METHODOLOGY

A. Subtractive Clustering for Sample Selection

Due to the similarity of adjacent image pixels, subtrac-
tive clustering strategy is applied to reduce data redundancy
and improve the representativeness of the selected samples.
In subtractive clustering, each individual pixel is regarded
as a potential cluster center. Suppose the sample is xi , i ∈
(1, . . . , n) and each contains h bands x ∈ Rh that represents
the spectral data. The potential measurements of each sample
are calculated as

F(xi) =
n∑

j=1

e(−α||xi−x j ||2) (1)

where xi represents a hyperspectral pixel and α is a positive
distance factor that determines the size of the neighborhood for
a cluster. By using this potential function, the maximum value
for a sample xc−1 in the training data set can be represented as

Fmax
1 = max F(xc−1). (2)

The Fmax
1 indicates the potential function of the first cluster

center xc−1. The following cluster centers can be calculated
using the following equation:

Fc(xi ) = Fc−1(xi ) − Fmax
c−1 e(α||xc−1−xi ||2) (3)

where Fc−1(xi ) is the previous potential function, and Fc(xi )
is the new potential function and xc−1 is the last found cluster
center. This iteration continues to a predefined number of
clusters. For a specific class, there are c clusters are obtained

by subtractive clustering. Each cluster shares similar spectral
properties according to the potential measurements. Therefore,
in order to find the most representative samples, N samples
are randomly selected from c clusters.

B. Semisupervised Learning With CCGAN Framework

Although traditional GAN is widely used in spectral-spatial
sample generation, still it only exploits data structure under
the real/fake condition without any class-specific informa-
tion. To remedy this, we introduced a CCGAN to generate
class-specific samples to achieve the purpose of improved
classification. Different from traditional GAN, the CCGAN
requires an additional term y, (y ∈ Y ) as a condition for
sample generation. Here, Y is the embedding space used to
condition the generator that drawn from the training data
set. To be specific, the generator G defines a conditional
density model pg(x |y) to replicate the empirical distribution
of training samples pd(x, y). The objective of generator G can
be formulated as

pg(x, y) = pg(x |y)py(y) ≈ pd(x, y). (4)

For the spectral information generation, the 1-D deconvolu-
tion neural network is applied to generate realistic samples.
In the hyperspectral image, suppose there are b spectral
bands. For an image pixel i , the spectral profile of selected
samples can be represented as vector xb

i . Conventionally,
GAN framework contains two contradictory players, namely,
a generator and a discriminator, and they are positioned in
adversarial game. The generator G is designed to generate
realistic samples to fool discriminator; at the same time,
the discriminator D is tasked to distinguish samples whether
from the training data or the generator. The objective of GAN
can be formulated as a minimax value function:

min
G

max
D

(Ex∼pd (x)[logD(x)]) + (Ez∼pz(z)[logD(G(z))]) (5)

where z is a noise space used to initialize the generator, values
z ∈ Z are sampled from the noise distribution. x, (x ∈ X)
represents the samples selected by subtractive clustering or
outputs from the generator.

For a well-trained generator G with L layers, the input noise
z is transformed into generated spectral samples xgen for a
specific label y

xgen = hL(z|y). (6)

Suppose we have a batch of real samples (xi , yi )
n
i=1 that xi

paired with condition label yi . Let zi ∼ pz(z) be the noise
data generated from the noise distribution. The loss function
for the generator can be formulated by the discriminator

lG = −Ez,y log D(G(zi , yi )). (7)

For CCGAN, the discriminator can be regarded as a combi-
nation of unsupervised classifier Dunsup and supervised classi-
fier Dsup. For the unsupervised classifier Dunsup from CCGAN,
it is trained to discriminate fake samples from the real ones.
If the semisupervised problem with k classes, the discriminator
has k + 1 outputs where the class k + 1 represents the fake

Authorized licensed use limited to: Beijing Normal University. Downloaded on May 08,2020 at 05:51:02 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: SEMISUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION WITH CCGAN 541

Fig. 1. Workflow of CCGAN and semisupervised hyperspectral image classification.

samples generated from the generator. Thus, the loss function
of the unsupervised classifier can be formulated as

lDunsup = −E(x ∼ pg(x) log(Dunsup(y = k + 1|x))

− E(x ∼ pd(x)) log(1 − Dunsup(y = k + 1|x)). (8)

The term Dunsup(y = k + 1|x) is the probability of x being
a fake example, and 1− Dunsup(y = k +1|x) is the probability
of x being a real example. The unsupervised loss term lunsup
is the same as the regular discriminator loss except that it
measures the discrepancies between the real and fake samples.
In addition, for the supervised term of the discriminator,
the loss function can be represented as

lDsup = −E(x, y) log(Dsup(y|x, y ≤ k)). (9)

The supervised loss term is a log conditional probability
for labeled samples which is a standard cost as in supervised
learning setting. In general, the final objective function for
SSL of CCGAN is

L = min
G

max
D

(lG + lDunsup + lDsup). (10)

For the SSL of CCGAN, the objective function consists
of three terms. The first term is to minimize the log con-
ditional probability for the generated samples. The second
term is to maximize the log probability of the generated
samples. The third term is to maximize the log conditional
probability for labeled data, which is the standard cost as in
supervised learning formulation. When the training process
finished, the discriminator from CCGAN can be used to
classify samples for SSL.

III. EXPERIMENT

To illustrate the sample generation ability of the proposed
CCGAN, the experiments are conducted on the well-known
hyperspectral image data sets for algorithm evaluation. The
Pavia University data set was acquired by the ROSIS sensor
during a flight campaign over Pavia, Northern Italy. The
ROSIS sensor provides 115 spectral bands within spectral
ranges from 0.43 to 0.86 μm. After removing noise-effected
bands, the remaining 102 spectral bands are available for our
experiment. The sizes of this data set are 610 × 340 pixels
with the spatial resolution of 1.3 m per pixel. There are nine
classes of land cover types inside of this data set. A 10% of the

TABLE I

DETAILED INFORMATION ABOUT CONFIGURATION OF THE CCGAN

labeled samples are randomly selected for CCGAN training
and another 10% samples are randomly selected for evaluation.

A. Experimental Setting

For the purpose of spectral profile generation, the CCGAN
framework is applied to mimic spectral distribution pattern
from the real spectral profiles. To capture the spectral dis-
tribution pattern, we developed a 1-D generator to formu-
late the real distribution of spectral profiles. Specifically,
the deconvolutional neural network can automatically convert
1-D noises into realistic spectral profiles given the condi-
tion y. The detailed information about CCGAN configuration
is listed in Table I. In order to highlight the effectiveness
of the CCGAN model, we included one-dimensional CNN
(1D-CNN), two-dimensional CNN (2D-CNN), and the tradi-
tional GAN models for comparison. For 1D-CNN, it contains
an input layer, a convolutional layer with the sizes of 11 × 1,
a max-pooling layer and a fully connected layer for classi-
fication. The 2D-CNN consists of three convolutional layers
and two-pooling layers, and the traditional GAN is similar to
CCGAN, except the conditional term in the generator.

B. CCGAN Performances and Analysis

The CCGAN is able to generate realist samples when the
optimal status is achieved during the training process. In the
final state, the generator can produce realist fake samples to
deceive the discriminator who tries to pick up the fake ones.
In this section, we take an insight look at the generator and
discriminator, to better understand the mechanism that working
behind the CCGAN. To serve this purpose, the quality of
generated samples, representative of feature projections and
loss function optimizations are included.
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Fig. 2. Loss function optimization during training process. D_loss and
G_loss represent the error rates for unsupervised discrimination. S_loss means
supervised loss function values.

1) Loss Function Optimization: To train the CCGAN, there
are three loss functions to be minimized. During the training
process, the iteration is set to 500 times, and the learning
rates are 0.001 and 0.0001 for discriminator and generator,
respectively. The curves of loss function optimization are
shown in Fig. 2. In general, the discriminator and gen-
erator demonstrate the contradictory pattern to each other.
The generator is harder to generate realist samples when
discriminator error rates are low. Similarly, a well-trained
generator is capable to fool the discriminator with realist
fake samples. In the end, the discriminator and generator
are stabilized with enough training iterations. Meanwhile, for
the supervised loss function, the error rates keep dropping
during the entire training process. Supervised loss function
and discriminator loss function share the same parameter when
optimizing CCGAN. In this way, the CCGAN is able to
learn both real data distributions and class-specific patterns
for semisupervised classification.

2) Sample Visualization and Analysis: For better under-
standing the sample generation power of the CCGAN, we visu-
alized the spectral profiles for three specific classes, namely,
Asphalt, Meadows, and Gravel, as shown in Fig. 3. Different
from the previous studies on hyperspectral sample generation,
the CCGAN is designed to mimic real data distribution under
class-specific conditions. From the figure, we conclude that the
CCGAN is able to capture class-specific spectral profiles. For
example, the generated meadow profiles have a low reflectance
band around 60 and a high reflectance band around band 80,
which is similar to the original data. However, different from
the original smooth spectral profiles, the generated samples
have random variations across the entire spectral bands. The
reason for fuzzy prediction is that the CCGAN can only
capture the spectral pattern in general sense, but overlooked
the spectral continuity between adjacent bands. In general,
the well-trained CCGAN has great ability to mimic the data
distribution patterns on 103 spectral bands. Thus, it is possible
to utilize CCGAN to enrich training samples and improve the
classification accuracy.

To quantitatively measure the quality of generated sam-
ples, we projected training samples into 2-D feature space,
as shown in Fig. 4. For the original spectral profiles, 10% of

Fig. 3. (a) Generated spectral profiles against (b) original spectral data for
class Asphalt, Meadows, and Gravel, respectively.

Fig. 4. Projection of the (a) cluster-based samples and (b) enriched
samples on Pavia University data set. Different colors represent different
classes, respectively. For clarity, we map the 10% of training samples and
200 generated samples on 2-D space using t-SNE embedding.

training samples were randomly selected and projected into
lower dimensional space, as demonstrated in Fig. 4(a). The
separation ability of the original data set is limited since
the selected samples share similar spectral profiles, such as
class 8 (bricks) and class 3 (gravel). Moreover, the imbal-
anced selected samples further decrease the separability of
the training data set. To solve this problem, the CCGAN
generates additional samples to make the training data set
more balanced. In this experiment, we generated two hundred
additional samples for each class to increase the separability
of the training data set. For a better understanding of the
generated samples, we projected the enriched training samples
into two dimension space, as demonstrated in Fig. 4(b). From
this figure, the generated samples are capable to increase
the separability of training data set by filling up the feature
space effectively. In addition, the enriched data set can boost
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Fig. 5. Classification maps of the Pavia University scene with different
strategies. (a) Original data. (b) Reference map. (c) 1D-CNN. (d) AL.
(e) 2D-CNN. (f) 3D-CNN. (g) GAN. (h) CCGAN.

TABLE II

CLASSIFICATION RESULTS OF DIFFERENT MODELS

ON THE PAVIA UNIVERSITY DATA

the classification performances by increasing the number of
training samples.

C. Classification Results and Comparison

To demonstrate the performance of CCGAN, we compared
the proposed method with other state-of-the-art methods. The
classification maps are shown in Fig. 5, and the detailed infor-
mation about classification accuracies are reported in Table II.
For 1D-CNN, 2D-CNN, and 3D-CNN, the spectral bands were
directly fed into the deep learning framework. However, due
to the limited number of training samples, the overall accuracy
of such frameworks only reach 79.55%, 86.18%, and 87.94%,
respectively. In order to increase the number of training
samples, the traditional GAN utilizes a generator to convert
noises into unlabeled samples. Although the traditional GAN
significantly increased the number of training samples, it is
hard to explore class-specific deep features. Thus, the CCGAN
achieves the best classification results by generating realistic
class-specific training samples.

IV. CONCLUSION

In this letter, we proposed a CCGAN for hyperspectral
image classification. Compared to the traditional GAN model,

our proposed method can generate realistic samples for each
specific class. In general, there are two merits for this CCGAN
method: 1) it can automatically explore the most representative
features for sample generation and 2) it utilizes the conditional
GAN to generate realistic samples for hyperspectral image
classification. Based on these merits, we tested the CCGAN
on a well-known hyperspectral data set, and the classification
accuracies are significantly higher than the traditional ones.
In the future, how to reduce the noises for generated spectral
profiles is a question worth exploring.
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