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Abstract: Accurate mapping of winter wheat over a large area is of great significance for guiding
policy formulation related to food security, farmland management, and the international food trade.
Due to the complex phenological features of winter wheat, the cloud contamination in time-series
imagery, and the influence of the soil/snow background on vegetation indices, there remains no
effective method for mapping winter wheat at a medium spatial resolution (10–30 m). In this study,
we proposed a novel method called phenology-time weighted dynamic time warping (PT-DTW) for
identifying winter wheat based on Sentinel 2A/B time-series data. The main advantages of PT-DTW
include (1) the use of phenological features in two periods, i.e., the greenness increase before winter
and greenness decrease after heading, which are common to all winter wheat and are distinct from
the features of other land cover types, and (2) the use of the normalized differential phenology
index (NDPI) instead of traditional vegetation indices to provide more robust vegetation information
and to suppress the adverse impacts of soil and snow cover, especially during the before-winter
growth period. The proposed PT-DTW method was employed for winter wheat mapping based on
Sentinel 2A/B data on the Huang-Huai Plain, China. Validation with visually interpreted samples
showed that the produced winter wheat map achieved an overall classification accuracy of 89.98%
and a kappa coefficient of 0.7978, outperforming previous winter wheat classification methods.
Moreover, the planting area derived from PT-DTW agreed well with census data at the municipal
level, with a coefficient of determination of 0.8638, indicating that the winter wheat map produced
at 20 m resolution was reliable overall. Therefore, the PT-DTW method is recommended for winter
wheat mapping over large areas.

Keywords: winter wheat mapping; phenology variability; Sentinel 2; normalized differential
phenology index (NDPI); phenology-time weighted dynamic time warping (PT-DTW)

1. Introduction

Wheat is a grain crop that is cultivated worldwide and provides nearly 20% of all calories
consumed due to its strong adaptability to various temperature and water conditions [1]. As the
country with the greatest wheat consumption worldwide, China maintains a vast wheat cultivation
area to ensure its food security [2]. The winter wheat cultivation region in North China is the
largest wheat-producing area in China and is experiencing considerable effects from climate change,
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alterations in food preferences, and the international food trade [3,4]. Accurate and timely mapping
of winter wheat in the area is indispensable for formulating policies with respect to food security,
agriculture structure adjustment, and the international food trade. Remote sensing techniques therefore
play a unique role in monitoring the planting areas of winter wheat for intensive observation in both
spatial and temporal respects.

Winter wheat has unique phenological features, including several important phenology stages
during its life cycle: sowing, seedling, tillering, overwintering, greening-up, jointing, heading, grouting,
maturity, and harvesting. Such a growth process can be observed by the curve of the vegetation index
(VI) time series (called the VI curve below) derived from remotely sensed data (Figure 1a). Generally,
the VI curve of winter wheat exhibits a unique pattern with two peaks, at the tillering and heading
stages. Most remote sensing-based mapping methods use this phenological feature [5–12] and have
achieved satisfactory results in small areas. However, the unique phenological features of winter wheat
can be interfered and become inconspicuous or obscured in larger areas with various agroclimatic
conditions. For example, the VI curves display large shifts and distortions across large areas (Figure 1b
as an example). In addition, the VI peak at the tillering stage before winter is usually not obvious
due to the varying growth status after tillering and the effects of the soil background and snow cover.
Accordingly, accurate winter wheat mapping over a large area is still a major challenge due to the high
intraclass variability of winter wheat [13–17].
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Figure 1. (a) Normalized differential phenology index (NDPI) [18] curves and the corresponding
phenological stages of winter wheat. (b) NDPI curves of winter wheat from different locations in North
China. NDPI curves in (a,b) are derived from sentinel-2 MSI data. Curve D is from a location of a
rotation of winter wheat and summer corn.
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Generally, remote sensing-based methods for winter wheat mapping can be grouped into
three types: classification-based methods, index-based methods, and curve similarity-based methods.
The first type of method is the classification of one or two satellite images acquired at particular
phenology stages, such as at two peak occurrence periods [5–11]. Unfortunately, the opportunity to
acquire high-quality images covering a large area within a specific period is usually limited by long
satellite revisit cycles and cloud contamination. Moreover, the collection of a large number of training
data covering a large area not only is time consuming, but also has a high field cost. Accordingly,
winter wheat mapping over large areas using classification-based methods is not a reasonable solution.

In the second type of method, the VI curve is employed to design specific indices for winter wheat
based on its unique phenological features. For example, Pan et al. [8] developed a crop proportion
phenology index (CPPI) that used enhanced vegetation index (EVI) values related to the seedling,
tillering, heading, and harvesting stages. The CPPI was demonstrated to have a good ability to estimate
the winter wheat fraction in a 250 m MODIS pixel through experiments in two small agricultural
regions in Beijing and Jiangsu provinces of China. Tao et al. [19] used mathematical transformation to
generate the peak before winter feature (PBWF) index associated with the EVI peak amplitude before
winter to map winter wheat on the North China Plain, although PBWF neglects the phenological
feature variability over large areas. Qiu et al. [14] also proposed two winter wheat indices representing
ascending and descending trends before and after the heading date, while ignoring the VI increase
before winter. These winter wheat indices typically require prior knowledge of important phenology
dates for each pixel due to the large phenological shifts over large areas (see Figure 1b). To address this
issue, based on phenological observation data from agrometeorological stations, Qiu et al. [14] built a
regression model for the heading date (also the early growing period length) with latitude and altitude,
with which the important phenology dates in a specific location can be estimated. Nevertheless,
the accuracy of the regression model remains inadequate because the spatial variation in phenology
dates is also affected by factors other than latitude and altitude. Meanwhile, such prior knowledge
collection or estimation is usually difficult without intensive field surveys or auxiliary data support,
which hinders the wide application of this kind of method over large areas [13,15,17].

In the third group of methods, winter wheat is identified by a VI curve similarity measurement
without requiring any prior knowledge of important phenology stages. Sun et al. [9] used the Euclidean
distance to measure the similarity between any EVI2 curve and a reference EVI2 curve of winter wheat,
although the Euclidean distance has limited tolerance for the shifts and distortion of winter wheat curves.
Zhang et al. [10] mapped winter wheat in Luoyang city, China with a Kullback–Leibler divergence
(KLD)-based method, which was proven effective for land cover classification [20], whereas the KLD
classifier lacks verification of winter wheat mapping over larger areas.

Recently, the dynamic time warping (DTW) algorithm, which was originally proposed for speech
recognition [21], has also been used in land cover classification [22–25] due to its ability to tolerate both
the shifts and distortions of VI curves. The original DTW identifies the best alignment between two VI
curves based on the Euclidean distance without any constraints, which often leads to unreasonable
alignment. To address this issue, warping time constraints and a distortion penalty are often imposed
to restrict the warping range. For example, Petitjean et al. [26] introduced a constant elapsed time
constraint into DTW. Maus et al. [27] proposed time-weighted DTW (TWDTW) with a penalty
strategy. The TWDTW method has been successfully utilized for multicrop mapping [28]. Due to the
sufficient flexibility of DTW and the considerable efforts devoted to improving DTW performance,
the DTW algorithm has been successfully employed for land cover and crop type mapping over large
areas [27–31]. Unfortunately, DTW has been applied to winter wheat mapping in only a very limited
number of studies [28], possibly due to the more complex characteristics of winter wheat VI curves.
The application of DTW to winter wheat mapping over large areas faces the following challenges:
(1) how to utilize the special phenological features of winter wheat and (2) how to improve the quality
of VI data, especially in the early development stages during which VIs are easily affected by soil
background and snow cover.
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To address these two challenges, a new curve matching method was developed in this study,
termed phenology-time weighted dynamic time warping (PT-DTW), which specifically considers the
phenological features of winter wheat. In addition, the normalized differential phenology index (NDPI),
also called NDVI+ [18,32], was employed instead of a traditional vegetation index (e.g., NDVI or EVI)
to mitigate the effects of the snow and soil background. With the proposed method, winter wheat on
the Huang-Huai Plain in North China was mapped at 20 m resolution based on Sentinel 2A/B data,
considering the high resolution of Sentinel 2A/B data in both the spatial and temporal dimensions.

2. Materials and Methods

2.1. Study Area and Datasets

The Huang-Huai Plain, located at 29.08◦N–42.67◦N latitude and 105.18◦E–122.70◦E longitude
(Figure 2), is the largest wheat production zone in China [33] and accounts for 44% of the wheat
planting area and 60% of the total wheat production in the country [34]. In this region, there is
commonly a rotation between winter wheat and corn/paddy rice, which means that winter wheat is
sown after corn/paddy rice harvesting and that corn/paddy rice is planted after the harvesting of winter
wheat [2]. Winter wheat is sown in September or October and harvested in May or June of the following
year [5]. As the climatic conditions vary widely over the study area, shown by the 2015 annual average
air temperature (http://www.resdc.cn/data.aspx?DATAID=228) in Figure 2, there is large intraclass
variability in the VI curves of winter wheat in different locations (Figure 1b). In general, the seedling
date advances and the heading date is delayed from south to north, leading to a large distortion in the
VI curves of winter wheat across the study area. In addition, from north to south, the before-winter
peak becomes less obvious due to the higher temperatures in winter in the southern region.
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Sentinel 2 is a European wide-swath, high-resolution, multispectral imaging mission. Two identical
satellites (Sentinel 2A/B) provide remotely sensed data with a short revisit cycle (2–3 days at
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mid-latitudes) and high spatial resolution (10, 20, and 60 m for different spectral bands). A total of
184 tiles of Sentinel 2A/B images cover the entire study area, and all images with less than 80% cloud
coverage from September 2017 to June 2018 were downloaded (https://earthexplorer.usgs.gov/). All of
the images were used to reconstruct high-quality NDPI curves throughout the growth period of winter
wheat (see Section 2.2.1).

The ground truth data were interpreted through high-resolution images acquired at 495 sites
in five subregions for winter wheat mapping and accuracy assessment (Figure 3). The layout of
these sites was designated along north–south and east–west transects to ensure coverage of multiple
agroclimatic zones. The high-resolution images were acquired by an unmanned aerial vehicle system
(DJI FC6310) in the growing season of 2017–2018 or Google Earth imagery captured in the winter
of 2017. At each sampling site, the corresponding winter wheat patches were visually interpreted
using the high-resolution imagery. Then, the interpreted maps were projected to the corresponding
20 m Sentinel pixels (Figure 3). In total, 62,239 ground-truth pixels with 20 m spatial resolution were
collected for accuracy evaluation including 27,669 winter wheat and 34,570 other pixels (including
forest, barren land, artificial surface, vegetable, paddy rice, water, and grass/shrub land). For the
determination of method parameters 80 samples from pure pixels were selected (Section 2.2.3.1),
and all the others were used for accuracy assessment. In addition, agricultural census data from
61 municipalities of Beijing, Henan, Anhui, Shandong, Shanxi, Shaanxi, and Anhui in 2017 were
acquired from the EPS China Data Platform (http://www.epschinadata.com/). The census data were
used to evaluate the overall reliability of the identification of planting areas of winter wheat at the
municipal level.
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for winter wheat mapping. (a) Reconstructing high-quality NDPI time series. (b) Optimizing the
parameters of the PT-DTW method using simulated samples. (c) Identifying winter wheat and
performing accuracy assessment.

2.2.1. Reconstruction of High-quality NDPI Curves

NDPI curves were derived from the multispectral bands of Sentinel 2A/B MSI data in this
step. Firstly, the Sentinel 2 data were atmospherically corrected by Sen2Cor (http://step.esa.int/main/

third-party-plugins-2/sen2cor/). Secondly, the images of the red (band 4), near-infrared (band 8),
and shortwave infrared (band11) bands were all resampled to 20 m spatial resolution, the channel
information was listed in Table 1. The NDPI was thus calculated as follows:

NDPI =
ρNIR − (α× ρR + (1− α) × ρSWIR)

ρNIR + (α× ρR + (1− α) × ρSWIR)
(1)

where α was set to 0.74, its most effective value for suppressing the variability of the soil and
snow backgrounds [18,32]. Thirdly, the NDPI curve was composited with a seven-day maximum
composing criterion. We used all of the images with less than 80% cloud contamination, but there
was still a lack of observations on some dates and in some areas. To address this issue, the missing
observations were linearly interpolated from the valid values on the two nearest dates before and after
the missing observations. Finally, Savitzky–Golay filtering for vegetation index reconstruction [35]
was performed to reduce the atmospheric effects further and to generate the seven-day NDPI curves at
20 m spatial resolution.

Table 1. Information of Sentinel 2A/B MSI channels used to calculate NDPI.

Spatial Resolution
(m)

Band Number

S2A S2B

Central Wavelength
(nm)

Bandwidth
(nm)

Central Wavelength
(nm)

Bandwidth
(nm)

10 4 664.6 31 664.9 31
10 8 832.8 106 832.9 106
20 11 1613.7 91 1610.4 94

http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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2.2.2. Development of the PT-DTW Method

As mentioned before, the phenological features of winter wheat varied widely over large areas
(Figure 1b). More specifically, winter wheat is sown later and harvested earlier and thus experiences a
shorter growing period from north to south because of the warmer climatic conditions in the south.
There is additional and obvious intraclass variation induced by the different growing statuses in
winter. In colder areas, winter wheat stops growing and goes dormant in winter and becomes green in
early spring. This pattern creates a U-shaped valley in the NDPI curve. Whereas in warmer areas,
winter wheat grows continuously through winter and early spring, displaying an insignificant valley
in the NDPI curve. These complex features of the NDPI curves may explain why DTW-based methods
are not widely used for winter wheat mapping. Fortunately, the winter wheat across the study area
also shares common NDPI characteristics in two periods (Figure 5a), i.e., increase before winter and
decrease after heading (see the areas with the light yellow background in Figure 5a). These features are
not only common features of all winter wheat, but are also distinct from the features of other land
cover types. Accordingly, it is still possible to apply the DTW-based method in winter wheat mapping
over larger areas if these common phenological features can be enhanced. Therefore, the proposed
PT-DTW imposes greater weights on these two important periods when calculating the DTW distance
(Figure 5b). The details of the PT-DTW are as follows.
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Classical DTW Algorithm

The classical DTW algorithm aims to search for optimal alignment of the target and reference curves,
which correspond to the warping with the shortest distance between the two curves. Suppose that there
are two curves, U = (u1, u2, u3, . . . , um) and R = (r1, r2, r3, . . . , rn), denoting the target and reference
curves (Figure 6a), respectively. An m×n matrix dm × n (Figure 6a) is constructed to denote the
distances between the pairs of elements in the two curves:

dm× n =


d1,1 d1,2 . . . d1,n
d2,1 d2,2 . . . d2,n

. . . . . . . . . . . .
dm,1 dm,2 . . . dm,n

 (2)

where each element in the matrix dm× n is defined as di, j =
∣∣∣ui− rj

∣∣∣. Then, an accumulated distance
matrix D is computed by a recursive sum of the minimal distances, such that

Di, j = di, j + min
{
Di−1, j−1, Di−1, j, Di, j−1

}
(3)
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Then, the warping path P = (P1, P2, . . . , PL) in matrix d is determined through the reverse
algorithm (Figure 6a). P preserves the indices of the matching elements between the two curves,
also called alignment of two curves (Figure 6b). P starts with P1 = (1, 1) and ends with PL = (m, n).
The searching algorithm of P is as follows:

Pl−1 =


i, j− 1, if i = 1
i− 1, j, if j = 1
argmin(Di−1, j, Di−1, j−1, Di, j−1), otherwise

, where Pl= (i, j) (5)

Finally, the shortest warping path P is acquired, and the corresponding DTW distance between U
and R is:

δDTW =
1
L

Dm,n (6)

where L is the length of P. Equation (3) guarantees the monotonicity and continuity condition [29].
Equations (4) and (6) guarantee that the shortest warping path is restricted to starting with ‘beginning
to beginning’ and terminating with ‘ending to ending’.

Logistic Time Penalty

Considering that an excessively large distortion is unreasonable for NDPI curve matching, logistic
TWDTW [27] was utilized to avoid the excessively large distortions in classical DTW. A strategy was
used that assigns a penalty weight to each element in the distance matrix:

di, j =
∣∣∣ui − rj

∣∣∣+ Mi, j (7)
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where Mi,j is the penalty weight following a logistic function with midpoint β and steepness α:

Mi, j =
1

1 + e−α(|ti−t j |−β)
(8)

We set α = 0.1 and β = 100 according to the recommendation of Maus et al. [27]. With this penalty
on the distance, the unreasonably large distortion of classic DTW can be avoided.

PT-DTW

PT-DTW is specifically designed for winter wheat identification by increasing the importance of the
two feature periods and decreasing the impacts of other periods. Specifically, the distances associated
with the two feature periods (VI increase before winter and VI decrease after heading) (Figure 5b) were
given greater weights, and the other distances were given smaller weights. The phenological weighted
function was designed as shown in Equation (9):

wi, j =

{
ω/N1, j ∈ [8, 16] or j ∈ [33, 41]
(1−ω)/N2, j ∈ other bands

(9)

where N1 is the total number of alignment associated with the two feature periods of the reference
curve; N2 is the total number of alignment associated with the nonfeature periods; ω is the parameter
controlling the weight allocation, which was optimized in the simulation experiment (Section 2.2.3);
j is the time-phase index in the reference NDPI curve; and Phases 8, 16, 33, and 41 correspond to
the NDPI values on 2017/298 (Julian day 298 of the year 2017), 2017/354, 2018/108, and 2018/164,
respectively, corresponding to the starting and ending dates of the two feature periods. The timings
of the two periods were determined based on the NDPI reference curve of winter wheat (details in
Section 2.2.3.1). By combining the phenological weights, the PT-DTW distance between the reference
and target curve is:

δPT−DTW =
∑

(i, j)∈P

di, jwi, j (10)

A smaller PT-DTW distance indicates a higher similarity between the reference and target curve,
and winter wheat pixels can be distinguished from others if the distance is less than a certain threshold
(T; Equation (11)):

δPT−DTW < T (11)

The threshold was also optimized in the simulation experiment (Section 2.2.3).

2.2.3. Determination of PT-DTW Parameters

Several parameters need to be determined for the use of PT-DTW classification, including
the NDPI reference curve of winter wheat, phenological weight (ω), and threshold (T). Typically,
parameter optimization relies on large training samples. To avoid a large sample collection effort,
we designed a simulation experiment to expand the small sample set to a large simulated dataset by
using a linear spectral mixing (LSM) model [36,37]. As shown in Figure 4b, 80 manually interpreted
samples of different land cover types were firstly collected, one of which was determined to be the
reference NDPI curve; then, a large simulated sample set was generated by using a linear mixture
model; finally, the parameters ω and T were optimized such that they yielded the highest classification
accuracy for the simulated dataset. The details are as follows.

2.2.3.1. Collection of Samples and Determination of the NDPI Reference Curve for Winter Wheat

Based on prior knowledge of the study area, eight land cover types were considered: winter wheat,
paddy rice, vegetable, water, artificial surface, forest, grass/shrub land, and barren land. Ten NDPI
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curves for each land cover type were selected across the study area with reference to high-resolution
Google Earth imagery. In total, 80 NDPI curves were selected as initial samples

Regarding the NDPI reference curve, an ideal reference curve should lie in the center of all winter
wheat curves. Therefore, the NDPI reference curve for winter wheat was determined as the one with
the minimum average Euclidean distance from the nine other winter wheat curves (Figure 7).
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2.2.3.2. Sample Set Expansion by Using an LSM Model

Considering that the initial sample set, which included only 80 NDPI curves (Figure 8a), was too
small to optimize the PT-DTW parameters effectively, the sample set was expanded to a large dataset by
using a linear spectral mixing (LSM) model (Figure 8). Mixed NDPI curves were simulated by mixing
the NDPI curves of winter wheat endmembers with the NDPI curves of other land cover endmembers.
Here, a three-endmember mixture model was considered because it covered most mixing scenarios.

NDPImix = fwheatNDPIwheat + fnonwheat1 NDPInonwheat1 + fnonwheat2 NDPInonwheat2

subject to fwheat + fnonwheat1 + fnonwheat2 = 1
(12)

where f wheat is the fraction of wheat endmember, and f nonwheat1 and f nonwheat2 are the fractions of the
two nonwheat endmembers. f wheat, f nonwheat1, and f nonwheat2 were generated from the probability
density functions shown in Figure 8b. Such distributions guarantee a uniform distribution (0–1) of
the wheat fraction and sum-to-one constraint for the three endmembers. Details about the generation
process are introduced in the supplementary material. In total, 20,000 mixed NDPI curves were
simulated, among which 10,000 were positive samples (f wheat > 50%) and the other 10,000 were
negative samples (f wheat < 50%) as shown in Figure 8c.

2.2.3.3. Parameter Optimization

We varied ω from 0.1 to 1.0 in increments of 0.1 and varied T from the minimum value to the
maximum value in 300 steps. Under each ω, the minimum and maximum T are the median PT-DTW
distances of the positive and negative samples, respectively. Then, we classified the simulated dataset
by using PT-DTW and calculated the overall accuracy with each combination of ω and T (Figure 9).
With this optimization procedure, the optimal values of ω = 1 and T = 0.0765, corresponding to the
highest overall accuracy (OA; 92.85%), were acquired. As shown in Figure 9b, a large class separability
between the positive and negative samples was acquired when ω was equal to 1, indicating that it is a
good proxy for distinguishing winter wheat from other land cover types.
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2.2.4. Winter Wheat Mapping and Accuracy Assessment

With the parameters determined above, the PT-DTW distance to the NDPI reference curve of
winter wheat was calculated. Finally, the winter wheat pixels in the study area were extracted with the
optimal threshold (T = 0.0765). The TWDTW method [27], CBAH method [14], and KLD method [10]
were used to map the winter wheat for comparison. The thresholds in the TWDTW, CBAH, and KLD
methods were also optimized by performing similar simulation experiments. The overall accuracies
and kappa coefficients of these four methods were calculated based on the visually interpreted samples.
In addition, the winter wheat areas extracted using the four methods were compared with agricultural
census data at the municipal level.

3. Results

3.1. Sentinel 2-Derived Winter Wheat Map for 2017–2018 by PT-DTW Method

Based on Sentinel 2A/B data, a winter wheat map at 20 m resolution was produced using the
proposed PT-DTW method. As shown in Figure 10, winter wheat was mainly distributed in Henan
and Jiangsu Provinces, Northern Anhui Province, Southern Hebei Province, and Western Shandong
Province, which is generally consistent with the results of previous studies [14,18]. The zoomed-in
images in Figure 10 show rich spatial details of the winter wheat cropland, and the cultivated parcels
are easily recognizable. Considering the fragmented crop cultivation in North China, a 20-m-resolution
winter wheat map can provide valuable information for cropland management and policy making.
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3.2. Quantitative Evaluation

The classification accuracies of the PT-DTW, TWDTW, CBAH, and KLD methods were evaluated
with 62,239 ground-truth pixels, including 27,669 winter wheat and 34,570 other pixels. Table 2
shows the confusion matrixes and classification accuracy indices of these four methods. The proposed
PT-DTW method provides the highest accuracy. The CBAH method also achieves satisfactory accuracy,
whereas the TWDTW and KLD methods yield poor classification accuracy.

Table 2. Accuracy assessment of four methods. Expressed in number of pixels.

Reference Samples

Sentinel 2 NDPI Classification

PT-DTW TWDTW CBAH KLD

Winter
Wheat Others PA (%) Winter

Wheat Others PA (%) Winter
Wheat Others PA (%) Winter

Wheat Others PA(%)

Winter wheat 25,066 2603 90.6 24,090 3579 87.1 25,103 2566 90.7 18,415 9254 66.6
Others 3634 30,936 89.5 8547 26,023 75.3 4954 29,616 85.7 6520 28,050 81.1
UA (%) 87.3 92.2 73.8 87.9 83.5 92.0 73.9 75.2
OA (%) 89.9 80.5 87.9 74.7
Kappa 0.798 0.612 0.757 0.482

PA: producer accuracy; UA: user accuracy; OA: overall accuracy.

The winter wheat pixels derived from Sentinel 2A/B data were aggregated to the municipal level
for comparison with the census data, i.e., the municipal-level seeded area of winter wheat in 2017.
The cultivated areas of winter wheat estimated using the PT-DTW method matched best with the
agricultural census data at the municipal level with a coefficient of determination of 0.8638 and a mean
absolute error of 858.8412 km2, although slight overestimation can be found in the municipalities
with larger areas of winter wheat (Figure 11a). In contrast, the TWDTW method shows significant
overestimation in the municipalities with small areas of winter wheat, and the KLD method shows the
largest deviation from the census data. There is also obvious overestimation of the areas estimated by
CBAH, especially in the municipalities with small areas of winter wheat, despite good correlations
with the census data in other municipalities.

3.3. Comparison of Spatial Details

Typical mapping examples of four locations were compared to show the differences among the
PT-DTW, CBAH, KLD, and TWDTW methods (Figure 12). In general, the PT-DTW-derived maps show
good consistency with the distribution of winter wheat, whereas the other methods produced more
classification errors to different degrees. As shown in Figure 12I, II, the KLD-derived winter wheat
map is weakly consistent with the spatial pattern of winter wheat patches and has large omission
and commission errors. Two shortcomings resulted in the poor performance of the KLD method in
winter wheat mapping. Firstly, without reasonable alignment between the target and reference NDPI
curves, the KL divergence could not suppress the winter wheat variability across large areas. Secondly,
the KLD is a general measure of curve similarity and does not include any consideration of the specific
phenology features of winter wheat. The CBAH method is much better for winter wheat mapping.
The unique phenological characteristics of winter wheat (i.e., the VI ascending and descending
trends before and after heading) are utilized in CBAH classification. However, CBAH overlooks the
greenness increase before winter and misclassifies some spring-sown and summer-harvested crops
as winter wheat (Figure 12 III). Moreover, latitude and altitude are not sufficient to capture all of
the variations in sowing and heading date, which are also probably influenced by the local climate
and field management. As an example, in Figure 12 IV, the predicted heading date (DOY 2018113) is
earlier than the true heading date (DOY 2018136), leading to some omission error in winter wheat
mapping. The TWDTW method, without the consideration of specific phenology periods of winter
wheat, yielded poor classification accuracy. TWDTW misclassified forests in mountainous areas
(Figure 12 II) and spring-sown crops (Figure 12 III) as winter wheat and produced salt and pepper noise
in the patch of winter wheat cropland (Figure 12 I). Compared to the published methods, PT-DTW
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produced the best winter wheat map due to its effective alignment and its consideration of the specific
phenology periods in curve matching.
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Figure 12. Comparison of spatial details of four example locations, location I (38.6508◦N, 115.2872◦E),
II (32.5539◦N, 111.0283◦E), III (37.8897◦N, 115.4178◦E), and IV (33.5343◦N,120.2 565◦E). (a) Sentinel-2
RGB composite images in December. Winter wheat maps derived using the (b) PT-DTW method,
(c) TWDTW method, (d) CBAH method, and (e) KLD method. (f) NDPI curves of pixels in the target(tar)
regions denoting by red circles and the reference(ref) curve used in PT-DTW method. In the NDPI
curve of site IV, the filled and unfilled green circle indicates the real heading date (Real HDD) and the
CBAH method estimated heading date (CBAH HDD).

4. Discussion

4.1. Superiority of NDPI

The NDPI is a newly developed VI that has the advantages of strengthening vegetation information
and suppressing soil color variation and snow cover compared to traditional Vis [18,32]. Early growth
before winter is the important phenology feature used in PT-DTW to identify winter wheat. However,
as winter wheat grows weakly with a low leaf area during that period, traditional VIs may be influenced
considerably by the snow and soil background. Therefore, the NDPI was used instead of the NDVI
and EVI to capture the weak greenness signal of winter wheat more effectively. To verify whether the
NDPI outperforms other VIs in capturing the increase in greenness before winter, the NDPI curves
were compared with the NDVI, EVI, and EVI2 curves based on the visually interpreted winter wheat
samples. As shown in Figure 13a, the average NDPI curve of winter wheat shows a more obvious
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increase before winter than the curve of the other VIs. To express the magnitude of the increase
quantitatively, a before-winter growth index (BWGI) was calculated for the different VIs:

BWGI = VImax −VImin (13)

where VImax is the maximum VI of winter wheat during the winter growing season and VImin is the
minimum VI before the winter peak. Specifically, we identified the maximum VI between 01 November
2017 and 31 December 2017 as VImax and the minimum VI between 01 October 2017 and 31 November
2017 as VImin. As shown in Figure 13b, the BWGI of NDPI is significantly larger than those of NDVI,
EVI, and EVI2 (p < 0.01 in a t-test), indicating that NDPI captured the winter wheat growth before
winter more effectively than NDVI, EVI, and EVI2.
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Figure 13. Comparison of four vegetation index (VI) curves of winter wheat in the period of before-winter
growth. (a) Average VI curves of visually interpreted winter wheat pixels. (b) before-winter growth
index (BWGI) statistics of the four VIs. The red line and blue box represent the median value and
25th–75th percentiles. The whisker covers the data values within ±3σ.

4.2. Benefits of the PT-DTW Method

To illustrate the benefits of PT-DTW quantitatively, we further compared the two-class separability,
as well as the interclass and intraclass variability, of the PT-DTW, TWDTW, and traditional Euclidean
distances of the simulated and visually interpreted samples. All three distances measure the similarity
between two curves based on Euclidean distances, while TWDTW and PT-DTW improve the Euclidean
distance by including specific curve alignment and phenological feature weighting considerations.
To verify the effectiveness of the two abovementioned enhancements, the two-class separability is
defined as follows [38,39]:

M =

∣∣∣µw − µo
∣∣∣

σw + σo
(14)

where µw and µo are the mean values for the winter wheat and other samples, respectively;
∣∣∣µw − µo

∣∣∣
denotes the interclass variability; and σw and σo are the standard deviations of winter wheat and
other land cover types, denoting the intraclass variability. As shown in Figure 14, the PT-DTW
distance produces the most distinctive histograms between winter wheat and other land cover types
among the three distances, followed by the TWDTW and Euclidean distances. Table 3 provides more
detailed information about the two-class separability, interclass variability, and intraclass variability.
The TWDTW and PT-DTW distances show much smaller intraclass variability of winter wheat than
the Euclidean distance (Table 3), indicating that DTW-based alignment can effectively tolerate the
shifts and distortions of the NDPI curves of winter wheat. Despite its effectiveness in suppressing the
intraclass variability of winter wheat, the classification accuracy of TWDTW is only slightly higher than
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that of the Euclidean distance, because the interclass variability is also reduced. With the optimization
of phenology weighting, PT-DTW greatly increased the interclass variability while simultaneously
maintaining low intraclass variability (Table 3), suggesting that weighting on certain phenology
periods successfully enhanced the distinctive features of winter wheat. In summary, the above results
confirmed the effectiveness of TWDTW alignment and phenology weighting in extracting winter wheat
with PT-DTW.
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Figure 14. (a) Euclidean distance, (b) TWDTW distance, and (c) PT-DTW distance of simulated and
visually interpreted winter wheat and other samples.

Table 3. Comparison of Euclidean distance-based methods through simulated and field samples.

Simulated Samples Visually Interpreted Samples

Euc-dist TWDTW PT-DTW Euc-dist TWDTW PT-DTW

M 0.7206 0.7908 1.1532 0.7131 0.7548 1.0251
|µw − µo| 0.0867 0.0929 0.1515 0.0787 0.0722 0.1261
σw 0.0437 0.0264 0.0266 0.0477 0.0251 0.0332
σo 0.0766 0.0910 0.1048 0.0628 0.0705 0.0898

OA 82.04% 83.83% 92.85% 76.92% 80.52% 89.98%

OA: overall accuracy.

4.3. Transferability of PT-DTW Method

Winter wheat phenology is dominated by climatic factors and field management. Thus,
the phenology shifts appear not only over large areas, but also across different years. To validate
whether the PT-DTW method can be applied to other years, one tile of the Sentinel 2 (50SLH) NDPI
time series from 2018-2019 was used to derive the winter wheat map through PT-DTW with the
same parameters employed in the 2017–2018 mapping. The winter wheat cultivation in this area
located in Hebei province, experienced some changes because of the new crop rotation and fallow
policy implemented since 2016 [40,41]. As shown in Figure 15, the transitions between the winter
wheat and fallow land were successfully detected by the PT-DTW method without retraining the
PT-DTW parameters. The land cover types of 3786 cloud-free pixels were interpreted visually through
images acquired in 2017/12/24 and 2018/12/09, considering that winter wheat shows greenness within
cropland in winter. The change detection accuracy was then evaluated, as shown in Table 4. An OA of
93.66% in change detection indicates the great potential of PT-DTW for rapid winter wheat mapping in
multiple years. Although some of the published methods, such as CBAH, can achieve comparable
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accuracy with the support of auxiliary data, as mentioned in Sections 3.2 and 3.3, the PT-DTW method
is proven to be more flexible and practical, given the lower demand for auxiliary data and great
temporal transferability.
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Figure 15. Sentinel-2 RGB images acquired on 24 December 2017 and 09 December 2018,
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Table 4. Winter wheat change detection accuracy assessment. Expressed in number of pixels.

PT-DTW Detected

Unchanged
Winter Wheat Unchanged others Winter Wheat Gain Winter Wheat Loss Total UA

Reference
samples

Unchanged winter wheat 817 0 53 3 873 93.58%
Unchanged others 0 946 0 0 946 100%
Winter wheat gain 23 74 879 2 978 89.87%
Winter wheat loss 0 85 0 904 989 91.40%

Total 840 1,105 932 909 3,786
PA 97.26% 85.61% 94.31% 99.44%
OA 93.66%

Kappa 0.9154

PA: producer accuracy; UA: user accuracy; OA: overall accuracy.

In addition to the temporal transferability of winter wheat mapping, the proposed PT-DTW has
the potential to be modified for mapping other crops besides winter wheat. Although PT-DTW cannot
be directly used to map other crops because the parameters were specifically determined based on the
phenological features of winter wheat, it would not be difficult to set up a new group of parameters
to classify other crops using a strategy similar to that employed in this study. If key phenological
stages could be determined based on prior knowledge, the parameters could also be trained through a
small number of field samples using the method described in Section 2.2.3. After the parameters were
redetermined, the retrained PT-DTW could be used to classify other crops.

4.4. Influence of Cloud Contamination

Cloud contamination is a considerable obstacle for time-series matching. Thus, a simulation
experiment was conducted to explore the sensitivity of the PT-DTW method to cloud contamination.
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First, all the visually interpreted samples with little cloud contamination were selected as the benchmark
data for analysis. Second, cloudy NDPI curves were simulated by randomly replacing the clear
observations with cloudy ones (NDPI was set to 0). The different cloud percentages and different
fractions of cloud observations in key phenological stages in the total cloud observations were
considered (details in the Supplementary Material). Finally, the simulated cloudy NDPI time-series
were used to classify winter wheat, by PT-DTW with the same time series reconstruction procedure
(Section 2.2.1) and parameters. As shown in Figure 16a, the OA decreases marginally when the cloud
percentage is less than 50%, indicating that the Savizky–Golay filter performed well in reconstructing
the NDPI time series. Figure 16b shows that the uneven cloud distributions in key and nonkey
phenological stages also marginally affect the classification accuracy when the cloud percentage is less
than 50%, which may be because the overall NDPI curve shape did not change considerably regardless
of how the cloud observations were distributed in key and nonkey phenological stages. The above
results indicate that the PT-DTW method is suitable for winter wheat mapping when the percentage of
clear Sentinel 2 observations is greater than 50% throughout the growing period of winter wheat.Remote Sens. 2020, 03, x FOR PEER REVIEW 22 of 25 
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Figure 16. Sensitivity of the PT-DTW method to the percentage of cloud observations in the whole
growing period (a) and in the key phenological stage (b). f cloud and f cloud key denote the fractions of
cloud observations in the whole growing period and in the key phenological stage. The black box plot
in (a) represents the range of OA variation with uneven distributions of cloud observations in key and
nonkey stages.

4.5. Limitations of the PT-DTW Method

Several limitations remain in the proposed PT-DTW method. Firstly, the Euclidean distance is
calculated to measure the difference between the target and reference curves, leading to a relatively high
sensitivity to the magnitude variability of NDPI curves. Thus, winter wheat pixels with poor growth
status are likely to be misclassified due to their lower NDPI values. Induction of the distances into
non-Euclidean space is a possible solution; however, this approach would increase the mathematical
complexity of the algorithms. The data quality may also affect the mapping accuracy. As mentioned in
the previous section, PT-DTW performs poorly when the cloud percentage of Sentinel 2 data is greater
than 50%, which could occur in Southern China. The fusion of cloud-free SAR data could provide VI
time-series data with better quality and help improve the performance of wheat mapping [42].
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5. Conclusions

In this study, a PT-DTW method was proposed for winter wheat mapping over a large area
based on the NDPI curves derived from Sentinel 2A/B data. With specific improvements over the
classical DTW and TWDTW, PT-DTW can tolerate the variability of VI curves of winter wheat over
large areas and works well without considerable sampling effort. Comparison experiments showed
that the PT-DTW method outperforms previous methods, achieves reasonable mapping accuracy,
and is transferable to winter wheat mapping in different years. Therefore, the PT-DTW method is
recommended for winter wheat mapping over large areas and in multiple years, requiring only a small
number of samples for parameter training.

With the proposed PT-DTW, the winter wheat of North China in 2017–2018 was mapped at 20 m
resolution, which is the highest resolution in a winter wheat map of this area to our knowledge.
The map produced at this spatial resolution can provide rich spatial details for the area, which has
fragmented crop cultivation.
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