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A B S T R A C T

Multi-temporal remote sensing imagery has been regarded as an effective tool to monitor cropland. But optical
sensors often miss key stages for crop growth because of clouds, which poses challenges to many studies. The
synergistic of SAR and optical data is expected to lift this problem, especially in areas with persistent cloud
cover. However, due to the different characteristics of optical and SAR sensors, it is difficult to build a re-
lationship between the two with most existing methods, let alone construct the long-time correlations to fill optic
observation gaps using SAR data. Inspired by deep learning, this study presents a novel strategy to learn the
relationship between optical and SAR time series based on the sequence of contextual information. To be spe-
cific, we extended the conventional CNN-RNN to build Multi-CNN-Sequence to Sequence (MCNN-Seq) model,
and formulate the correlation between the optic and SAR time series sequences. We verified the MCNN-Seq
model and found that the accuracy of the predicted optical image was determined by crop types and pheno-
logical stages, both in the spatial and temporal domain, respectively. For several crops, such as onion, winter
wheat, corn, and sugar beet, our predictions are fitting well with R2 0.9409, 0.9824,0.9157, and 0.9749, re-
spectively. Compared to CNN and RNN, the simulation accuracy achieved by the MCNN-Seq model is much
better in terms of R2 and RMSE. In general, results demonstrate that deep learning models have the potential to
synergize SAR and optical data and provide replaceable information when the optical data has a long data gap
due to the persistent clouds.

1. Introduction

Cropland is the basic element for human survival and socio-eco-
nomic development. Most challenges that urgently need to be resolved
for humanity are related to crop production (Johnson et al., 2014).
Timely and accurately acquiring crop information can improve crop
management, and issues such as food production and food security.
Remote sensing technology has the advantages of wide range mon-
itoring, low cost, and short revisit periods. Thus, it provides a cost-
effective, efficient, and reliable method for cropland management.
Nowadays, multi-temporal optical remote sensing images have become
important materials for crop information extraction (Dong et al., 2015;
Wardlow and Egbert, 2008; Xiao et al., 2005).

During the past few decades, many methods have been developed to
process and analyze multi-temporal optical remote sensing data. For
this reason, the data have been successfully used in crop yield

estimation(Claverie et al., 2017; Liu et al., 2010), forest disturbance
detection (Frazier et al., 2015; White et al., 2017), land management
and planning (Inglada et al., 2017). However, extensive accurate and
spatially detailed crop monitoring over large areas was hampered by
the lack of high resolution and dense Satellite Image Time Series (SITS).
Fortunately, the resolution and repetition frequency of optical remote
sensing data has greatly increased over the last decades. For instance,
Sentinel-2a/b has a short revisiting period and provide a higher spatial
resolution (10-20 m) than low or medium spatial satellites (Drusch
et al., 2012). Therefore, current earth observation data provides the
possibility to build the denser, higher-resolution SITS than before.
Nevertheless, the limitation of optical imagers that rely on clear sky
conditions has not been eliminated. In the task of crop monitoring,
persistent cloud coverage drastically reduces the number of usable
imageries in specific areas and unable to probe the development stages
of the crop.
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To fill the observation gaps under bad weather conditions, temporal
replacement methods (Zeng et al., 2013; Zhang et al., 2014; Zhang
et al., 2010) and temporal filtering methods (Julien and Sobrino, 2010;
Lu et al., 2007)are usually applied to multi-temporal remote sensing
researches(Shen et al., 2015). In general, these methods assume that
adjacent temporal images have the same vegetation type, which could
get good results in areas within a short time interval. Unfortunately,
cropland is a type of land cover that changes dynamically according to
seasonal cycles and plant growth periods. Therefore, the assumption of
adjacent temporal observations is not always applicable to crop re-
search. To address these issues, some studies have been proposed to
obtain more frequent and complete SITS by combining multi-sensor
data that share similar observation properties (such as Landsat and
Sentinel). However, due to the difference in spatial resolution for multi-
sensor data, it is difficult to construct dense time-series image stack
with data combination. To better utilize multi-sensor data, a common
simple approach is to resample the high-resolution data to match the
coarse-resolution data (Wang et al., 2017), such as NASA's Harmonized
Landsat and Sentinel-2 (HLS) project. This approach is very helpful for
researches that focused on the dynamic monitoring of large areas.
However, in order to dynamically monitor the spatial-temporal evol-
ving pattern of crop land, it is often require high spatial resolution
satellite data, especially for small farmland (Ozdogan and Woodcock,
2006). In addition, all these methods are difficult to fill long data gaps
(e.g., more than two months). Moreover, the reliability of these
methods depends on the fraction of the cloud-free pixels. But, this
prerequisite is hardly to satisfy especially for areas that covered by
continuous clouds through plant growth periods.

Recently, Sentinel-1 Synthetic Aperture SAR (SAR) has attracted
much attention due to its high revisit frequency and all-weather ima-
ging capacity. A large number of studies have already demonstrated
that Sentinel-1 is suitable for dynamic change information extraction,
such as land cover mapping (Minh et al., 2018); crop monitoring
(Bargiel, 2013; Inglada et al., 2016); urban change monitoring (Ban and
Yousif, 2012; Gamba et al., 2006). Recently, how to better combine
optical imagery and SAR data has become a very attractive topic in the
field of remote sensing (Dusseux et al., 2014; Gao et al., 2017; Reiche
et al., 2015; Sharma et al., 2018; Van Tricht et al., 2018; Whyte et al.,
2018). In this area, the common practice is to use the observations of
two sensors as independent features, and then feed them together into a
standard machine learning model (Denize et al., 2019; Lu et al., 2018).
Although these methods have achieved good results compared to a
single sensor, still, the interplay between optical and SAR data is un-
derutilized. Thus, it is urgent to propose a strategy that combines the
optical and SAR data by simultaneously considering the correlation and
complementarity between the two data.

Generally, both optical time series and SAR time series are con-
sidered to be able to accurately describe the vegetation growth cycle. In
recent years, several studies have shown that a relationship between
Sentinel-2 and Sentinel-1 time series data can be constructed(He and
Yokoya, 2018; Scarpa et al., 2018; Veloso et al., 2017). The main
challenge to construct such a relationship lies in the variety of SAR
backscatter signals. Specifically, on the one hand, due to the sensitive
nature of SAR data, the signal changes significantly when responding to
different vegetation types (Bousbih et al., 2017). On the other hand,
backscatter value varies at different growth stages even for the same
vegetation. The ground scattering dominates in the early and late stages
of vegetation growth, while vegetation scattering dominates in the
middle (Mattia et al., 2003). To alleviate this difficulty, some studies
have suggested that the correlation of SAR backscatter with optical
vegetation descriptors is higher than single bands(Kim et al., 2011).
Therefore, how to formulate the complex relationship between the SAR
and optical time series is important for dense time series construction
and cropland monitoring. A recent study introduced a new fusion ap-
proach for Sentinel-1 and Sentinel-2 to generate the LAI time series
without data gaps (Pipia et al., 2019). Unfortunately, due to the

limitation of the correlation model, it is difficult to show satisfactory
performance in long temporal gap tasks. In short, filling the temporal
gap of optical imagery with SAR data is a suitable solution. However,
most of the current methods have limitations (e.g. the limitations of
some regression models on sequence length, and the limitations of the
fixed form of the predefined models and associated mathematical as-
sumptions on model flexibility), thus it is necessary to design more
robust and automatic methods. Recently, deep learning provides viable
solutions for such a task(Gao et al., 2020; Wang et al., 2019). For ex-
ample, (Scarpa et al., 2018) realized the direct estimation of NDVI from
SAR data based on the CNN model. Although without a quantitative
estimation of absolute errors, deep learning poses great potential in
complex correlation construction.

Compare to physical models, deep learning is a fully data-driven
approach (LeCun et al., 2015). In the field of remote sensing, the most
commonly used deep learning models are convolutional neural net-
works (Kussul et al., 2017) (CNN) and recurrent neural networks
(Bengio et al., 2013; Lyu et al., 2016) (RNN). Specifically, CNN is
mainly applied to the extraction of spatial-spectral features (Zhao et al.,
2019; Zhao and Du, 2016). In addition, RNN focuses on analyzing time
series data(Zhong et al., 2019), and it can use temporal dependency at
various time spans with hidden unit connections. Both models show
encouraging results when used alone (Mou et al., 2018; Mou et al.,
2017; Shao and Cai, 2018; Zhao et al., 2017). Still, a single model seems
to be difficult to meet the needs in certain tasks. For instance, CNN is
more suitable for estimating data gaps over short time series in the task
of optical and SAR data fusion (Schmitt et al., 2018). Recently, some
solutions have been proposed to combine convolutional neural net-
works and recurrent neural networks (Xingjian et al., 2015). Compared
to single models, combined models generally provide better perfor-
mance. For example, a complex model based on ConvGRU was built to
realizes the coordination of the temporal and spatial characteristics of
optical data and SAR data (Ienco et al., 2019). Although these efforts
did not attempt to use SAR data to solve the problem of optical data
missing. Still, in some way, the combination model may be a feasible
solution for this particular task. Following a similar strategy, it is fea-
sible to combine the CNN and RNN models to maximize their ad-
vantages.

With the continuous development of optical and SAR platforms,
how to use SAR observation data to fill the temporal gaps of optical
data has become one of the biggest challenges. In this study, we propose
a novel collaborative approach to construct a relationship between
Sentinel-1 and Sentinel-2. It aims to utilize SAR data to fill the optical
gaps caused by clouds. To be specific, we propose an improved model
based on the CNN-RNN combined architecture, where CNN is used to
extract robust information from noisy SAR data, and RNN is used to
establish the relationship between SAR and optical data. The applica-
tion of this combined architecture in cropland monitoring is relatively
rare. We name the proposed deep learning architecture as MCNN-Seq.
The main contribution of this work as below:

(1) The MCNN-Seq is used to construct the relationship between multi-
polarized SAR and optical time series data.

(2) An efficient SAR-NDVI estimation method is proposed, it provides
reliable references for the missing optical time series.

This paper is structured as follows: the second chapter describes the
study area and data; the third chapter introduces the proposed MCNN-
Seq; the fourth chapter analyzes the experiments and results; the fifth
chapter introduces the conclusions and future work.

2. Study areas and data preparation

2.1. Study areas

The study area is located in Imperial, Southern California, north
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latitude 32°59′N ~ 33°6′N, west longitude 115°39′W ~ 115°30′W. This
area is located in the low-altitude area of the Colorado Desert. The
study area has a tropical desert climate where the temperature is high
but with high crop productivity. The average annual temperature is
higher than 27 °C, and the temperature variation is also very large. The
area is dry with little rain throughout the year, and the average annual
precipitation (3 in.) is much lower than the average annual precipita-
tion in the United States (28 in.). In California, Imperial County has one
of the highest yields of crops such as alfalfa and onions (Belgiu and
Csillik, 2018). Fig. 1 shows the study area with a spatial extent of ap-
proximately 200km2. Two subareas (1 and 2) as shown in Fig. 1. The
subareas1 is used to evaluate the performance of the MCNN-Seq. In
order to visually compare the predicted images for different strategies,
the subarea 2 with a small extent, and no cloud cover was selected.

2.2. Time-series data acquisitions

2.2.1. Sentinel-1 SAR data
In this study, images of Sentinel-2 and Sentinel-1 were collected

from GEE, and the obtained two data sets have a spatial resolution of
10 m. We referred to Sentinel-1 SAR images that recorded in inter-
ferometric wide (IW) swath mode (Ground Range Detected products).
The SAR data processing includes:(1) thermal noise removal, (2) Apply
Orbit File, (3) radiometric calibration to sigma0, (4) Range-Doppler
Terrain Correction using digital elevation model data and (5) trans-
formation of the backscatter coefficient (δ) to decibels (dB). Finally, the
entire data set was projected using the UTM / WGS84 projection
system. A total of 31 images from the Sentinel-1 descending orbit were
collected from January 5, 2018, to December 27, 2018.

2.2.2. Sentinel-2 optical data
For the optical data set, we downloaded a total of 73 Sentinel-2

images that span from January 1, 2018 to December 27, 2018, (in-
cluding Sentinel-2a and Sentinel-2b). At the same time, the pre-
processing was performed to extract optical image features, including
radiation calibration, cloud mask, atmospheric correction, calculation
of NDVI. Meanwhile, in order to reduce the impact of noise, only
cloudless or partially clouded images were included in the Sentinel-2
data set. Moreover, due to the differences in revisit periods of Sentinel-1
(12 days) and Sentinel-2 (5 days), we chose 31 Sentinel-2 images that
approximately align with the Sentinel-1 data set in terms of acquisition
dates, as shown in Fig. 2. Finally, the Sentinel-2 data set is projected

onto the UTM / WGS84 projection system for registration with the
Sentinel-1 data.

2.2.3. Cropland reference data
U.S. Department of Crop (USDA) regularly maps land cover classi-

fication maps are publicly available (Boryan et al., 2011), and we used
the Cropland Data Layer(CDL)of Imperial in 2018 to validate the ex-
periment. This data is produced by the USDA and covers 48 states, it
mainly provides the information on crop types. In this study, five major
crops such as Onion, Winter Wheat, Corn, Sugar Beet, and Alfalfa were
selected for analysis, other rare crops were aggregated as the “Other
Crops” category (Table 1).

2.2.4. Dataset sampling strategy
MCNN-Seq can take the complete temporal profiles of individual

pixels as the input samples. Therefore, the available samples are optical
pixels without missing data. The Sentinel-2 data set of the entire study
area is divided into two parts, which are the pixels with missing values

Fig. 1. Study areas located in California, USA. The RGB image derived from Sentinel-2 image acquired on 2018/03/12. The marked red subareas (1 and 2) were used
for evaluating the fusion network performance. Subareas1 is with a spatial extent of 10 km × 10 km. Subareas2 is with a spatial extent of 4 km × 4 km.

Fig. 2. Sentinel-1 and Sentinel-2 data acquisition date. A red triangle indicates
that the Sentinel −2 image was affected by clouds or sensors on that date,
causing some data to be missing.

Table 1
Per description (pixels) statistics for subarea.

Description Subarea1 Subarea2

Onion 84,001 9534
Winter Wheat 29,938 3086
Corn 14,613 3133
Sugar Beet 141,047 29,119
Alfalfa 272,529 28,354
Hay (Non-Alfalfa) 67,802 41,433
Non-crop land 121,442 20,527
Other Crops 228,871 9242
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along the temporal axis and the pixels with complete temporal profile,
respectively. Based on that, we divided the available pixels into three
parts: 1. Training set. It is used to train the regression algorithm of the
model, accounts for about 55%. 2. Validation set. It is used to select the
best hyperparameters, accounting for about 15%. 3. Testing set. It is
used to verify the performance of the model, accounting for about 30%
(Fig. 3). To investigate the performance of the model under high cloud
cover, we manually plotted an additional 20% of the cloud cover based
on subarea 1(50% cloud). This dataset is called subarea1 (70% cloud).
At the same time, the training and validation sets of this dataset (70%
cloud) inherit from the dataset (50% cloud), and the test set includes
the inherited test set (50% cloud) and 20% of the clouds. These sets are
randomly divided and independent from each other. Table 2 reports the
number of pixels of the training set, verification set and test set in
subarea 1 and 2.

3. Methodology

The workflow of this methodology includes the following steps: (1)
preprocessing the Sentinel-1 and Sentinel-2 data (for details, see sec-
tions 2.2.1 and 2.2.2); (2) dataset processing, including the construction
of VV and VH time series, generating training and validation samples;
(3) training model, VV and VH input MCNN-Seq;(4) prediction, con-
verting SAR time series data to optical time series data (Fig. 4).

The overall architecture of the MCNN-Seq has shown in Fig. 5. This
architecture combines CNN and LSTM. The CNN modular is used as a
front end to extract the features from the original input data and reduce
the impact of noises, and the LSTM modular as the back end which
receives the information output by the CNN. The CNN modular and the
RNN part are connected together. The model takes VV and VH time
series data as input, and processes them as two independent CNN
branches. The two branches have the same neural network structure.

The time series of VV and VH are equally divided into multiple sub-
sequences, in order to extract the change characteristics of different
time periods. Therefore, the CNNs of each branch will process its cor-
responding subsequence one by one. Then, the feature vectors of the VV
and VH subsequences at the same time period are connected. Finally, it
is input into the LSTM modular to fit the relationship with the target
NDVI sequence. In order to help the model better adapt to the dynamic
relationship of SAR and optic data, we have added an attention me-
chanism to the decoder. In the following, we will provide a detailed
description of the CNN and LSTM modular.

3.1. CNN modular

Due to the noise adaptive ability of CNNs, useful information can be
extracted even from noisy data (Qian et al., 2016). Conventionally, two-
dimensional CNN (conv2D) is widely used due to its excellent capability
to capture the spatial features. In contrast, one-dimensional CNN
(conv1D) seems more suitable for the time series data processing (Liu
et al., 2018). Since the time series can be defined as a one-dimensional
vector, we choose Conv1D to extract the changing features from multi-
polarized VV and VH data. In order to process multi-feature time series
data, the CNN model with multiple channels is generally used. Al-
though the features extracted by each channel are independent, some
information may be lost when connecting these features (Canizo et al.,
2019). To retain such information as much as possible, we designed two
independent CNN branches to process the VV and VH respectively. The
CNN network of these two branches sharing the same structure, which
involves 2 convolutional and max-pooling layers and a full-connected
layer. The convolution layer is with the trainable kernel that generates
feature maps, and they are activated by the rectified linear unit (ReLU).
Then the feature maps are subsampled by the max-pooling layer.
Through repeating the previous steps, the noise adaptive features can
be extracted layer by layer. Finally, the fully-connected layer combines
these highly abstracted features into one. CNN is described by Eqs. (1),
(2):

∑= ⎛

⎝
⎜ ∗ + ⎞

⎠
⎟

=
−h ReLU h w b( )i j

m

M

i m i mj i j,
1

1, , ,
(1)

′ = … + −h l ReLU h sl h sl r( ) { ( ), , ( 1)}i j i j i j, , , (2)

Fig. 3. Spatial distribution of training set and verification set for (a)subareas1(50%cloud), (b) subareas1(70%cloud) (c)subarea2. The pixels that did not participate
in the training were not displayed (the pixels with missing values along the temporal axis).

Table 2
Per dataset statistics for subarea.

Train samples Validation samples Test samples

Subarea1(50% cloud) 283,678 81,051 152,571
Subarea1(70% cloud) 175,417 52,656 289,227
Subarea2 89,040 22,260 47,700
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where hi, j is the j output feature maps obtained by the i convolutional
layer,∗ is convolution operation,wi, mj represents kernel, M is number of
feature maps, s is steps, and r denotes the number of outputs.

As mentioned, we divide the time series into N segments with the
same length. That means it can focus on different phases in the time
series. Each subsequence will get a sequence of feature maps after
convolution is applied. The features of different subsequences are in-
dependent of each other, so they are connected in series to obtain N
feature maps. Then the feature maps of the two branches are connected
in a sequence. Note that only the feature maps for the corresponding
phases are connected. In this way, the noise adaptive feature vector is
obtained and can be used as an input to the LSTM modular.

3.2. LSTM modular

RNNs have the ability to preserve the state between consecutive
input data, they are generally considered to be designed specifically for
processing sequential data. However, due to the problems of vanishing
gradients and learning efficiency, variants of RNNs are often used in
some studies, in which LSTM is the most famous variant model. LSTM
will create time-varying information paths whose derivatives are robust
to gradient disappearance or explosion problems. LSTM was proposed
by (Hochreiter and Schmidhuber, 1997), and designed three gate units
to guide the information paths, including the forget gate, input gate IN
and output gate ON .After the original data that feed into LSTM in the
form of x = [x1, ..,xN]⊺. First, get the input information xj from the
current step and the hidden state hj−1 of the previous step. Then, the
combined information is passed through a sigmoid activation function
to decide how much information will be thrown away from the cell
state. Then, the combined information is passed to the forget gate Fj,
and a sigmoid activation function is used to determine the proportion of
retained information in the cell state. The sigmoid function outputs a
value between 0 and 1. Then through the input gate Ij, decide what

percentage of the new information ∼Cj will be stored to the cell state.
Among them, use the tanh activation function to create a candidate for
updating. Besides, the new cell state Cj can be obtained by multiplying
the cell state Cj−1 of the previous step by Fj and then adding the up-
dated information ∼Cj by Ij. Finally, new hidden states hj can be gener-
ated based on output gates Oj and new cell states Cj.

= + +−F σ W x W h bias( )j Fx j Fh j F1 (3)

= + +−I σ W x W h bias( )j Ix j Ih j I1 (4)

= + +−O σ W x W h bias( )j Ox j Oh j O1 (5)

= + +∼
−C tanh W x W h bias( )j Cx j Ch j C1 (6)

= ∗ + ∗ ∼
−C F C I Cj j j j j1 (7)

= ∗h O tanh C( )j j j (8)

where WFx, WFh, WIx, WIh, WOx, WOh, WCx, WCh are the weight matrices,
which are used to govern the connection from the corresponding input
to the hidden layer. biasF, biasI, biasO, biasC. are the bias. The above are
all trainable parameters.

=
+ −σ x

e
( ) 1

1 x (9)

= −
+

−

−tanh x e e
e e

( )
z z

z z (10)

Considering that the dates of optical and SAR image acquisition do
not always completely coincide. And in practical applications, the
length of the output sequence is likely to be different from the input
sequence, so the foundation LSTM model may not be applicable, So
(Sutskever et al., 2014) proposed a relatively mature Sequence to Se-
quence (Seq2Seq) architecture to achieve flexible processing of incon-
sistent input and output sequences. The Seq2Seq network consists of an

Fig. 4. Flowchart of the proposed SAR predicted
optical data. It can be divided into four main steps.
The first step is to process SAR and optical data.
Then, the two kinds of data are registration to par-
tition the training set and the verification set.
Thirdly, the relationship between SAR data and op-
tical data was constructed by MCNN-Seq framework.
Finally, based on the well-trained MCNN-Seq fra-
mework, complete optical data can be predicted to
provide a reference for missing image data.

Fig. 5. MCNN-Seq architecture for conversion from
SAR time series to optical time series. Starting from
the left. Starting from the left, VV and VH time series
data are equally divided into N subsequences of
length SubL. Then, N feature maps are obtained for
each backscatter time series. The N feature map of
the VV and VH subsequences is denoted as FNvvand
FNvh.Feature maps of VV and VH subsequences are
connected in order. Finally, input the LSTM modular.
Finally, the predicted NDVI is obtained. c represents
a state vector.
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encoding layer and a decoding layer. The encoding layer is a dynamic
multi-layer LSTM. The time-series data is input into the network in
order and only the last hidden state is retained. Equivalent to com-
pressing the entire sequence together, represented by a fixed-size vector
c for use by the decoding layer c represents for use by the decoding
layer. In the decoding process, c will be used as the initial state of the
decoder network, and the output value of the previous time step is input
to the next LSTM unit. The Seq2Seq model generates the conditional
probability of the target sequence y = [y1, ..,yt]⊺given the input se-
quence, defined by Eq. (11)

∏… … = …
= −p y y x x p y y y c( , , | , , ) ( | , , , )t N t

t
t t1 1 1 1 1 (11)

There are some problems in the Seq2Seq network: the output se-
quence largely depends on the final hidden state of the encoder. Once
the sequence is relatively long, it is easy to lose some information and
severely limit the performance of the model. Although LSTM improves
on this issue compared to RNN, it still performs poorly when dealing
with long sequences. (Bahdanau et al., 2014) first proposed the atten-
tion mechanism to solve this problem. By adding attention vectors to
each decoding step, the model can pay special attention to specific
parts, so as to obtain better results. Therefore, we added the attention
mechanism to Seq2Seq.

= −e a h(s , )ij i j1 (12)

where eij indicates the degree of matching between the input of the
encoder at time j and the output of the decoder at time i − 1. si is the
hidden state of the decoder at time i, hj is the output state of the En-
coder hidden layer at time j. a is called alignment model.

Then normalize eij using the softmax function:

=α softmax e( )ij ij (13)

where αij indicates the importance of the input at time j to the output at
time i.

Finally, calculate the context vector ci at i moment

∑=
=

α hci
j

N

ij j
1 (14)

After the model is built. Assume x is the SAR time series and y is the
optical time series. Therefore, the training set can be expressed as
[x,y]m. where m is the number of training samples. The input sequence
x is equally divided into N subsequences. Features are extracted one by
one by CNN modular, so the feature sequence can be expressed as Fm,
m ∈ (1,⋯,N). The LSTM modular training is for learning a mapping
function  =f y F w: ( ; ),where y is the sequence of the output, and w is
all parameters including weight and bias. It should be noted that we
have defined the loss function and metrics, the former being Root Mean
Square Error (RMSE) and the latter being R-square(R2).

=
∑ −=RMSE

y i y i
N
( ) ˆ ( )i

N
1

(15)

= −
∑ −

∑ −
=

=

R
y i y i

y i y i
1

( ( ) ˆ ( ))

( ( ) ( ))
i
N

i
N

2 1
2

1
2 (16)

4. Experiments and results

4.1. Experimental designs

In order to extract useful information from complex SAR time series,
two completely independent 3-layer Conv1D frameworks were con-
structed for each polarization. Specifically, we divide the VV and VH
time series into 31 segments with the step of 1, so the size of the input
sample is set to 31×1×1. For each CNN framework, the first con-
volutional layer contains 31 filters of 1×1. Then, the second convolu-
tional layer includes 62 filters with size 1. After that, flatten layers are
generated to produce 31×62 feature maps in each branch. Finally, the
features obtained from the two CNNs are connected and converted to
31×124 feature maps.

To construct the relationship between SAR and optical data, the
output features from CNNs are fed into the LSTM modular in sequences.
Inside of the LSTM, firstly, the temporal relationship of input features
can be extracted in the encoder. Then, the decoder was designed to
capture the relationship between SAR data and the optical sequences.
Finally, the relationship is used to predict the missing optical data.
Moreover, in order to reduce the impact of uncertain noises, the at-
tention mechanism was introduced in the decoder. In the training stage,
the RMSprop optimizer was used for training. The learning rate was set
to 0.001 and the batch size was set to 500.

4.2. Assessment of predicted images

In this section, the optical time series were predicted by SAR data
with the help of the proposed MCNN-Seq. To be specific, the SAR time
series was converted into optical time series with the same length. To
evaluate the performance of the proposed method in terms of optical
time series prediction, we selected the representative subarea 1(50%
and 70% cloud) to quantitatively evaluate the test pixel. The quanti-
tative comparison of real and predicted values is mainly achieved by
error histograms and density scatter plots.

Fig. 6 shows the test accuracy of the proposed model for each image
in subarea 1(50% and 70% cloud). From these metrics, it is clear to
point that the predicted optical time series data has a high correlation
with the original optical data. It can be found that when different data
sets are used, the test accuracy of each image shows a similar trend.
Among them, the R2 and RMSE of the predicted NDVI are relatively
unsatisfying on the date 2018/04/16 (The R2 of 50% cloud and 70%

Fig. 6. From Jan. 2018 to the end of Dec. 2018, the test accuracy evaluation results of all predicted images and corresponding optical images in subarea 1 (50% and
70% cloud). (a)R2 and (b)RMSE are calculated from the values of each test pixels and the predicted values of its corresponding pixels.
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cloud are 0.7835 and 0.7200 respectively, RMSE are 0.1248 and 1418
respectively) and 2018/12/27 (The R2 of 50% cloud and 70% cloud are
0.7926 and 0.7167 respectively, RMSE are 0.1202 and 1403 respec-
tively). Noticeably, the original optical acquisition on 2018/04/16 was

not polluted by clouds, while the optical image on 2018/12/27 has
missing data. In order to respond to this situation, we developed two
scenarios to assess the spatial pattern.

Scenario 1:No missing data in optical time series. According to the

Fig. 7. Comparisons between the reference and the predicted image for dates: 2018/04/01 and 2018/04/16. (a), (g)Sentinel-2 NDVI reference and (b), (c), (h), (i)
predicted images are compared visually. (d), (j)error histograms and (e), (f), (k), (l) density scatter plot compared from a statistical perspective. The red circle is the
area with low accuracy.
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evaluation results, we selected the assessment date with the highest and
the lowest accuracy (dates are 2018/04/01 and 2018/04/16, respec-
tively). Fig. 7 shows the comparison results between the original and
predicted images on 2018/04/01 and 2018/04/16. From the figure, we
can conclude that all predicted images (include 50% cloud and 70%
cloud) are highly similar to the optical ones in terms of spatial variation
and statistical histograms. In particular, from a visual perspective, it is
almost impossible to directly see the difference between the prediction
images of the two data sets (50% cloud and 70% cloud). This means
that dense but small cloud cover has little impact on model perfor-
mance. However, the accuracy of predicted data on 2018/04/01 is the
highest in 2018, still, the predicted images has more speckles in the red
circle (as shown in Fig. 7) which is different from the real values. From
the statistical point of view, the error histogram is almost the same.
However, it can be seen from the scatter diagram that the image pre-
dicted by 50% cloud has a small degree of dispersion, confirmed by
RMSE values. The prediction accuracy of 50% cloud and 70% cloud
showed a similar variation trend, and the variation of 70% cloud ac-
curacy was more significant. Thus, the 70% cloud is taken as an ex-
ample to analyze the variation in the accuracy of the two dates. From
the statistical point of view, for Subarea1(70% cloud), even for the
lowest accuracy of predicted data on 2018/04/16, the differences be-
tween the optical and the predicted values are concentrated in the
range of −0.1 and 0.1. The main reason that the prediction accuracy of
2018/04/16 is lower than that of 2018/04/01 has changed sig-
nificantly within 15 days. For example, during the stem elongation of
some crops (such as lettuce and broccoli) in April, as changes in the
vertical structure had a greater impact on SAR backscatter.

Scenario 2:Optical time series with missing data. We selected two
representative optical images (dates 2018/12/02 and 2018/12/27 re-
spectively) and their corresponding predicted images. Among them,
2018/12/27 has the lowest accuracy, but only a small area is covered
by cloud, while 2018/12/02 is not only affected by cloud pollution, but
also by acquisition strips, resulting in missing data in most areas. From
Fig. 8, we can conclude that all predicted images are generally con-
sistent with their corresponding optical images, especially, the pre-
dicted images can also reflect some spatial information and crop phe-
nology information in the data missing areas of the original images. It
means that the predicted image based on SAR data has the potential to
fill the gaps in optical data. Compared with 50% clouds, 70% of cloud
predictions tend to overestimate low values. The main reason may be
that in the region with low NDVI value, the crop biomass is less and the
ground scattering takes the dominant position, leading to the un-
reliability of the predicted value of the model. It is worth noting that
the images on these two dates also face the same problem as Scenario 1,
that is, the predicted image and the optical data in the red circle contain
over-fragmented small croplands. Therefore, due to the spatial varia-
tion, the predicted image contains a large number of speckles or noises
which resulted in low accuracy in SAR-based optical data prediction.

4.3. Assessment of temporal profile

In Section 4. 2, we discussed the accuracy of the model in the spatial
domain, but the main purpose of this research is to fill the temporal
gaps in the optical time series, so the accuracy of the predictions at the
temporal axis is also one of the important criteria for evaluating the
prediction performance of the proposed model. In order to understand
the reliability of the predicted time-series profiles, we compared the
temporal behavior of valid Sentinel-2 NDVI, the Sentinel-1 VV, VH, and
predicted NDVI for evaluation. With reference to the 2018 CDL, we
grouped the crops into 3 categories according to their growth cycles,
that are, (1) Onion and winter wheat;(2) Corn and sugar beet; (3) Al-
falfa. The quantitative evaluation and analysis were performed for each
type of crop. They are analyzed in the same subsection by one field. The
onion field contains 5140 pixels, the cornfield contains 1336 pixels, the
sugar beet field contains 2655 pixels, the winter wheat field contains

3649 pixels, and the alfalfa 3790 pixels. To describe crop growth cycles,
the mean NDVI profiles along with the twice standard deviation values
have been regarded as the confidence range. Meanwhile, the correlation
coefficient R2 represents the correlation between the real-time series
and the predicted time series (Table 3). It should be noted that the
following analysis results based on one single field may not fully re-
present the crop behavior of all crops in the entire study area.

4.3.1 Onion and winter wheat
The onion and winter wheat in this study area have similar phe-

nological characteristics, with NDVI peaking between March and April
and continuing to decline for the rest of the year. The difference is that
winter wheat has a completely different plant structure from onions.
We select an onion field or winter wheat field and its corresponding
Sentinel-2 NDVI time series from the predicted time series data
(Subarea1 50%cloud).

In most cases, the predicted NDVI sequences and the original NDVI
profiles are basically consistent with each other, so the predicted time
series has the ability to accurately describe the phenological stage of the
crop (Fig. 9). Quantitative assessments of onions and winter wheat also
support this view, with the R2 = 0.9409 and RMSE= 0.0432 for winter
wheat, and for the onion R2 = 0.9824 and RMSE = 0.0334. But there
are some cases where details have lost, from January to February, the
NDVI of onions remained stable, and almost all the values are with the
mean values. However, the predicted values have a wider range of
uncertainty, and the average values are slightly lower than the observed
optical values. From March to April, the NDVI value of winter wheat
reached its peak, and even reached saturation of the NDVI index and
remained stable at the same time. However, it is difficult for predicted
values to reach such high values, for most cases they distributed around
0.9. After June, NDVI remained stable at low values after harvest of
onions and winter wheat. At this time, the NDVI value was under-
estimated. The onion prediction values almost around 0.1, but the re-
ference values are above 0.2. The predicted values of winter wheat
during this period are almost consistent with the real values and is
stable below 0.1. Interestingly, the predicted NDVI time series profiles
of winter wheat and onion during this period is almost the same. After
the crop harvest, the SAR backscatter signal is mainly contributed by
soil, which weakens the contribution of the vegetation, resulting in si-
milar backscatters.

4.3.2 Corn and sugar beet
Most corn and sugar beet fields in the study area will start to in-

crease NDVI from October to November. This means that during this
period, the crop regrowth or other crops are planted in these fields. To
analyze whether the predicted time series can accurately describe this
key information, we will discuss corn and sugar beet in the same sub-
section.

We can observe that the corn prediction data and the original NDVI
time series have good similarity, both visually and statistically. But
from January to February, the predicted time series of beets and corn
showed the same problems as onion. That is, the uncertainty ranges of
the predicted values are relatively large. The explanation is that there
are various scattering mechanisms in the field, which cause the differ-
ences in backscatter signals and large standard deviations. At 2018/02/
15, there was a sudden decrease in the NDVI of sugar beet, and the
model was able to catch this mutation, but it did not produce a value
that changed large enough. The reason may be that NDVI on the ad-
jacent dates around 2018/02/15 already in a stable state, and the
MCNN-Seq is not sensitive to this noise-like sudden mutation. After
October, shortly after the emergence of new plants, NDVI began to
increase again (Fig. 10). This key information can also be clearly de-
scribed in the predicted time series. It has shown that the predicted
images can not only accurately describe the growth cycle of a crop, but
also accurately grasp the information of re-growth on new crops. This
means that even if the type of vegetation changing, the predicted time
series can fill the phenological details of the missing data within the
optical time-series.
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4.3.1. Alfalfa
Alfalfa is one of the most important crops in the study area, and it is

also one of the biggest challenges in the prediction process. In Fig. 11,
the variation trend of the NDVI time profile on alfalfa is very complex

compared with other major crops. Under this circumstance, it can be
observed that the predicted data has a similar trend compared to the
real NDVI (R2 = 0.7018, RMSE = 0.0796). Their error bar of the re-
ference data minus the predicted data is also given in Fig. 11 to

Fig. 8. Comparisons between the reference and the predicted image for dates: 2018/12/02 and 2018/12/27. (a), (g)Sentinel-2 NDVI reference and (b), (c), (h), (i)
predicted images are compared visually. (d), (j)error histograms and (e), (f), (k), (l) density scatter plot compared from a statistical perspective. The red circle is the
area with low accuracy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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facilitate their comparison. Although there are some differences, the
predicted time series can almost describe the growth cycle a year.

4.4. Comparative evaluation

In the previous sections, we have shown the structure of the pro-
posed model and analyze the performances of the proposed model on
SAR images to predict optical images. In this section, we apply the well-
trained model to subarea 2 and compared it with other competing
methods. Because the model is based on the time-series sequence re-
lationship to achieve the SAR-optical converting, it is difficult to find
close competitors with similar principles. Thus, we considered using the
representative deep learning models such as CNN and RNN to verify the
advanced nature of the MCNN-Seq. The former is often seen as one of
the solutions to this task in some recent studies (Schmitt et al., 2018).
The latter is the basic model of MCNN-Seq. The same training set and
validation set were used to ensure a fair comparison between the three
models in this section. Thus, we use Conv1D as the CNN model, which
is more suitable to process time-series data.

As regards the hyperparameters of MCNN-Seq (cf. Section 4. 1).
These hyperparameters have proven to be good choices in previous
experiments. The hyperparameter settings of RNN is the same as the

RNN branch of MCNN-Seq (include two hidden layers with 100 hidden
units and a full connection layer). the CNN detailed configurations are
listed in (Zhao et al., 2020). It consists of two convolution layers with
32 and 16 filters respectively, one max-pooling layer and one full
connection layer. Fig. 12 shows the training accuracy curve and vali-
dation accuracy curves of the three models. It should be emphasized
that the evaluation metrics here are the R2 between the predicted se-
quence and the target sequence. We can observe that all three models
converge at epoch = 50, and the difference in accuracy between
training and validation is almost constant. The accuracy of RNN is
slightly better than CNN, and the uncertainty range of the validation
accuracy curve is also comparatively small. The MCNN-Seq accuracy is
much higher than the other two models.

In order to analyze the advantages and disadvantages of the models
from a quantitative perspective, we calculated the R2 and RMSE of the
test sequence and the reference sequence in subarea 2, as shown in
Table 4. It can be observed that both CNN and RNN are relatively un-
stable compared to the proposed method. From January to February,
the absolute value of the RNN predicted image R2 is very low (around
0.5). The main reason is that the basic RNN is the one-to-one model that
the cellular state of each hidden unit is a process of gradual accumu-
lation. At the beginning of the time-series, the hidden unit cannot get
enough context information, and resulted in low prediction accuracy.
From July to December, the absolute value of RNN predicted image R2

improved significantly. This demonstrated that it is difficult to fit SAR
and optics in a one-to-one fashion without considering temporal in-
formation. Conversely, the sequence-sequence used in MCNN-Seq
shows relatively stable and high accuracy in the whole time-series. It is
a feasible solution to predicted optical data of SAR data based on
temporal contextual information. Also, it can be noted that the pre-
diction accuracy of CNN shows an obvious downward trend. CNN

Table 3
Accuracy of the predicted time series in the selected field.

Metrics Main crop

Onion Winter wheat Corn Sugar beet Alfalfa

R2 0.9409 0.9824 0.9157 0.9749 0.7018
RMSE 0.0432 0.0334 0.0453 0.0454 0.0796

Fig. 9. Observations of the temporal behavior of NDVI for the selected fields (represented by the mean of all pixels). (a) NDVI of winter wheat (reference). (b)
predicted winter wheat NDVI, the confidence interval (gray) is set to± 2σ. (c) NDVI of onion (reference). (d) predicted onion NDVI, the confidence interval (gray) is
set to± 2σ. (e) backscatter signals of winter wheat, error bars denote σ. (f) backscatter signals of onion, error bars denote σ.A red triangle indicates that some of the
optical data was missing on that date.
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mainly achieves SAR to optical prediction by extracting sequence fea-
tures. With the increase of sequence length and crop rotations, the
uncertainty of data is increased which leads to the failure prediction.
This shows that CNN is more suitable for tasks in a short time, and it is
difficult to capture stable temporal features in a long time-series.

In order to intuitively understand the performances of the three

different models, we have selected 2 images (the dates are 2018/01/11
and 2018/12/27, respectively), as shown in Fig. 13 and Fig. 14. These
two images are the first and last images of the time series. It can be
found that compared with the RNN and CNN, the images predicted by
the MCNN-Seq are much more similar to the real images, in terms of
measuring the R2 and RMSE. The low prediction accuracy of RNN and

Fig. 10. Observations of the temporal behavior of NDVI for the selected fields (represented by the mean of all pixels). (a) NDVI of corn (reference). (b) predicted corn
NDVI, the confidence interval (gray) is set to± 2σ. (c) NDVI of sugar beet (reference). (d) predicted sugar beet NDVI, the confidence interval (gray) is set to± 2σ. (e)
backscatter signals of corn, error bars denote σ. (f) backscatter signals of sugar beet, error bars denote σ.A red triangle indicates that some of the optical data was
missing on that date. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Observations of the temporal behavior of NDVI for the selected fields (represented by the mean of all pixels). (a) NDVI of alfalfa (reference). (b) predicted
alfalfa NDVI, the confidence interval (gray) is set to± 2σ. (c) the reference data minus the predicted data, error bars denote σ (d) backscatter signals of alfalfa, error
bars denote σ. A red triangle indicates that some of the optical data was missing on that date. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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LSTM is mainly impacted by two aspects: value differences and a large
number of noises. The former is the shortcomings of CNN and RNN, as
we mentioned above. The latter is caused by the high uncertainty of
SAR data, and noises that reduced the formulation power of the model,
which is the reason we consider CNN as the information extractor.

5. Discussion

5.1. Sources of error

In this section, we will discuss the reasons for the high uncertainty
of the predicted images, especially for the low accuracy of the predicted
images in the red circle in section 4. 2. Intuitively, we speculate the low
prediction accuracies may be impacted by the land cover types. In order

to evaluate the accuracy of each pixel for the predicted time series data,
we have plotted the spatial distribution of prediction accuracy for
quantitative analysis, as shown in Fig. 15.

From Fig. 15, it is easy to find that the prediction accuracy differ-
ence based on the two data sets (50% and 70% cloud) is small and the
spatial distribution is similar. A possible reason for this is that those
small areas of cloud cover do not fully cover crop areas with main crop
types. That is, there is still enough number of representative samples for
the model to learn the SAR-Optics relationship. In this way, it seems
that this method can learn local knowledge and then predict missing
data. By contrast, large areas of cloud cover the vast majority of arable
land, limiting the performance of the model. It should be noted that the
prediction images of two data sets have very low accuracy for some
land cover types such as non-crop land. This suggests that the lower
performances may be related to the land cover types. From this point of
view, the model may not be suitable for areas where backscattering is
dominated by soil scattering while the vegetation volume scattering is
relatively weak. On the one hand, after the crop been harvested, the
consistency between the predicted time series and the real-time series is
low, largely due to the weak contribution of vegetation volume scat-
tering. On the other hand, the accuracy of the model has been increased
after the second growth cycle of the crop. As the stem elongation period
is entered, both the number of stems and the length of the crop, as well
as the number of crops are increased, resulting in an increasing con-
tribution of volume scattering.

In the two prediction images, the reliability of the pixels in the black
circle is very low. This mainly because more non-crop land cover and
hay can be observed, while fewer crops were identified. These factors
affect the model to make incorrect judgments and failed to predict a
reliable NDVI time series profile. Moreover, the optical time-series data
will be affected by noise, such as atmospheric correction residual errors
and surface heterogeneous. These effects make the original optical data
may limit the performance of the model, unless smoothing procedures
are previously applied prior to the experiment. However, the process of
NDVI filtering may remove the key information for crops. For example,
the NDVI time series of alfalfa could be over-smoothed, where the NDVI
curves of the beet could change abruptly in March.

In summary, there are two main factors that restrain the accuracy of
the predicted images. First, the model cannot build a reliable re-
lationship for non-crop land, which reduces the statistical accuracy of
the entire image. The other is that the noises in the optical time series
weaken the performance of the model and increase the prediction er-
rors. For the former, non-crop land can be masked in advance. For the
latter, one can choose whether to smooth the optical time series ac-
cording to the characteristics of the study area or the purpose of the
study.

Fig. 12. Training accuracy curves and validation accuracy curves of three models: RNN, CNN and MCNN-Seq.

Table 4
R2 and RMSE of test pixels where the images predicted by the three models
compared to the reference data.

Date RNN CNN MCNN-Seq

R2 RMSE R2 RMSE R2 RMSE

2018/01/11 0.3857 0.2168 0.6814 0.1561 0.8842 0.0941
2018/01/16 0.5084 0.1818 0.6905 0.1443 0.8915 0.0854
2018/01/31 0.5079 0.1968 0.6740 0.1602 0.8680 0.1019
2018/02/15 0.4954 0.1797 0.6511 0.1494 0.8630 0.0936
2018/02/20 0.5732 0.1724 0.6555 0.1549 0.8587 0.0991
2018/03/02 0.6266 0.1597 0.6868 0.1463 0.8711 0.0938
2018/03/17 0.6240 0.1624 0.6464 0.1575 0.8480 0.1032
2018/04/01 0.5525 0.1774 0.6533 0.1562 0.8471 0.1036
2018/04/16 0.4676 0.1947 0.5321 0.1826 0.7423 0.1353
2018/05/01 0.5046 0.1826 0.5865 0.1668 0.8321 0.1062
2018/05/11 0.6014 0.1715 0.6094 0.1698 0.8278 0.1126
2018/05/21 0.6461 0.1648 0.6145 0.172 0.8408 0.1105
2018/05/31 0.6305 0.1349 0.5981 0.1407 0.8488 0.0863
2018/06/10 0.6568 0.1448 0.5357 0.1685 0.8371 0.0997
2018/06/30 0.6974 0.1435 0.5770 0.1696 0.8515 0.1005
2018/07/05 0.7531 0.1283 0.5996 0.1634 0.8854 0.0874
2018/07/10 0.7612 0.1229 0.5972 0.1596 0.8830 0.086
2018/07/30 0.7231 0.1160 0.6759 0.1255 0.8580 0.0831
2018/08/14 0.8334 0.1099 0.7603 0.1318 0.8852 0.0913
2018/08/19 0.8234 0.1105 0.7224 0.1386 0.8755 0.0928
2018/09/03 0.7956 0.1053 0.7154 0.1242 0.8610 0.0868
2018/09/13 0.8440 0.1068 0.7380 0.1385 0.8776 0.0947
2018/09/28 0.8400 0.1181 0.7307 0.1533 0.8809 0.1019
2018/10/08 0.8607 0.1091 0.7330 0.1511 0.8779 0.1022
2018/10/18 0.8236 0.1080 0.7040 0.1399 0.8601 0.0962
2018/11/02 0.8000 0.1092 0.6565 0.1431 0.8325 0.0999
2018/11/12 0.7831 0.0989 0.6139 0.1319 0.8302 0.0875
2018/11/22 0.7883 0.1011 0.5526 0.1469 0.8141 0.0947
2018/12/02 0.7810 0.1023 0.5299 0.1499 0.8013 0.0974
2018/12/22 0.7719 0.1101 0.5141 0.1607 0.8053 0.1016
2018/12/27 0.7510 0.1157 0.5012 0.1638 0.8010 0.1034
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5.2. Pros and cons

In recent years, researches have focused on the coordination of SAR
data and optical images which aim to convert one sequence to another.
To achieve this purpose, the optical and SAR data on the same or ad-
jacent dates have been utilized for regression fitting. Although these
methods have achieved the conversion of SAR data to optical data.
However, due to the complexity of crop areas, the results are not always
satisfactory. Differently, this study proposes a deep learning method for
the synergy between optical imagery and SAR data.

The previous studies mainly focused on building the translation
model for optical image and SAR data converting, while neglecting the
temporal relationship inside of time series data. As the cropland evol-
ving along with time, the existing models cannot capture useful in-
formation in the temporal domain, but only increase the pressure of
model calculation. This means that these methods are difficult to apply

time series conversion with the temporal axis, while this application
demand is mostly needed in researches such as change detection and
land cover classification. In contrast, MCNN-Seq can extract the un-
derlying temporal relationships inside time-series. From this point of
view, the proposed model is more suitable for applications that re-
quiring longer time series images than the previous methods. In addi-
tion, due to the complexity of SAR data, it is difficult to construct the
reliable relationship between optical and SAR data. Thanks to the stable
feature extraction capability provided by the MCNN-Seq, it is feasible to
handle the mentioned problem.

In the previous section, we proved that it is feasible to build the
relationship between optical and SAR time-series by MCNN-Seq.
However, there are some shortcomings in this work. The first is that the
high calculation cost of the model. For a large study area, the proposed
model will take a lot of time to formulate SAR-NDVI relationship. This
mainly contributed by the computational complexity of the model, and

Fig. 13. Comparisons between the reference and the predicted image by RNN, CNN and MCNN-Seq for dates: 2018/01/11. (a), Sentinel-2 NDVI reference and(b), (c),
(d)predicted images are compared visually, (e) error histograms and (f), (g), (h)density scatter plot compared from statistical perspective.

Fig. 14. Comparisons between the reference and the predicted images by RNN, CNN and MCNN-Seq for dates: 2018/12/27. (a) Sentinel-2 NDVI reference and(b), (c),
(d)predicted images are compared visually, (e) error histograms and (f), (g), (h) density scatter plot compared from statistical perspective.
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too many types of crops also make the model difficult to run. Another
weakness of the model is that it requires a large number of training
samples, which means that the area of cloud cover in the applicable
area should not be too large. Moreover, the training samples need to be
highly representative, covering as many types as possible. The purpose
of this study is trying to fill the time gaps of optical data by using SAR
data, which makes us focus on temporal profile conversion and ignores
the spatial correlation between the two data sources. In future works,
we should explore how to take advantage of the temporal and spatial
complementarity of SAR and optical data at the same time in order to
obtain more stable model performances.

6. Conclusion

This study proposed a strategy to predict optical time series using
SAR data when the optical data was missing. Unlike most studies, the
model was designed to realize the prediction of SAR data to optical data
by constructing a relationship between two time-series. The experiment
results demonstrated that predicted images have reasonable accuracies
(i.e., R2> 0.7, RMSE<0.15). Each predicted time series can accu-
rately describe the growth cycle of most crops, especially onion, winter
wheat, corn, and sugar beet. Therefore, the predicted images have the
ability to provide reliable replaceable information when the optical
data has a long data gap due to the persistent cloud cover. However, it
is important to note that large cloud cover may affect the performance
of the model. Because too much cloud may cover most crops, it is dif-
ficult for the model to learn enough knowledge. In addition, com-
parative experiments demonstrate the importance of contextual in-
formation. For instance, the prediction accuracy of 2018/01/11 (R2 of
0.3857, RMSE of 0.2168) is much lower than that of 2018/12/11(R2 of
0.7510, RMSE of 0.1157) for the RNN. In summary, this study provides
new solutions for the translation of optical and SAR data. However,
there are still some problems that need to be further improved, such as
the predicted image contains more speckles, and a larger number of
representative training data is needed. Meanwhile, it is hoped that the
accuracy of prediction can be improved by combining spatial in-
formation and temporal information.
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