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Development of the Direct-Estimation Albedo
Algorithm for Snow-Free Landsat TM Albedo

Retrievals Using Field Flux Measurements
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Hu Zhang, Lei Cui, Yaxuan Chang, Jing Guo, and Rui Xie

Abstract— Anisotropy information from moderate-to-coarse-
resolution sensors [e.g., 500-m Moderate Resolution Imaging
Spectroradiometer (MODIS)] is widely applied to estimate high-
resolution surface albedo. Simulated albedos using MODIS bidi-
rectional reflectance distribution function (BRDF) parameters as
prior knowledge based on the kernel-driven model are employed
to build and assess the lookup table (LUT) of the direct-
estimation method, which is then used to estimate high-resolution
albedos directly from top-of-atmosphere (TOA) reflectance data
(e.g., Landsat albedo). Previously, the errors in the simulated
albedos were not considered in building and assessing the LUT.
In this article, daytime time-series (30 min) of snow-free albedo
measurements with sufficient solar zenith angles (SZAs) were
introduced to build the LUT for snow-free Landsat TM surface
shortwave broadband albedo (TM albedo) retrievals, together
with TOA-simulated reflectance by concurrent daily MODIS
BRDF parameters. The assessment utilizes an independent
data set and shows larger discrepancies between the estimated
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and measured albedos [root-mean-square errors (RMSEs) of
>0.03 at SZAs ≥ 60◦] than those in previous articles. To
reduce inconsistencies between the MODIS BRDF parameters
and the observed albedos, as well as possible spatial resolution
differences between the MODIS and Landsat data, we adopted
a correction strategy that first linearly adjusts the MODIS
BRDF parameters to match the albedo measurements by a
magnitude method, and second, the TOA reflectance simula-
tions were further corrected by concurrent TM reflectances.
The developed algorithm shows a significant improvement
after using such corrections as a priori (RMSE < 0.02 at
SZA ≤ 75◦). The validation indicates improved accuracies in
the TM albedo estimation. These improvements may provide
potential albedo estimations for nadir-viewing high-resolution
sensors using coarse-resolution anisotropy information.

Index Terms— Accuracy assessment, daytime time-series
flux measurements, direct-estimation albedo method, two-step
correction strategy.

I. INTRODUCTION

SURFACE albedo is recognized as an important factor in
climate change monitoring [1], where the surface albedo

is defined as the ratio of the reflected radiative flux in the
viewing hemisphere to the total incident flux [2]. Due to the
frequent sensor revisits at coarse spatial resolutions, multiangle
reflectances can be collected over a short period [3], which
are then used to describe surface reflectance anisotropy based
on various models, such as the widely used semiempirical
kernel-driven bidirectional reflectance distribution function
(BRDF) model [4], [5]. Thus, albedo can be calculated as
the bihemispherical integral of the BRDF from viewing
and solar geometries, such as the operational 500-m
albedo products of the Moderate Resolution Imaging
Spectroradiometer (MODIS) based on the Ross-Thick-
Li-Sparse-Reciprocal (RTLSR) model [6]. In addition,
the 1-km SPOT/VEGETATION surface albedo product
(GEOV1 albedo) [7], [8] is generated by using the Roujean
model [4]. The surface albedo can also be retrieved by linking
different BRDF models [9], [10].

Albedo products at fine spatial resolutions are in high
demand, as fine spatial resolution can aid in describing subtle
albedo changes and can be utilized to validate albedo prod-
ucts at coarse resolutions [11]. However, BRDF samplings
are rarely sufficient, particularly for high-resolution satellite
sensors, and thus, prior BRDF information is usually helpful
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for describing land surface anisotropy at fine spatial reso-
lutions [12]–[15]. By applying MODIS BRDF data as prior
knowledge, various methods have been developed to calculate
albedo at high spatial resolutions.

Various efforts have been made to estimate the surface
albedo from surface reflectance data. A general method for
albedo determination consists of separate processing chains:
atmospheric correction, directional reflectance normalization,
spectral albedo calculation, and narrowband-to-broadband
albedo conversion. The 6SV radiative transfer code is mainly
used to perform atmospheric correction, by which surface
reflectances can be obtained from top-of-atmosphere (TOA)
reflectances for Landsat TM, ETM+, and OLI data [16].
For 30-m Landsat pixels that are homogeneous within the
corresponding 500-m MODIS spatial scale, the ratio of nadir
reflectance to albedo at the MODIS pixel is applied to the
Landsat scale for albedo estimation [14], [17], and the method
is being used to develop a Landsat-8 surface albedo algorithm
for determining Landsat albedos [18]. In terms of heteroge-
neous land surfaces, BRDF shapes for MODIS pixels as func-
tions of the normalized difference vegetation index (NDVI)
and land cover composition of subpixels are used as prior
information to interpret the reflectance anisotropy at the
Landsat scale [13], [19], [20]. Notably, for these methods,
an accurate atmospheric correction from the initial satellite
signal above the TOA is required to obtain reliable surface
reflectances [16]. In addition, although airborne and ground-
based multiangle observations can also aid in obtaining surface
albedos at fine resolutions, these observations are limited to
small regions depending on the well-designed experiments
acquiring sufficient multiangle reflectances [15], [21].

Another alternative method is to perform the estimation
directly from the TOA reflectance data. Recently, the direct-
estimation albedo approach has been successfully applied
to estimating albedo at fine resolutions, such as the 30-m
Chinese HuanJing (HJ) Satellite [22] and a series of sensors
onboard Landsat [23], which follows the theory of retrieving
surface albedo directly from TOA reflectance, as proposed
by Liang [24] and Liang et al. [25]. The method has been
used to estimate albedos for the 1–5-km Global LAnd
Surface Satellite (GLASS) data set [26], [27] and to estimate
daily albedos for the Visible Infrared Imaging Radiometer
Suite (VIIRS) sensor [28]–[30]. The key task is to build a
regression lookup table (LUT) of TOA spectral reflectances
and surface albedos in sun-view geometries, including the
solar zenith angle (SZA), view zenith angle (VZA), and
relative azimuth angle (RAA), where the MODIS BRDF
information and atmospheric radiative transfer process are
considered in advance when building the LUT. Using the
LUT, surface albedos can be easily estimated from TOA
reflectances. Thus, the possible errors resulting from the
atmospheric correction can be avoided, especially for sensors
onboard the Landsat platform prior to Landsat 8 due to the
lack of accurate aerosol loadings [31].

Currently, MODIS albedos that are fully simulated by using
MODIS BRDF parameters based on the kernel-driven model
are used to build and assess the regression LUT of the
direct-estimation albedo algorithm [22]–[24], [28]; therefore,

the accuracy of the method mainly relies on the MODIS
BRDF/albedo product. However, the product shows an overall
accuracy of albedo estimation that is within a 0.05 root-
mean-square error (RMSE) with increasing errors as SZA
increases [32]–[34], and accuracies occurring near the local
solar noon overpass time are higher than those of other times
during the day [33]. Consequently, these errors originating
from MODIS BRDF data may transfer to the final regression
LUT. In addition, although MODIS BRDF data have been
directly used in the Landsat TM nadir reflectance for various
applications [14], [23], [35], the potential scale difference in
BRDF shapes between the two sensors may also be a major
source of uncertainty in these applications [36]–[38].

In fact, numerous upwelling/downwelling radiative flux
measurements at sites worldwide are available [13], [23],
[26], [34], and the albedo ratios are promising to replace the
simulated MODIS albedos in the direct-estimation method,
which will most likely reduce the uncertainties caused by rely-
ing on only albedo simulations. When building the regression
LUT for multiangle sensors such as MODIS and VIIRS as well
as Chinese HJ satellite [22], [24], [26], [28], [30], directional
reflectances at three orientations (SZA, VZA, and RAA) are
needed. Notably, nadir directional reflectances at a certain
SZA are invariant for arbitrary azimuth angles [35], and this
peculiarity means that the LUT for near-nadir sensors, such as
Landsat [23], is related to only the SZA rather than all three
angles. Therefore, these time-series albedo measurements with
a wide range of SZAs can be utilized to build and assess
the LUT of the direct-estimation method for nadir view
sensors, in conjunction with the concurrent daily Collection
V006 MODIS BRDF product [32], [39], [40] to simulate TOA
reflectances. In addition, these concurrent albedo measure-
ments and TOA reflectance observations can aid in further
reducing uncertainties in the direct-estimation method, which
result from data inconsistencies and scale differences between
MODIS and Landsat.

In this article, using the advantages of frequent radiative flux
measurements at global sites, time-series snow-free shortwave
broadband albedo measurements were first used to build and
assess the regression LUT of the direct-estimation albedo algo-
rithm for the 30-m Landsat TM data. In addition, we propose a
correction strategy to reduce the errors caused by the potential
inconsistencies between the MODIS BRDF parameters and the
observed albedos and the spatial differences between MODIS
and TM. In Section II, the data set used in this article is
introduced. Then, the experimental design and methods are
illustrated in Section III. We analyze the accuracy of these
regression LUTs before and after using such a correction strat-
egy based on the assessment and validation results presented
in Section IV. Finally, some new findings and plans for future
work are summarized in Section V.

II. DATA AND PREPROCESSING

A. Flux Measurements at 47 Sites

Time-series snow-free flux measurements at 47 sites for
multiple years were collected, as shown in Fig. 1 and Table I;
these sites are located in many countries. Among the data
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Fig. 1. Distribution of the 47 sites that are listed in Table I. Sites 1–17, 18–40, and 41–47 are shown as red triangles, black dots, and blue dots, respectively.

set, data from sites 1–40 were acquired from the FLUXNET
(http://fluxnet.fluxdata.org/) and AmeriFlux (http://ameriflux.
lbl.gov/) networks, and these sites were demonstrated to be
homogeneous and thus have a representativeness at the 500-m
spatial scale for the period of 2000–2007 [26], [41]. The
downwelling/upwelling shortwave radiative flux data
(280–2800 nm) are recorded every 30 min for the first
40 sites, except for sites 1 and 15, which both have a temporal
resolution of 1 h [41]. In addition, the seven widely used
sites in the surface radiation (SURFRAD) network were also
included (http://www.esrl.noaa.gov/gmd/grad/surfrad/index.
html) [13], [14], [23], [34], where the radiative measurements
(280–3000 nm) are released at 3- and 1-min intervals before
and after 2009, respectively. The shortwave broadband
albedo can be calculated as the ratio of the upwelling
portion to the total downwelling shortwave solar radiation.
The corresponding SZAs can be determined based on
the measuring time and geographic location. The circular
footprint diameters ( f [m]) of these flux measurements were
calculated based on the relationships between the tower
height above the canopy (H [m]) and half of the field of view
(HFOV[degree(◦)]) of the pyranometers [i.e., f = 2H
tan(HFOV◦)] [13], [41]. Notably, a value of 81◦
was used as a general effective HFOV [32]. Finally,
the averaged albedo estimations of the corresponding TM
pixels within the footprint of each site were used for
algorithm validation, which was compared with the average
measured albedos within ±30 min of the Landsat overpass
time.

The regression LUT for the Landsat TM data is a function
of the SZA, and therefore, we need sufficient SZAs as well
as albedos to build the LUT. In previous studies, surface
albedos for SZAs of 0◦–70◦ at a 5◦ interval have been
commonly simulated [22], [23]. Regression coefficients are
stored in the LUT for these SZAs, and the final albedo for a
specific SZA is calculated via a linear interpolation of the
estimated albedos at the two nearest SZAs. The data set
from the first 17 sites for 2004 and 2005 was selected to
build and assess the regression LUT of the direct-estimation

algorithm, as shown in Fig. 1 (red triangle), considering the
widespread distribution and various land cover types covering
the forest-shrub-grass transitions. These various land types
guarantee the generalization of the regression LUT for various
vegetation types. The downwelling/upwelling radiation flux
measurements rely on solar illumination, and thus, albedo
measurements are collected only during the local time of day
(mostly from 4 A.M. to 8 P.M.) when sunlight was available.
Therefore, we choose suitable albedo samples from all the
collected measurements from 4 A.M. to 8 P.M.

The distribution of the observed shortwave broadband
albedos and SZAs as a function of local time is shown
in Fig. 2(a) and (b), respectively. Outliers of albedo measure-
ments that exceed the physical boundary (0–1) were removed
first, and then, a total of 62 859 samples were obtained. The
standard deviations are smaller for albedos measured from
8 A.M. to 4 P.M. than the data from the other time period
[see Fig. 2(a)], which indicates that daytime measurements
are more stable. In addition, the values of SZA and measured
albedo are too high before 8 A.M. and after 4 P.M., especially
around the sunrise and sunset. The large value of the two
parameters may cause much more uncertainties than the rel-
atively smaller variation of albedo values during the daytime.
Moreover, SZAs during the daytime from 8 A.M. to 4 P.M. can
offer sufficient angle variation [see Fig. 2(b)]. An example is
provided to describe the SZA variances at USA site 11 on the
173rd (near summer solstice, hollow triangle) and 355th (near
winter solstice, hollow circle) days in 2004 [see Fig. 2(b)],
which shows that the SZA changes dramatically over a wide
range in summer, while a relatively gentle change for SZAs
is observed in winter for SZAs larger than 50◦. Around the
overpass time of 10:30 A.M. for Landsat in Fig. 2(b) [14],
SZA variations cover a wide range from 15◦ to 75◦; this
range is sufficient to perform angular bin regression, which
usually obtains LUTs for SZAs up to 70◦ [22], [23], [26], [28].
By comparing Fig. 2(a) and (b), we can see that large albedos
(i.e., >0.3) are mainly observed away from local solar noon,
especially at large SZAs. In addition, the kernel-driven model
is usually not recommended to perform BRDF simulations at
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TABLE I

INFORMATION ON GROUND STATIONS USED FOR THE DIRECT-ESTIMATION METHOD ASSESSMENT AND VALIDATION

dusk or dawn due to the large SZAs [33], [42]. Consequently,
considering the sufficient SZAs and fewer uncertainties in the
albedo measurements, only flux records from 8 A.M. to 4 P.M.
were selected to build and assess the regression LUT of the
direct-estimation algorithm [33].

The measured albedo data set for 15 different SZAs
(i.e., 10◦, 15◦, 20◦, . . . , 75◦, and 80◦) was used to perform
the angle bin regression and to obtain the LUT for each

SZA according to previous studies [23], [28]; a total of
16 140 samples were eventually collected with SZAs near the
15 values within ±1◦ [see Fig. 2(c)]. For example, the final
regression LUT for SZA = 10◦ was calculated by using albe-
dos at SZAs of 9◦–11◦. The larger the SZAs, the greater the
variances in albedo. Generally, the data set has a wide range of
angle indexes for the anisotropy flat index (AFX) as introduced
in Section III-A and NDVI, which was calculated by using
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Fig. 2. Data set variations, including albedo, SZA, local time, NDVI, and anisotropy flat index (AFX). (a) Relationship between the local time and albedo.
(b) Relationship between the local time and SZA. (c) Relationship between the SZA and albedo. Error bars refer to one standard deviation in (a)–(c).
(d) Distributions of AFX and NDVI. (e) Relationship between the SZA and AFX in the red band. (f) Variation in the AFX in the red band for nine IGBP
types during 2004–2007.

the MODIS BRDF parameters [see Fig. 2(d)], indicating that
a comprehensive consideration has been taken in the data set
for variations in both angular and spectral domains. Notably,
half of the data set (8070 samples) was randomly selected
to build the regression LUT, and the other half were used
to assess the LUT to guarantee a completely independent
analysis with a similar sampling distribution, as shown in
Fig. 2(c) and (d). For each SZA, the training and assessment
data set had the same samples, and the number of samples can
be seen in Table II. All the large albedos were representative
of herbaceous land cover, including savanna (sites 7 and 17),
grassland (sites 9, 11, and 14), and cropland (site 13).
Measured surface albedos larger than 0.3 mainly occurred for
land surfaces without vegetation, such as in winter, and some
observed albedos were probably increased by high reflectance
caused by buildings near the observation flux tower. Except for
bare soil in winter, most of the observed areas were covered
with herbaceous vegetation, where a high SZA is mainly
responsible for the large albedos. In general, the distribution
of large albedos conforms to the SZAs and soil–vegetation
land cover variations, and therefore, the albedo training data
set can support the generalization of the algorithm.

The snow-free albedo observation data set for 17 sites dur-
ing two years includes the entire growth season of nine types
of vegetation, and thus, the final regression LUT is a gener-
alization of BRDF variations as a function of season, loca-
tion, and land cover type. The distribution of the AFX [see
Fig. 2(d)] shows a wide range of BRDF variations for the
entire training data set, and we further analyzed the BRDF
variations with changes in the SZA, time, and IGBP type
based on the AFX, as shown in Fig. 2(e) and (f) and Table II.

The statistics show that the variations in the AFX in the red
band for each SZA are generally quite broad, varying from
0.43 to 1.55. The standard deviation of the AFX changes from
0.06 to 0.21, with an average of 0.17. Seasonally, the AFX
values of most vegetation types show large variations, among
which the AFX of woody savanna remains nearly constant,
with a small standard deviation of 0.04.

In situ albedo measurements at all 47 sites across multi-
ple years were collected to validate the algorithm, as listed
in Table I, except measurements that were used to build and
assess the LUT mentioned above. Notably, very few outliers
were removed before implementing the validation, which is
obviously abnormal when examining the albedo variations
over multiple years at the 47 sites. Satellite signals (i.e., TM
TOA reflectances) for these validation sites, as introduced in
Section II-C, were used to estimate the surface shortwave
broadband albedos, and the average of the albedo measure-
ments within ±30 min near the Landsat overpass time was
used to validate the albedo estimations.

B. MODIS BRDF Parameter and Data Quality

Following the earlier direct-estimation method, TOA
reflectances are needed to build the regression LUT for surface
albedos, and these TOA reflectances have been generally simu-
lated using MODIS BRDF parameter products [22], [23], [28].
Therefore, the 500-m Collection V006 daily MODIS BRDF
model parameters (MCD43A1) with good quality (MCD43A2)
[32], [39], [43] (https://urs.earthdata.nasa.gov/) were used
to simulate the TOA reflectances in this study, which are
concurrent with the flux measurements at the first 17 sites
for 2004 and 2005. The MCD43A1 data provide the three
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TABLE II

AFX VARIATIONS IN THE RED BAND FOR THE TRAINING DATA SET

kernel coefficients of the kernel-driven BRDF model, as (1) in
Section III-A, which are retrieved by the 16-day aggregations
of multiangle reflectances from the MODIS sensors onboard
the Terra (overpass at 10:30 A.M.) and Aqua (overpass at
1:30 P.M.) satellites. Only the BRDF parameters with good
quality (full inversion, quality flag of 0/1) for the first seven
bands were used. To eliminate snow-covered pixels from these
MODIS BRDF parameters, the concurrent daily products of
MOD10A1 and MYD10A1 from the Terra and Aqua satellites
were further used to select the snow-free and cloud-free data
(snow cover flag of 0) in addition to using the MODIS BRDF
quality product (i.e., MCD43A2). Then, these high-quality
MODIS BRDF parameters were used as prior anisotropic
information to simulate the TM TOA reflectances for building
and assessing the direct-estimation algorithm LUT.

C. Landsat TM TOA Reflectance

To correct the simulated TOA reflectances and perform the
algorithm validation, satellite signals of the 30-m Landsat TM
were collected. Due to the long-time coverage (1984–2011)
of the TM sensor onboard Landsat 4 and 5, we adopted the
TM TOA reflectances. The Collection-1 L1TP digital num-
ber (DN) data, following radiometric, geometric, and terrain
corrections, were downloaded from the USGS website (https://
earthexplorer.usgs.gov/). The time and locations of these TM
reflectances are listed in Table I. Pixels with a high-quality flag

of 672 were used, which are indicative of clear days and not
affected by the saturation issue according to the Band Qual-
ity file (https://Landsat.usgs.gov/collectionqualityband). TOA
spectral reflectance data were derived from the DN value
based on the conversion coefficients provided in the metadata
file [23]. The SZA for each scene was also extracted from the
metadata file for algorithm analysis and application.

In total, two data sets of TM TOA reflectances were
collected. First, 161 sets of TOA spectral reflectances were
used to correct the TOA reflectance simulations for building
the regression LUT, which are concurrent with the flux mea-
surements at the first 17 sites in 2004 and 2005. In addition,
excluding the data used for LUT correction, 1578 sets of
data from all 47 sites in the multiple year cycle, as listed
in Table I, were collected to validate the algorithm. Among
the validation data, 687 sets of TOA spectral reflectances at
the seven SURFRAD sites were obtained. These 1578 sets
of TOA reflectances were used to estimate surface shortwave
broadband albedos using the regression LUT, and then, the dis-
crepancies between the estimated and measured albedos were
investigated.

III. METHODS

In this article, daytime time-series (30 min or 1 h) radiative
flux measurements at the first 17 representative sites over two
years, which are listed in Table I, were first used to build
and assess the regression LUT of the direct-estimation albedo
method as shown in the flowchart (see Fig. 3). Surface short-
wave broadband albedo measurements were then calculated
as the ratio of the upwelling portion to the total downwelling
solar radiation, and the corresponding SZAs were extracted
based on the measurement time and site geolocations. These
albedo measurements were used instead of simulated albe-
dos, which were derived from MODIS BRDF parameters
using the kernel-driven model in the original direct-estimation
method [23], with the aim to reduce the algorithm uncertainties
for albedo simulations.

Daily MODIS BRDF parameters that are concurrent with
these flux measurements were used to simulate the TOA
spectral reflectance at the TM bands via the direct-estimation
method [23]. The BRDF parameters and SZAs were first
input into the kernel-driven model to simulate the surface
reflectances at the TM bands based on the band conversion
coefficients between MODIS and TM [23], and the hotspot-
revised version of the BRDF model [i.e., the Ross-Thick-
Chen-Li-Sparse-Reciprocal (RTCLSR) model] was used to
obtain accurate directional reflectance [44]. Then, the surface
reflectances were transferred to TOA reflectances with the
6S atmospheric radiative transfer model by considering seven
aerosol optical depths (AODs) for continental aerosol.

The total concurrent data set (16 140 samples), includ-
ing albedo and SZA measurements as well as TOA
reflectance simulations, was randomly divided into two parts
(8070 samples for each part): one part was used to build the
regression LUT and the other part was to assess the LUT.
Thus, the data used to assess the LUT were independent of
the data used to build the direct-estimation algorithm LUT.
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Fig. 3. Assessment and correction flowchart of the direct-estimation surface
albedo algorithm for Landsat TM using time-series flux measurements. Half
of the entire data set was used to build the regression LUT (SZA1, αobs1,
and ρTOA

simu1), and the other half was used to assess the LUT (SZA2, αobs2,

and ρTOA
simu2). a Simulated shortwave broadband albedo simulations (αsimu)

are calculated using the MODIS BRDF parameters and time series of SZA1
using the RTCLSR model. b Measured TOA reflectances (ρTOA

obs ) refer to the
satellite signals (i.e., Landsat TM TOA reflectances), which are concurrent
with the half data set in building the LUTs.

By applying concurrent surface albedo measurements and
TOA signals (i.e., TOA reflectance) from the Landsat TM as
prior knowledge, a two-step correction strategy is proposed to
reduce uncertainties caused by BRDF variations and spatial
inconsistencies in the TOA reflectance simulation process.
This two-step correction method first assumes that the uncer-
tainties in the simulated MODIS albedos based on the MODIS
BRDF parameters and the kernel-driven model [33] originate
from similar BRDF shapes to varying degrees. Therefore,
the magnitude inversion method is used to linearly adjust
the BRDF parameters to meet the albedo measurement mag-
nitudes (hereinafter, correction 1). Second, the uncertainties
underlying the simulated TOA nadir reflectances that were
spectrally transferred to the TM bands may originate from the
unresolved scaling problem between the MODIS and TM data
and the atmospheric correction process according to previous
studies [23], [36]–[38], [45]. To reduce these uncertainties,
the Landsat TM signals (i.e., Landsat TM TOA reflectances)
concurrent with the flux measurements were directly used to
correct the differences (hereinafter, correction 2), although
there were fewer TM observations than flux measurements.
Notably, this correction is very straightforward for addressing
possible scale effect in the near-nadir direction; more efforts
are needed to study the scale effect in BRDF variations at
different spatial resolutions [36]–[38].

Finally, based on the first part of the entire data set, which
was used to build the LUT, two LUTs between TOA spectral
reflectance simulations at the TM bands and surface shortwave
broadband albedo measurements for different SZAs were built
before and after using the two-step correction strategy. Then,
the surface albedos were estimated from the second part of
the independent TOA reflectance simulations at certain SZAs
by using the two LUTs, and these estimations were compared
with albedo measurements to assess both LUTs. In addition,
TM TOA reflectance observations at 47 sites in a multiyear
cycle were also used to validate both LUTs.

In Sections III-A–III-D, we illustrate in detail the methods
used to build, improve, assess, and validate the regression
LUT.

A. Building the Regression LUT of the Direct-Estimation
Method Based on Flux Measurements and Concurrent
Daily MODIS BRDF Parameters

The flux measurements at 17 sites over 2 years, as men-
tioned in Section II-A, were first used to build the regres-
sion LUT of the direct-estimation method, and albedos at
15 SZAs (i.e., 10◦, 15◦, 20◦, . . . , 75◦, and 80◦) were extracted
from the data set. Then, concurrent daily MODIS BRDF
parameters were transferred to the result at the TM bands
by applying the band conversion coefficients published by
He et al. [23]. Following the traditional direct-estimation
algorithm, the kernel-driven BRDF model was adopted to
simulate the surface bidirectional reflectances because of the
model’s robust BRDF description [4], [5], [44]–[46], and the
general expression is given in (1). Here, a hotspot-revised
version of the model was used, which is called the RTCLSR
model [44]

R(θs, θv , ϕ, λ) = fiso(λ) + fvol(λ)Kvol(θs, θv , ϕ)

+ fgeo(λ)Kgeo(θs, θv , ϕ). (1)

In (1), R refers to the surface directional reflectance
as a function of three angles [SZA (θs), VZA (θv), and
RAA (ϕϕ)] and a waveband λ, which is composed of three
scattering types, including isotropic scattering (1.0), volumet-
ric scattering (Kvol), and geometric-optical scattering (Kgeo).
By inputting multiangle reflectances to the model, the three
weight coefficients of fiso, fvol, and fgeo can be determined
based on the least-squares regression. Subsequently, direc-
tional reflectances at arbitrary orientations can be simulated,
from which we can obtain the directional hemisphere albedo
[black sky albedo (BSA)] and bihemisphere albedo [white sky
albedo (WSA)], which are integrals over only the reflected
hemisphere or bihemisphere. The angle index AFX is defined
as the ratio of the WSA to fiso, which is sensitive to the
scattering type [47]. An AFX value larger than 1.0 means that
volumetric scattering is prominent, while an AFX value of less
than 1.0 indicates dominant geometric scattering.

According to the traditional direct-estimation method, direc-
tional reflectances at the land surface must be transferred
to the results above the TOA. Here, to avoid extremely
large computations, a fast and accurate atmospheric radiative
transfer model [48] was used, which can infer atmospheric
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process variables from 6S simulations based on the MODIS
BRDF parameters and aerosol types. This simplified model
has been used in the direct-estimation albedo algorithm for
MODIS and VIIRS sensors [26], [28]. Then, TOA reflectance
can be calculated by considering these variables, and the model
equations are as follows:
ρTOA(θs, θv , ϕ)

= ρ0(θs, θv , ϕ)

+ T (θs)R(θs , θv , ϕ)T (θv)−tdd(θs)tdd(θv)|R(θs, θv , ϕ)|ρ
1−rhhρ

(2)

T (θs) = [ tdd(θs) tdh(θs)
]

(3)

T (θv) = [ tdd(θv) thd(θv)
]T (4)

R(θs , θv , ϕ) =
[

rdd(θs, θv , ϕ) rdh(θs)
rhd(θv) rhh

]
(5)

where ρTOA(θs, θv , ϕ) refers to the TOA reflectance.
The four reflectance variables rdd, rdh, rhd, and rhh
included in R(θs , θv , ϕ) represent bidirectional, directional-
hemispheric, hemispheric-directional, and bihemisphere sur-
face reflectances, respectively, which can be calculated by
the kernel-driven model. The remaining six-independent
atmospheric radiative transfer variables were simulated using
the 6S model, including the downward bidirectional path
transmittance [tdd(θs)], directional-hemispheric path trans-
mittance [tdh(θs)], upward bidirectional path transmittance
[tdd(θv)], hemispheric-directional path transmittance [thd(θv)],
atmospheric path reflectance [ρ0(θs, θv , ϕ)], and spherical
albedo of the atmosphere (ρ). We used the popular “US62”
standard atmospheric model, in which water vapor, ozone, and
CO2 settings are prescribed with the change of altitude [30].
The continental aerosol type was set using seven AODs in
the 6S simulations, including 0.05, 0.10, 0.15, 0.20, 0.30,
0.40, and 0.60, as designed in previous studies [22], [23].
Subsequently, we obtained the TOA reflectances by (2) with
the aid of these four reflectance variables and six radiative
transfer variables.

Then, the concurrent surface shortwave broadband albedo
measurements and TM TOA spectral reflectance simulations
(8070 samples) at 7 AODs (8070 × 7 samples in total) were
used to perform the multiple linear regressions to obtain LUTs
at 15 SZAs. Thus, the regression LUTs between the TM
TOA spectral reflectance and the surface broadband albedos
at 15 different SZAs were built.

B. Building the Regression LUT Based on the
Proposed Two-Step Correction Strategy

To further improve the method, we investigated the uncer-
tainties underlying the method. As it is known, there remain
errors in estimating surface albedos based on the MODIS
BRDF parameters within an RMSE of 0.05 [6], [33],
[34], [40]. Therefore, we first investigated the MODIS BRDF
parameter errors in the albedo simulation. MODIS albedos
simulated by the daily MODIS BRDF parameters through the
kernel-driven model are not always consistent with albedo

Fig. 4. Uncertainties in the direct-estimation albedo method. (a) Comparison
between simulated albedos based on the MODIS BRDF parameters and
measured albedos. (b) Average and one standard deviation between the albedo
simulations and measurements. (c) Comparison of the TOA reflectances
between the simulation results for AODs of 0.05 (square) and 0.60 (dots)
and those of the TM observations in the near infrared (i.e., band 4).

measurements, as shown in Fig. 4(a). Generally, underesti-
mations are more obvious as the SZA increases, which is
in accordance with the previous validation results [33] and
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may be ascribed to the model performance at large SZAs
[4], [5]. In addition, the albedo discrepancies vary over time
during a day with a standard deviation of 0.03, and the optimal
consistencies between the simulated and measured albedos are
observed at approximately 10 A.M. and 2 P.M., which are close
to the overpass times of the Terra and Aqua satellites [see
Fig. 4(b)]. These discrepancies indicate that researchers should
be aware of the BRDF variances during the day, and albedos
simulated using the MODIS BRDF parameters are inconsistent
with the measured albedos.

Considering the albedo measurements, those measurements
that are close to the “true values” were utilized to build the
regression LUT, and thus, the main method uncertainties will
result from the TOA simulation. Consequently, we further
checked the accuracy of the final TOA reflectance simula-
tions. In total, 161 sets of TM TOA spectral reflectances,
as introduced in Section II-C, were used as the reference
data to perform the examination, which are concurrent in time
and location with the data set used to build the method. For
example, the linear fitting formulas between the 161 sets of
TOA reflectance observations and the simulations obtained
from the 6S model and surface BRDF parameters in the near-
infrared band are shown in Fig. 4(c). We can see that the
slope decreases when the AOD value increases from 0.05 to
0.60, which indicates a larger deviation at large AODs. The
slope and offset coefficients in these formulas at all bands are
listed in Table II, where the slopes decrease gradually as the
AOD increases, providing more detailed evidence. The errors
between the simulated TOA reflectances and observations may
arise from the BRDF variations from the 500-m MODIS to the
30-m Landsat data.

To reduce the uncertainties caused by data inconsistencies
between the MODIS BRDF parameters and observed albedos
and the BRDF scale differences between the MODIS and
Landsat data during TOA reflectance simulation, a two-step
correction strategy is proposed to improve the LUT regression.
Albedo measurements and TM TOA reflectances that are
concurrent with the LUT data set were introduced into the
corrections, and the detailed correction methods are illustrated
as follows.

1) Correction of MODIS BRDF Parameters Based on
Albedo Measurements Using a Magnitude Method (Correction
1): In the backup algorithm of the operational MODIS BRDF
parameter product, a magnitude inversion is performed by
assuming that the BRDF shape for a certain land cover is
broadly similar [6], [49], and a multiplicative factor is used
to adjust the three BRDF parameters to find the optimal
multiangle reflectance fitting. Similarly, we assume that each
flux site shares a similar BRDF shape that changes with
different reflectance anisotropy degrees at a certain time of day,
and the albedo uncertainties can be explained as anisotropy
degree variations. Therefore, to correct the BRDF, especially
at large SZAs, we performed the first step of the correction
strategy to linearly adjust the daily MODIS BRDF parameters
using the magnitude method to match the albedo time series
measurements (every 30 min) (correction 1).

The cost function is shown as (6), where ad just refers to
the newly introduced adjustment coefficient of the MODIS

Fig. 5. Relationship between the MODIS BRDF adjustment coefficients and
the measured albedos.

BRDF parameters and is invariable for the three kernel
parameters and the first seven bands of the MODIS sen-
sor. In (6), sw_albedoobs represents the shortwave broadband
albedo measurements, and sw_albedosimulate represents the
albedos simulated by the kernel-driven model with a general
percentage of diffuse skylight (i.e., 20%) due to the lack of
measurements from tower albedometers [23]. The narrowband-
to-broadband conversion coefficient coe(λ) for MODIS was
referenced in the results of Liang’s study [50]. Based on (6),
we aim to find the proximal adjustment coefficients of the
MODIS BRDF parameters to guarantee the closest albedo
simulations retrieved by the kernel-driven model to the actual
albedo measurements

Cost = MIN

(
adjust ∗ sw_albedosimulate

×
(

7∑
λ=1

coe(λ)(0.8 ∗ BSA(θs, λ)+0.2 ∗ WSA(λ))

)

− sw_albedoobs

)
. (6)

The MODIS BRDF parameter adjustment coefficients dur-
ing a day (see Fig. 5) are equal to the ratio of the albedo mea-
surements to albedo simulations retrieved from the MODIS
BRDF parameters based on the kernel-driven model, where
the SZA affects the BSA as well as the final ratio. Most
of the coefficients are close to unity, ranging from 0.5 to
1.5, which indicates that the BRDF changes within ±50%
for varying SZAs from 8 A.M. to 4 P.M. All 8070 sets of
MODIS BRDF parameters were adjusted based on specific
albedo measurements; then, these corrected BRDF parameters
were used for TOA simulations following the general process
introduced in Section III-A.

2) Correction of TOA Reflectance Simulations Based on
Reflectance Observations (Correction 2): To further reduce
the uncertainties caused by BRDF differences between the
500-m MODIS and 30-m Landsat data in the context of TOA
simulations, a second correction step was proposed to make
the final TOA reflectance simulations more consistent with the
observations (correction 2). The adjustment relies on the linear
fitting relationships between the 161 sets of TOA reflectance
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TABLE III

SLOPE AND OFFSET IN THE LINEAR RELATIONSHIPS BETWEEN THE OBSERVED TOA REFLECTANCES (X) AND SIMULATED REFLECTANCES (Y) FOR
CORRECTION 2

observations and the simulations obtained from surface BRDF
parameters, such as the results shown in Fig. 4(c).

The coefficients (slope and offset) in these linear relation-
ships before and after using correction 1 are shown in Table III,
and the values highlighted in bold indicate that the TOA
reflectance simulations are more consistent with reflectance
observations after using correction 1 than the results before
using correction 1 (or vice versa). All the slopes in the
relations after using correction 1 become larger than the results
before using correction 1, which indicates that correction 1 is
very helpful for obtaining accurate BRDF information for a
specific time during a day. In addition, most of the offsets in
the relations are similar before and after using correction 1
except in bands 4 and 5, which have smaller deviations
after using correction 1. As the AOD increases, the slopes
become larger, which shows greater discrepancies in the TOA
reflectance simulations than in the observations. In addition,
the consistency between the simulated TOA reflectances
and the observed reflectances changes with spectral bands,
where the results at red band 3 show high consistency, and
large errors occur at near-infrared band 4. Users can refer to
these coefficients when undertaking related studies or calcu-
lating specific results for other areas and periods.

The coefficients that are extracted from limited data after
using correction 1 for different AODs and bands were further
applied to adjust the 8070 sets of TOA spectral reflectance
simulations. Thus, the two-step correction strategy was com-
pleted. The new regression LUTs can be built based on
surface albedo measurements and corrected TOA reflectance
simulations, where the albedo measurements are from the same
data set as that used in Section III-A.

C. Assessment of the Regression LUTs Before
and After Using the Correction Strategy

The independent data set of TOA reflectance simulations at
7 AODs and 15 SZAs as well as surface albedo measurements
was used to assess the regression LUTs before and after using

such a correction strategy. Surface albedos were estimated
from these TOA reflectance simulations using the two LUTs,
and then, these estimated albedos were compared with the
measured albedos. In particular, we analyzed the accuracies
of the two LUTs in the albedo estimation with SZA changes.

D. Validation of the Algorithm Using TM TOA
Reflectances and Flux Measurements

Flux measurements and TM TOA reflectances at 47 sites for
multiple years and clear days were used to validate the two
kinds of regression LUTs before and after using the two-step
correction strategy, where albedo estimations retrieved from
TOA reflectances using these regression LUTs were compared
to ground measurements. We first analyzed the accuracy and
time continuity of albedo estimation using flux measurements
at the SURFRAD network sites. Then, a data set from
sites 1–40 and four homogeneous SURFRAD network sites
were used for the overall validation. The albedo estimation
accuracies with SZA changes were also investigated.

IV. RESULTS AND ANALYSIS

A. Assessment Results Based on Daytime Time-Series Flux
Measurements and TOA Reflectance Simulations

The comparison between estimations and measurements of
shortwave broadband albedo is shown in Fig. 6, where the
albedo estimations were completely calculated from indepen-
dent TOA reflectance simulations (8070 samples) as intro-
duced in Section II-A based on the regression LUTs before and
after using the two-step correction strategy. In a previous study
based on the albedo simulations of He et al. [23], the algorithm
shows that the RMSEs between the estimated albedos and the
simulated albedos are less than 0.03 when the SZAs are not
larger than 70◦. However, based on albedo measurements using
the LUT before using the correction strategy in this study,
the RMSEs between the estimated albedos and the measured
albedos are larger than 0.03 when the SZA exceeds 60◦

Authorized licensed use limited to: Beijing Normal University. Downloaded on March 11,2020 at 13:13:27 UTC from IEEE Xplore.  Restrictions apply. 



1560 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 3, MARCH 2020

Fig. 6. Comparison of albedo estimations retrieved from TOA reflectance simulations using regression LUTs against albedo measurements. (a)–(d) Results
based on the LUT (before correction) for the SZAs of 30◦, 45◦, 60◦, and 75◦, respectively. (e)–(h) Results based on the improved LUT (after corrections 1 and 2)
at the four typical SZAs similar to (a)–(d).

TABLE IV

ACCURACY OF SURFACE ALBEDO ESTIMATION FROM THE SIMULATED LANDSAT TM TOA REFLECTANCES

[see Fig. 6(a)–(d) and Table IV]. Apparently, the assessment
based on albedo measurements in this study shows more
uncertainties in the direct-estimation method than He’s study.
Radiometric uncertainty in either MODIS or Landsat TM data
in the training data set may cause errors. Overall, the new
assessment results based on the measured albedos are more
reliable than those of He’s study fully based on the simulated
albedos.

A better agreement between albedo estimations and albedo
measurements for each SZA is shown for the regression
LUT after using the two-step correction strategy introduced in
Section III-B [see Fig. 6(e)–(h)] than for that before using the
two-step correction strategy [see Fig. 6(a)–(d)]. From Table IV,
the RMSEs show a significant decrease after using correc-
tion 1, and then, the RMSEs are reduced by 0.0049–0.0295
for the improved LUT (after corrections 1 and 2) compared
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Fig. 7. Comparison between the albedo estimations based on the direct-estimation method and albedo measurements at sites in the SURFRAD network. (a)
Results based on the precorrection LUT. (b) Results based on the LUT after the two-step correction strategy. (c) Results based on He et al. [23]. (d) Temporal
continuity at the homogeneous TBL site. (e) Temporal continuity at the heterogeneous GWN site.

with the original LUT (before correction) when the SZA
changes from 10◦ to 80◦. Particularly, the improvements are
more prominent at large SZAs (i.e., >60◦), and the RMSE is
reduced from 0.0548 to 0.0253 when the SZA reaches 80◦. The
LUT (after correction) presents a high accuracy, with RMSEs
of less than 0.02 at SZAs ≤ 75◦. In addition, the determination
coefficient R2 is larger than 0.87 for all SZAs and gradually
increases from “before correction” to “after correction 1” and
then to “after corrections 1 and 2,” and the total accuracy is
higher than the results in Fig. 2(c) and (d) of He’s study [23].
When the SZA reaches 70◦, a total RMSE of 0.025–0.030 in
estimating the BSA and WSA is observed for He’s approach,
and the two-step correction strategy shows a significant
improvement in the albedo estimations (RMSE = 0.0148).
Therefore, compared with the results calculated from the fully
simulated data set used in He’s study, the observed albedo and
simulated TOA reflectances after applying the corrections pro-
cedures show better consistency. The basic notion that errors

increase as SZA increases remains true, which is consistent
with previous studies on the direct-estimation albedo method
[22]–[24], [26], [28]. These improvements show the potential
of the two-step correction strategy in estimating albedos with
a higher accuracy than He’s approach.

B. Validation Results Based on In Situ Measurements

The validation results for both LUT types before and
after using the two-step correction strategy proposed in
Section III-B for the seven SURFRAD sites (687 samples)
are shown in Fig. 7(a) and (b), and the results based on
He et al. [23] are shown in Fig. 7(c). Clearly, albedos show
an underestimation at the three heterogeneous sites of BON,
PSU, and GWN, which confirms the findings of earlier stud-
ies [14], [34]. Complying with the assessment result of the
method in Section IV-A, the validation results also show
better consistency between albedo estimations and albedo
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TABLE V

ACCURACY OF THE DIRECT-ESTIMATION METHOD BASED ON THE VALIDATION RESULTS

measurements for the LUT after using the two-step correction
strategy proposed in this article.

We further examined the temporal continuity of the method
at two sites from 1995 to 2011, as shown in Fig. 7(d) and (e).
There is good agreement between the estimated albedos and
the measured albedos for the homogeneous TBL site, where
large discrepancies usually occur at large SZAs that are
gathered in winter. In contrast, underestimations can easily be
seen for most periods at the heterogeneous GWN site. The
common point for the two typical sites is that the albedo
estimations for the postcorrection LUT are more consistent
(red dots) with the albedo measurements (black dots) than
those for the pre-correction LUT (blue dots).

In general, albedo estimations based on the postcorrection
LUT show fewer discrepancies with albedo measurements
than the results before correction at the SURFRAD sites,
as listed in Table V, where the errors decrease gradually from
“before correction” to “after correction 1” and then to “after
corrections 1 and 2.” The percentage of biases between the
estimated albedos and the measured albedos exceeding 0.05 is
reduced by half from 28.38% (before correction) to 14.85%
(after the two-step correction) at the seven sites, and the
overall results for the LUT after correction are also shown
(RMSE = 0.0379, bias = −0.0118, and R2 = 0.07).
In addition, the results from the four homogeneous sites
(424 samples) show a better agreement between the esti-
mated albedos using the postcorrection LUT and the measured

albedos (RMSE = 0.0254, bias = 0.0065, and R2 = 0.38)
than the results at the seven sites (687 samples), and
the percentage of albedo estimations with biases exceeding
0.05 decreases from 18.16% to 5.19%. For the LUT without
correction, the bias for the 424 sets of homogeneous data
(bias = −0.0059) is smaller than that of He’s approach
(bias = 0.0126). After using the two-step correction strategy,
the RMSEs fall from 0.0329 to 0.0254 for He’s LUT (reduced
by 22.80%), and the percentage of biases exceeding 0.05 drops
from 14.15% to 5.19% (reduced by 63.32%). The RMSEs
decrease from 0.0406 (before correction) to 0.0254 (after
two-step correction) at the four homogeneous sites, which
also demonstrates the robustness of the corrected LUT. These
improvements indicate that the two-step correction strategy
proposed in this study can practically improve the albedo
estimation accuracy of albedo estimations.

Considering the heterogeneity of sites [14], three sites in
the SURFRAD network were excluded in the final overall
validation (BON, GWN, and PSU). In total, 1315 sets of
data were collected for validation, including data at sites 1–40
and four homogeneous sites in the SURFRAD network. The
comparison of estimated albedo with the measured albedo
is shown in Fig. 8, and Table V shows the corresponding
accuracies in the albedo estimations. For the LUT without
correction, the bias for the complete data set of 1315 samples
(bias = −0.0047) is smaller than that of He’s approach
(bias = 0.0110). Notably, errors in the albedo estimations

Authorized licensed use limited to: Beijing Normal University. Downloaded on March 11,2020 at 13:13:27 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DEVELOPMENT OF THE DIRECT-ESTIMATION ALBEDO ALGORITHM FOR SNOW-FREE LANDSAT TM ALBEDO RETRIEVALS 1563

Fig. 8. Comparison between the albedo estimations based on the direct-
estimation method and the albedo measurements with SZAs increasing at all
44 sites. (a) Results for the precorrection LUT. (b) Results based on the LUT
after correction 1. (c) Results based on the LUT after the two-step correction
strategy. (d) Results based on He et al. [23].

at SZAs larger than 70◦ (RMSE = 0.0393, bias = 0.0113,
and R2 = 0.62) decrease significantly compared with the
results of He’s method (RMSE = 0.0608, bias = 0.0259,
and R2 = 0.35). This improvement demonstrates the good
consistency between the station-measured albedos and the
simulated TOA reflectances in training the regression LUT.

Similar to the results at the SURFRAD sites shown in Fig. 7,
the LUT after using the first correction further improves
the albedo estimation accuracy, especially at SZA exceeding
70◦ (RMSE = 0.0266, bias = −0.0011, and R2 = 0.79),
compared with the estimation results of He’s LUT. The second
step of the correction strategy further reduces the estimation
errors, and the albedo estimations accuracies for all SZAs are
also higher at the regression LUT after using the two-step
correction strategy (RMSE = 0.0383, bias = 0.0107, and
R2 = 0.38) than those before correction (RMSE = 0.0442,
bias = −0.0047, and R2 = 0.32). The 22.81% of estimated
albedos (before correction) are the so-called outliers with
biases exceeding 0.05, while the percentage was reduced
to 16.35% when the postcorrection LUT was used for the
estimation. As the SZA increases, larger discrepancies in
albedo estimations can be found. The RMSE increases grad-
ually from 0.0308 to 0.0440 for the first three increasing
SZA intervals, which is in accordance with the assessment
results in Fig. 2(c) and (d) of He’s study [23], Fig. 6, and
Table IV. The results for the data at SZAs larger than 70◦ show
large errors, while the insufficient number reduces reliability.
In addition, this phenomenon follows the validation results
of the MODIS BRDF/albedo product in Fig. 4(a) and Liu’s
study [33], which indicates that the accuracy of the direct-
estimation method inherits the characteristic of the original
MODIS BRDF data. Uncertainties caused by measurements at

large SZAs in the training data set may also affect the results.
There are relatively fewer SZA measurements at SZAs of less
than 20◦ and larger than 70◦ in the training data set, as shown
in Table II, and thus, these SZA ranges may have a relatively
low confidence relative to the other SZA ranges in terms of
the data sampling representativeness.

The validation results based on the LUT after using
the two-step correction strategy and He’s LUT are fur-
ther compared. For the complete data set of 1315 samples,
the RMSE of the albedo estimation for the postcorrection
LUT decreases from 0.0418 to 0.0383 calculated by He’s LUT
(reduced by 8.37%), and the percentage of biases exceeding
0.05 decreases from 19.62% to 16.35% (reduced by 16.67%).
For the results at SZAs larger than 70◦ for the complete
data set, the RMSE declines from 0.0608 to 0.0435 (reduced
by 28.45%). According to these improvements, the station-
measured albedos as well as the two-step correction strategy
used in this study help build a more accurate regression
LUT than He’s LUT, which indicates that there is better
consistency between the station-measured surface albedos and
the simulated TOA reflectances in this study than the fully
simulated training data set of previous study [23]. Overall,
the station-measured albedos as well as the two-step correction
strategy present an excellent potential to overcome spatial dif-
ferences. The validation accuracy when applying the two-step
corrections is higher than the results of previous work [23], and
the RMSEs of the 1315 sets of albedo estimations over snow-
free areas decrease from 0.0418 to 0.0383 (reduced by 8.37%).
Notably, there is a significant improvement in the albedo
estimation at SZA exceeding 70◦. In addition, the results
at the four homogeneous sites in the SURFRAD network
have a higher accuracy for the newly proposed postcorrection
LUT (i.e., RMSE = 0.0254). The validation results in this
article have made use of all Landsat TM pixels free of cloud
contamination and have not considered whether other pixels
in the whole image are contaminated. Therefore, the method
proposed in this article can be conveniently used to estimate
surface albedos as long as the pixel is cloud-free, which
guarantees more effective albedo estimations from limited
Landsat images that are frequently affected by clouds.

The RMSEs of the estimated albedos based on the two-step
correction strategy as a function of season and land cover
are shown in Table VI. Results with RMSE > 0.05 are
labeled in bold. Most land cover types in winter have RMSEs
exceeding 0.05, and the largest total RMSE is largest in winter.
Particularly, the accuracy of the albedo estimation is always
low for ENF.

Nevertheless, among the 47 reference sites, 44 are dis-
tributed over the Northern Hemisphere, and only 3 sites
are located in the Southern Hemisphere. Subsequently, some
regions have rarely been covered in the data selection, such as
tropical forested regions near the equator. Therefore, the accu-
racy of the new proposed method in these regions needs to
be investigated. In addition, considering that the kernel-driven
Ross–Li model was originally developed from vegetation
canopies and has been widely used for vegetation–soil sys-
tems, a new snow kernel that can better model the anisotropic
reflectance of pure snow in the kernel-driven BRDF model
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TABLE VI

DISTRIBUTION OF THE TOTAL RMSES BETWEEN 1315 ESTIMATED
ALBEDOS (AFTER THE TWO-STEP CORRECTION) AND

MEASURED ALBEDOS FOR DIFFERENT SEASONS

AND LAND COVER TYPES

framework has been developed [51], [52], which is expected to
improve the direct-estimation albedo algorithm for snow areas.
Although the US62 atmospheric model used for training data
set is reliable in most cases [30], the accuracy of the LUT may
be further improved if more accurate values of water vapor can
be collected. For example, some other suitable atmospheric
type or measurements of atmospheric profile according to the
spatial and temporal ranges of the training data set can be
used.

V. CONCLUSION

Coarse-resolution BRDF information is widely used as
prior knowledge for high-resolution applications. In the direct-
estimation albedo algorithm of 30-m Landsat, simulated albe-
dos from 500-m MODIS BRDF parameters are used to build
and assess the regression LUT. In this article, time-series
(30 min or 1 h) albedo measurements with sufficient SZAs
at 17 homogeneous sites worldwide over a two-year period
are first introduced. These measurements are used to build
the LUT for the nadir view Landsat TM in conjunction with
concurrent daily MODIS BRDF parameters to simulate TOA
spectral reflectances at the TM bands. Half of the data were
randomly selected to build the LUT, and the other half of the
data were used to perform the independent accuracy assess-
ment of the LUT by comparing the estimated albedos from
TOA reflectance simulations to measured albedos. In addition,
based on concurrent albedo measurements and satellite
signals (i.e., TM TOA reflectance), we proposed a two-step
correction strategy to further reduce uncertainties caused by
inconsistencies between the MODIS BRDF parameters and the
observed albedos and possible scale issues when applying the
MODIS BRDF to Landsat data. Finally, TM TOA reflectance
observations at 47 sites in a multiple year cycle were utilized
to compare and validate the two LUTs before and after using
such a correction strategy. Several findings of this study are
reported as follows.

1) These optimized albedo measurements can likely reduce
derived uncertainties by using simulated albedos when

building the LUT, which was used for albedo estimations
in a previous study [23].

2) We assessed the regression LUT using independent flux
measurements and investigated the underlying reasons
for the uncertainties. The independent assessment shows
that estimated albedo errors from TOA simulations
using the LUT before correction against measured albe-
dos mainly occur at large SZAs (RMSE > 0.03 at
SZAs ≥ 60◦). In addition, inconsistencies between the
MODIS BRDF data and albedo measurements as well
as the BRDF variations at different spatial resolutions
between MODIS and TM are most likely responsible
for these discrepancies.

3) Accordingly, we proposed a two-step correction strategy
to correct the two error sources. The magnitude method
was first used to linearly adjust the MODIS BRDF para-
meters to match the flux measurements by assuming that
BRDF shapes are similar at the same sites during a given
day. Then, satellite signals (i.e., TM TOA reflectances)
were used to correct the final TOA reflectance simu-
lations under the assumption that BRDF variation is
mainly caused by the difference in spatial resolutions
between MODIS and TM. The corrected LUT presents
an improved estimation, and the RMSEs are reduced by
0.0049–0.0295 for SZAs 10◦–80◦ (RMSEs < 0.02 at
SZAs ≤ 75◦), particularly in the case of large SZAs
(i.e., >60◦), where the improvements appear to be
the most prominent. In addition, the total accuracy of
the postcorrection LUT is higher than the results of
He’s study [23].

4) The validation results generally comply with the assess-
ment results, demonstrating that the LUT after using
such a correction strategy performs well. Among the
seven sites in the SURFRAD network, the four homo-
geneous sites show more robust estimations than the
other three heterogeneous sites, and the RMSEs are
0.0406 and 0.0254 for the LUTs before and after the
two-step correction strategy at the four homogeneous
sites, respectively. For all 44 homogeneous sites in the
multiyear cycle (1315 samples), the RMSE increases as
the SZA increases and is reduced to 0.0383 (after the
two-step correction strategy) from 0.0442 (before cor-
rection) for all SZAs. The percentage for the so-called
outliers with biases between estimations and measure-
ments exceeding 0.05 decreases from 22.81% to 16.35%.

5) Compared to the results for He’s approach, the albedo
estimation errors at SZAs exceeding 70◦ for the LUT
without correction (RMSE = 0.0393, bias = 0.0113,
and R2 = 0.62) decrease significantly compared with
the results of He’s method (RMSE = 0.0608, bias =
0.0259, and R2 = 0.35). Regarding the complete data
set of 1315 samples, the RMSE after the two-step
corrections decreases from 0.0418 to 0.0383 (reduced
by 8.37%), and the percentage of biases exceeding
0.05 decreases to from 19.62% to 16.35% (reduced
by 16.67%). Significantly, for the results at SZAs
exceeding 70◦, the RMSE for the postcorrection LUT
declines from 0.0608 to 0.0435 (reduced by 28.45%).
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In addition, the results at the four homogeneous sites
in the SURFRAD network have a higher accu-
racy for the newly proposed postcorrection LUT
(i.e., RMSE = 0.0254).

In summary, using albedo measurements to build and assess
the LUT and applying a two-step correction strategy for
correcting potential errors not considered by the original
direct-estimation albedo algorithm, these improvements show
the potential to estimate albedo at high spatial resolutions for
near-nadir-viewing sensors. Future efforts should be focused
on the cross comparison of the proposed method in this
article with several current methods of albedo inversion at
the 30-m Landsat scale. Moreover, the recently developed
snow BRDF model [51], [52] can be used to improve the
accuracy on snow albedo estimation. A more accurate fraction
of diffuse irradiance based on measurements or simulations
from AODs, SZAs, bands, and aerosol model types [26], [53]
is necessary, which may help improve the adjustment accuracy
of the MODIS BRDF parameters during the first correction
step. In addition, this method may be further investigated
for application to other near-nadir-viewing satellites, such
as Sentinel 2A.
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