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A B S T R A C T

Precise structural information collected from plots is significant in the management of and decision-making
regarding forest resources. Currently, laser scanning is widely used in forestry inventories to acquire three-
dimensional (3D) structural information. There are three main data-acquisition modes in ground-based forest
measurements: single-scan terrestrial laser scanning (TLS), multi-scan TLS and multi-single-scan TLS.
Nevertheless, each of these modes causes specific difficulties for forest measurements. Due to occlusion effects,
the single-scan TLS mode provides scans for only one side of the tree. The multi-scan TLS mode overcomes
occlusion problems, however, at the cost of longer acquisition times, more human labor and more effort in data
preprocessing. The multi-single-scan TLS mode decreases the workload and occlusion effects but lacks the
complete 3D reconstruction of forests. These problems in TLS methods are largely avoided with mobile laser
scanning (MLS); however, the geometrical peculiarity of forests (e.g., similarity between tree shapes, place-
ments, and occlusion) complicates the motion estimation and reduces mapping accuracy.

Therefore, this paper proposes a novel method combining single-scan TLS and MLS for forest 3D data ac-
quisition. We use single-scan TLS data as a reference, onto which we register MLS point clouds, so they fill in the
omission of the single-scan TLS data. To register MLS point clouds on the reference, we extract virtual feature
points that are sampling the centerlines of tree stems and propose a new optimization-based registration fra-
mework. In contrast to previous MLS-based studies, the proposed method sufficiently exploits the natural geo-
metric characteristics of trees. We demonstrate the effectiveness, robustness, and accuracy of the proposed
method on three datasets, from which we extract structural information. The experimental results show that the
omission of tree stem data caused by one scan can be compensated for by the MLS data, and the time of the field
measurement is much less than that of the multi-scan TLS mode. In addition, single-scan TLS data provide strong
global constraints for MLS-based forest mapping, which allows low mapping errors to be achieved, e.g., less than
2.0 cm mean errors in both the horizontal and vertical directions.

1. Introduction

Precise measurements of forest structures are crucial for the man-
agement of and decision-making regarding forest resources, studies of
ecosystem processes and biodiversity, and so on (Spies, 1998). How-
ever, accurate forestry measurements are not straightforward because
of the complexity of forests. Some conventional, simple tools (e.g.,

calipers and clinometers) have been used in forest field measurements,
but these measurement methods are widely recognized as time con-
suming, laborious and expensive. Terrestrial laser scanning (TLS), also
known as ground-based light detection and ranging (LiDAR), has been
suggested to be a practical option to quickly provide accurate and
nondestructive estimations of forest biophysical metrics (Latifi et al.,
2015; Stovall et al., 2017; Wilkers et al., 2017). Compared to
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conventional manual measurements, it has also shown a higher work
efficiency in forestry inventories (Murphy et al., 2010; Luo et al., 2019).
Three-dimensional (3D) data acquisition is an essential prerequisite and
is the key to digital forest measurements. Three data-acquisition modes
have been reported in TLS-based field measurements: single-scan,
multi-scan and multi-single-scan (Liang and Hyyppä, 2013).

In single-scan mode, the scanner is placed at a single point in the
forest sample plot, which allows the acquisition of only one side of the
visible trees. The single-scan mode has a simpler data-acquisition set-
ting and faster measuring speed than those of the other two modes, e.g.,
it can typically measure a plot within 20 min (Liang et al., 2016).
However, occlusion effects from the forest objects (e.g., trees, branches,
and ground vegetation) in the direction of the laser beams cause a low
detection rate in forest measurements, e.g., from 0% to 46% depending
on the plot size and the forest type (Maas et al., 2008; Lovell et al.,
2011; Liang et al., 2012; Trochta et al., 2013; Mengesha et al., 2015;
Wan et al., 2019). Consequently, multiple scans are often necessary to
observe all the trees in the sample plot. In multi-scan mode, the scanner
observes a sample plot from multiple positions, which gives it the po-
tential to detect all trees and provides full coverage of a stem surface.
This mode is considered the most accurate for forest mapping. Un-
fortunately, it requires more time and laborious field measurements and
more data preprocessing. Depending on the plot size and forest type,
the multi-scan mode typically takes one to ten hours to measure a forest
sample plot, which includes determining the location and distribution
of the scanners and reference targets and performing multiple scans.
For example, TLS-based field measurements usually take at least one
hour in a forest sample plot of 30 m × 30 m in size and approximately
ten hours in a plot of 100 m × 100 m in size. In addition, the cost of the
manual or semiautomated registration of multiple scans limits its
practicality. For instance, placing reflective targets in forest environ-
ments is complex because most methods evenly distribute targets in
positions that can be seen from multiple viewpoints and require addi-
tional user interactions to identify undetected targets, which are diffi-
cult to extract automatically by commercial software. In multi-single-
scan mode, several scans are implemented in a sample plot, but artifi-
cial targets and data-level registration are not required. The multi-
single-scan mode performs processing of each scan independently and
automatically detects the individual trees from each individual scan to
map the forest sample plot. This mode offers compensation for the
problem of the occlusion effects in the single-scan mode and decreases
the workload of field measurement compared to that of the multi-scan
mode.

In principle, the registration of multiple scans can be performed at
different levels, including the data-level (point-level), feature-level and
decision-level. The data-level (or point-level) registration of multiple
scans transforms several point clouds into a common coordinate system,
and the fused data are used for the interpretation of the forest sample
plot. In general, the multi-scan mode performs the process of data-level
registration. At the feature level, some features (e.g., diameter at breast
height and tree height) are extracted from each individual scan and
merged for estimating tree attributes. At the decision level, the in-
dividual scans are processed independently, and the extracted tree at-
tributes from each scan are combined for the interpretation of the plot.
In the three acquisition modes, the multi-single-scan mode generally
performs the process of merging at the feature and/or decision levels. In
forest inventories, the multi-single-scan mode can improve the esti-
mation accuracy of tree attributes compared with that of the single-scan
mode and obtain a similar estimation result with that of the multi-scan
mode (Liang and Hyyppä, 2013). However, for the precise and com-
plete 3D reconstruction of the forest environment, data-level registra-
tion is more necessary than merging at the feature and decision levels.

Recently, mobile laser scanning (MLS) has gained attention in forest
plot mapping because of the advantage of immensely faster data col-
lection in comparison to those of TLS modes (Liang et al., 2014), e.g.,
MLS can measure small sample plots within a few minutes. Therefore,

we propose a simultaneous localization and mapping (SLAM) method
combining a single-scan TLS point cloud and MLS point clouds for forest
environments. The method addresses the global consistency problem
and maintains the accuracy of mapping without the GNSS-IMU system,
even in the case of trajectory discontinuity and without loop closures.
To solve the occlusion and object similarities problem, we propose
combining virtual feature points that represent the tree stem center and
real, evenly distributed feature points in forest plot mapping, which
allows the mapping of forest point clouds with low overlap and pre-
vents errors caused by inaccurate corresponding pairs in forest en-
vironments. Following the introduction section, Section 2 summarizes
the related work. The key steps of the proposed method are elaborated
in Section 3. Section 4 introduces the materials and the performance of
the proposed method on field measurements and then evaluates the
advancements of the proposed method, after which discussions are
presented and conclusions are drawn.

2. Related work

The main limitation of MLS appears during the mapping step, where
each MLS point cloud is mapped on the point clouds acquired in the
previous time steps. Most of the existing MLS-based mapping techni-
ques are based on global navigation satellite system/inertial measure-
ment unit (GNSS-IMU)-based techniques. In that setup, the GNSS
maintains the global position accuracy, and the IMU provides attitude
information for the orientation of the laser scanner. In contrast to the
road and urban contexts, the occlusion of trees often weakens or blocks
the GNSS signal and prevents forest mapping. In such cases, the location
of the MLS point cloud needs to be estimated during the mapping step,
which leads to the so-called SLAM problem (Dissanayake et al, 2001).

Common SLAM techniques involve filter-based and graph-based
methods. In the filter-based method, the extended Kalman filter (EKF)
(e.g., Hector SLAM) (Kohlbrecher et al., 2011) and particle filters (PF)
(e.g., G-mapping) (Grisetti et al., 2007) are the common filters for
SLAM technology. The related EKF and PF methods rely on strong as-
sumptions about the robot motion model and the sensor noise and
generally only consider the motion relationship between adjacent data.
When the assumptions are violated or loop closure is executed, the
filter-based methods will be difficult to address. In addition, as the
scenario expands, the filter-based method will increase the memory
consumption and computation. The graph-based method is popular in
the SLAM community, as it solves both the position and mapping pro-
blems by combining poses of the scanner and constraint relationships
between these poses. For example, Karto-SLAM (Konolige et al., 2010)
and Cartographer (Hess, et al., 2016) calculate the poses of the scanner
at different times and execute loop closure detection to construct a pose
graph and then eliminate the cumulative error by optimizing the pose
graph. Because only pose optimization is considered, these methods can
achieve low computational resource consumption and even real-time
optimization. However, this kind of method has difficulty obtaining
highly accurate positioning and mapping results, which makes it diffi-
cult to meet the requirements of high-precision forest measurements. In
contrast, another graph-based method, bundle adjustment (BA), is
widely used for solving the SLAM problem (Mouragnon et al., 2009).
The BA method simultaneously optimizes the features and poses of the
scanner using nonlinear optimization, which strongly relies on the
matched features and can obtain highly accurate mapping results. For
instance, the LOAM method (Zhang and Singh, 2014) selects the line
and plane features on object surfaces to estimate the motion of a
scanner and obtains highly accurate mapping results in indoor and
urban scenarios that consist of stable and distinct features. However,
due to the complexity and similarity of the object in forests, reliable
features are difficult to extract from the object surface, and inaccurate
corresponding pairs can make scan matching fall into a local optimum.
Moreover, another challenge in SLAM is to avoid error accumulation
during data acquisition, i.e., by considering global optimization
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(Grisetti et al., 2010). Several methods maintain global positioning
accuracy by performing multiple loop-closure detections (Mur-Artal,
et al., 2015), generally increasing the complexity of the algorithm
(Labbé and Michaud, 2014). Other studies achieve global optimization
using prior information. For example, Kukko et al. (2017) used graph-
based SLAM to correct the GNSS-IMU trajectory for position drift, and
in turn, the initial trajectory obtained from the GNSS-IMU system was
regarded as prior information and provided the constraints for the
graph SLAM. The method not only achieved forest mapping but also
improved the absolute positioning accuracy; however, the GNSS signal
loss caused by the occlusions of trees may affect the performance in
practice. In addition, aerial images (Kümmerle et al., 2011; Javanmardi
et al., 2017) and sketch maps (Shah and Campbell, 2013; Behzadian
et al., 2015; Mielle et al., 2018) are usually used to generate constraints
for SLAM-based mapping, and the related methods show the reliability
of prior information in indoor and urban scenarios (Wang et al., 2018).
However, aerial images have difficulty providing constraints for below-
canopy forest mapping due to canopy occlusions; in addition, methods
based on sketch maps have difficulty meeting mapping requirements for
high-precision forest measurements. Consequently, the complex and
irregular forest environments pose problems to the existing SLAM
methods.

A key step of most SLAM systems is the registration step, where
pairs of input scans are matched and aligned. This process is known as
point cloud registration, a topic of studies for decades with a wide range
of approaches proposed in the general setting (Mitra et al. 2004, Rusu
et al. 2008, Mellado et al. 2014, Pomerleau et al. 2015). In this work,
we focus on forest mapping and restrict our review to this application
case. The first type of approach uses artificial markers placed in the
scene, e.g., reflective tape, retroreflective spheres, and reflectors
(Henning and Radtke, 2006; Hilker et al., 2012; Zhang et al., 2016a).
These markers serve as precise and unambiguous tie points for
achieving highly accurate point cloud registration. Nevertheless, the
placement of artificial markers is generally time consuming and labor
intensive in forest environments, and related studies commonly focus
on several dense point clouds (e.g., TLS data). Extracting markers from
sparse MLS data is, however, more difficult due to the size of markers
and the effects of occlusion and might also be impractical for thousands
of MLS point clouds. In contrast, marker-free registration methods aim
at registering the scans without markers. The first category of ap-
proaches detects geometric features that play the role of digital mar-
kers. For example, Kelbe et al. (2016) regarded stem-terrain intersec-
tion points as matching features and generated tie point triplets for
registration of TLS data. Polewski et al. (2019) used the tree positions to
achieve marker-free registration of point clouds. A second category of
approaches uses descriptor-free registration methods; see, for instance,
the study by Theiler et al., (2014a) on the use of congruent set regis-
tration for, among other application cases, forest registration. The
aforementioned methods commonly focus on coarse alignment and
require a fine registration step in postprocessing. The iterative closest
point (ICP) (Besl and Mckay, 1992) is currently the standard approach
for local registration. It starts by computing correspondences between
pairs of point clouds and then minimizes the distance between those
corresponding pairs. Normal distribution transform (NDT) (Magnusson
et al., 2007) is also often considered. In the NDT method, a point cloud
is represented by local normal distributions that are subdivided into a
grid of cells; then, the search of the closest normal distribution is used
to replace iterating over a whole point cloud. The two methods gen-
erally need a certain point cloud overlap to maintain the registration
accuracy and are suitable for scenarios with strong anti-density inter-
ference abilities, e.g., indoor and urban. However, forest scenarios ex-
hibit strong auto-similarities (e.g., tree stems are often very similar),
which may confuse these methods. When the distance between scan
locations is large, inaccurate corresponding pairs are easily generated
by the methods and cause inaccurate registration results, especially in
the registration of tree stems (Fig. 1). Therefore, the selection of

features brings challenges for scan matching in forest environments.

3. Methods

3.1. Overview of the method

The goal of this paper is to realize forest plot mapping by combining
single-scan TLS data and MLS data. In this paper, we solve the problem
in two steps: LiDAR odometry and global optimization (see Fig. 2).

(1) Odometry: estimate the motion of each frame MLS point cloud re-
lative to the single-scan TLS data:

i. Feature extraction: extract feature points from each frame MLS
point cloud. We distinguish between virtual features, which sample
the reconstructed tree stem centerlines, and real features, which
evenly sample the point cloud. In this paper, virtual features are
points that are not part of the input point clouds and thus cannot be
directly extracted from them, and the points that can be directly
extracted from the point cloud are defined as real features. A
layered clustering method is proposed for virtual feature extraction,
and the difference of Gaussian (DoG) method is used to extract real
features.

ii. Feature correspondence: virtual and real feature points are matched
between the reference single-scan TLS data and each MLS point
cloud by a nearest neighbor search.

iii. Motion estimation: the pose of each MLS point cloud is optimized
with respect to the single-scan TLS point cloud by nonlinearly
minimizing the corresponding feature point distances.

(2) Global optimization: simultaneously optimize the poses of all the
MLS point clouds. The coordinate system of the reference single-
scan TLS point cloud can be considered a common coordinate
system and defines a global constraint for estimating the trajectory
of the MLS device. We use an incremental map to optimize the
poses of all the MLS point clouds, of which the incremental map is
built by the continuous MLS point clouds and the reference.

3.2. LiDAR odometry

LiDAR odometry is used to estimate the motion of the MLS system.
In this paper, it is used to calculate the transformation between the MLS
point cloud and the reference. To reduce the cost of field measurement
and extract accurate corresponding pairs, we propose combining two
types of features, virtual features and real features, for LiDAR odo-
metry. Before solving the MLS-based SLAM problem in a forest, we first
set certain conditions:

• The single-scan TLS point cloud is set as a reference, and its co-
ordinate system is regarded as the common coordinate system W{ }.
The coordinate system of each MLS point cloud is set to a local
coordinate system L{ }. W{ } and L{ } follow the right hand rule.

• Let Mn and TLS be the MLS point cloud at the time of sweep n and
the TLS point cloud, respectively.

• Coarse alignment of the first frame MLS point cloud and the re-
ference is manually performed.

The NDT algorithm only considers the probability distribution of
points, so it does not take much time to search for matching features
and has a certain stability; thus, the algorithm is used to provide the
initial transformation for the following LiDAR odometry. Let M~n

w be the
reprojected point cloud based on the NDT.

3.2.1. Feature extraction
The NDT algorithm can obtain an initial transformation between the

MLS point cloud and the reference, but there are obvious deviations in
tree stem registration, especially in the horizontal direction (see Fig. 1).
Therefore, a constraint that combines the virtual features and real
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features is proposed to reduce registration error.

(1) Extraction of virtual features

In forestry inventories, in practice, we generally assume that the
cross sections of tree stems are approximately circular (Polewski et al.,
2017) and that the shortest distance from the geometric center of the
tree stem cross section to the surface of the tree stem equals the radius
of the circle. It is obvious that these assumptions provide horizontal
constraints. Therefore, we use the geometric centers of tree stems as
horizontal constraints for the registration of the MLS point cloud and
the single-scan TLS data. Because the centers of stems cannot be di-
rectly extracted from point clouds, we defined them as virtual features.

Specifically, we extract virtual features based on the layered clus-
tering method. First, we divide each MLS point cloud into multiple
subsets according to the vertical angular resolution. Then, the con-
tinuous and adjacent points in each subset are clustered based on the
connected-component labeling algorithm (Zhang et al., 2019). If the

distance between the two farthest points in a cluster is greater than the
maximum diameter at breast height (DBH) or less than the minimum
DBH in the plot, then the cluster will be removed. Finally, the circle fit
based on the least squares method is used to detect the centers from
these retained clusters. Furthermore, the centers that are continuously
distributed in the vertical direction are used as virtual features (see
Fig. 3). Let Vn

L be the set of virtual features at the time of sweep n
(V Mn

L
n) and V

~
n
W be the reprojected point sets based on the initial

transformation. In addition, let Vr n be the set of radii corresponding to
the features.

(2) Extraction of real features

Although virtual features can reduce the deviations in the horizontal
direction, it is difficult to provide a constraint in the vertical direction
because the tree stems are generally parallel in the vertical direction.
However, those features that are evenly distributed in the point cloud
can provide an overall registration constraint. In this paper, we use the

Fig. 1. The existing methods generally fail in forest environments because of the inaccurate corresponding pairs. The overlapping rates in tree 1 and tree 5 are high;
the overlapping rates in tree 2, tree 3, and tree 4 are low, especially in tree 3. Result (b) will replace result (a) when applying the conventional methods of point cloud
registration.

Fig. 2. Flowchart.
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difference of Gaussian (DoG) algorithm to extract real features.
The DoG algorithm is a feature enhancement and extraction algo-

rithm in digital image processing. The major advantages of features
extracted by the DoG algorithm are their invariance to scaling, rotation,
and translation. Many high-contrast edges in two dimensions are on
object silhouettes and have depth discontinuities, leading to unstable
features across viewpoints. 3D detection avoids such unstable feature
points that highly contrast with their spatial neighbors, so we directly
extract the real features in 3D. The DoG-based feature extraction
computes a Gaussian response for each point in each blurred level and
then subtracts the responses of adjacent blurred levels at each point to
obtain DoG responses (Theiler et al., 2014b). The blurred level is de-
termined by the Gaussian responses of normal vectors at each point.
When the normal vector of each point is calculated by taking into ac-
count different search scales, different blurred levels will be obtained.
For the DoG responses, points with local maxima or minima in the re-
sponse space are extracted as real features. In practice, to reduce the
impact of noise or outliers, we calculate the spatial distance between
each point and its neighboring points. If the distance is large, the point
will be tagged as noise or outlier and removed. Finally, let Rn

L be the set
of real features at the time of sweep n (R Mn

L
n) and R

~
n
W be the re-

projected point sets based on the initial transformation. The result is
shown in Fig. 4.

3.2.2. Feature correspondence
Feature correspondence is used to search for the corresponding

features of the virtual feature and real feature from the MLS and the
single-scan TLS data and to estimate the motion of the MLS system in
the common coordinate system. Therefore, the nearest neighbor

algorithm is used to search for corresponding features.

(1) Virtual feature correspondence

Theoretically, the distance from the center of the cross section of the
tree stem to the nearest point on the surface of the tree stem is ap-
proximately equal to the radius of the cross section, so the point-to-
point distance can easily establish a more accurate relationship between
the MLS point cloud and the reference. If a distance between a virtual
feature and its nearest point in the reference data is approximately
equal to the corresponding radius of the virtual feature, then we set the
virtual feature point as a keypoint for motion estimation and regard its
nearest point in the reference data as its corresponding feature. Let

VX~ i
W
( , )n be a keypoint ( VVX~ ~

i
W

n
W

( , )n ) and X~ j( , ) be the corresponding
point (X~ j TLS( , ) ); then, the point-to-point distance Vd i( , )n can be
computed by

V V=d X X| ~ ~ |i i
W

j( , ) ( , ) ( , )n n (1)

for each virtual keypoint. When Vd i( , )n approximates the corre-
sponding radius, the relationship between the keypoint and the corre-
sponding point will be more accurate.

(2) Real feature correspondence

The point-to-plane metric is usually solved using standard nonlinear
least squares methods, and the error metric converges much faster
(Low, 2004). Therefore, in this paper, the planar patch is found to be
the corresponding feature of a real feature. If a real feature has three
nearest points in the reference data, which are within a certain

Fig. 3. Extraction of virtual features. (a) Layered processing; different colors represent subsets on different layers. (b) Retaining cluster points. (c) Fitting the circle
whose radius is less than half of the maximum DBH (red points) and detecting its center. (d) Determining virtual features (larger red points). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Extraction of real features. Blue points are the MLS data. Orange points are real feature points, and 180 real feature points were extracted from each MLS point
cloud. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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neighborhood of the real feature point and are not on the same line,
then a planar patch consisting of the three points is regarded as a
corresponding feature of the real feature, and the real feature point will
be used as a keypoint for estimating motion in the MLS system. Let

RX~ i
W
( , )n be a keypoint in R

~
n
W ( RRX~ ~

i
W

n
W

( , )n ), and let the corresponding
plane be set to X X X{ ~ , ~ , ~ }a b c TLS( , ) ( , ) ( , ) . The distance Rd i( , )n between
point and plane can be computed by

R

R

=

=
×

×

X X n
n

d

X X X X X X
X X X X

| · |
| |

|( ~ ~ )·(( ~ ~ ) ( ~ ~ ))|
|( ~ ~ ) ( ~ ~ )|

R a
i

i
W

a a b a c

a b a c

( , )
( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

n

n

(2)

where n is the normal vector of the plane. For each real keypoint, when
Rd i( , )n tends toward zero, the relationship of the corresponding pair will

be more stable.

3.2.3. Motion estimation
This step is to achieve registration using the corresponding pairs

built by the virtual features and the real features. Let Tn
W be the

transformation vector between the MLS point cloud M~n
w and the re-

ference TLS, where Tn
W contains rigid motion in 6 degrees of freedom

(DOF), i.e.,

=T t t t[ , , , , , ]n
W

x y z

where , and are rotations around the x-, y-, and z-axes of W{ },
respectively, following the right hand rule, and tx , ty and tz are trans-
lations of W{ } along the x-, y- and z-axes, respectively. Let us assume
that X~ n i

W
( , ) are the feature points fromV

~
n
W and R

~
n
W , where the features

are extracted from the MLS point cloud, and X n i
W
( , ) are the transforma-

tion results of X~ n i
W
( , ) . To estimate the accurate motion of the MLS system,

a rigid transformation relationship between X n i
W
( , ) and X~ n i

W
( , ) can be es-

tablished:

= +R TX X~ (1: 3)n i
W

n i
W

n
W

( , ) ( , ) (3)

where R is the rotation matrix ( ×R 3 3). In this paper, we consider
the y-axis as the principal axis and calculate R by rotating around the y-
x-z axis.

= =
+ +

R R R R( ) ( ) ( )
cos cos sin sin sin cos sin sin sin cos sin cos

cos sin cos cos sin
sin cos cos sin sin sin sin cos sin cos cos cos

y x z

From Eq. (1), we can derive a geometric relationship between each
virtual keypoint in the MLS data and the corresponding point in the
reference:

VV V V V V=X d r r r Xf ( ~ ) , , ~ ~
n i
W

i i n i
W

n
W

( , ) ( , ) ( , ) ( , )n n n (4)

where Vr i( , )n is the corresponding radius of virtual keypoint X~ n i
W
( , ) .

Similarly, from Eq. (2), we can derive a geometric relationship be-
tween each real keypoint in the MLS data and the corresponding planar
patch in the reference:

RR R=X d Xf ( ~ ) , ~ ~
n i
W

n i
W

n
W

( , ) ( , ) (5)

Combining Eq. (4) and Eq. (5), a nonlinear function about Tn
W can be

established:

V R= = +T d X Xf f f( ) ( ~ ) ( ~ ) 0n
W

n i
W

n i
W

( , ) ( , ) (6)

where each row of f corresponds to a keypoint and d represents the
distance between the keypoint and its corresponding feature. Finally,
we can solve Eq. (6) through nonlinear iterations by minimizing the
error e toward zero with the Levenberg-Marquardt (L-M) method:

= =
=

T Te arg d arg f fmin 1
2

0 min 1
2

( ) ( )
e i

N

i
e

n
W T

n
W

1

2

(7)

First, we linearize Eq. (7) with the first-order approximation of a
Taylor expansion:

= + = +T T T T J Tf f f( ) ( ) ( )n
W

n
W

n
W

(8)

where Tn
W is the initial motion in 6-DOF and T is the correction of the

initial motion. In this paper, 6-DOF Tn
W , i.e., the rotations ( , , ) and

the translations t t t( , , )x y z , are regarded as the unknowns, and J is the
Jacobian matrix of f(·) and can be calculated by combining Eq. (3) and
Eq. (6):

=J t t t
f f f f f f

x y z (9)

By combining Eq. (3) and Eq. (6), we derive every element of matrix
J . Taking a virtual feature point x y z( , , ) as an example to describe the
derivation of ,
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where x y z( , , ) is the closest neighboring point of x y z( , , ) in the
single-scan TLS point cloud, dv is the distance between x y z( , , ) and
x y z( , , ), and Rij represents the element in rotation matrix R. Simi-

larly, we can derive all the other elements of matrix J . For the virtual
feature, other elements of matrix J are shown in Appendix A, and for
the real feature, the elements of matrix J are shown in Appendix B. In
addition, according to the virtual and real features, we can construct
the Jacobian matrix J with a size of ×M 6, where M denotes the sum of
the number of virtual features and the number of real features. By de-
riving Eq. (7) with 0, then combining Eq. (8) and Eq. (9), the correction

T can be solved by

= +T J J I J d( )T 1 T (10)

where is the damping factor determined by the L-M method. Then,
fine motion can be calculated by

= +T T Tn
W

n
W

(11)

where the MLS point cloud can be transformed into the common co-
ordinate system based on Tn

W .

3.3. Global optimization

Global optimization mitigates the accumulative error and trans-
forms all point clouds into a common coordinate system (Shao et al.,
2019). The challenge of global optimization is solving the spatial in-
consistency problem (Liang et al., 2018a). Therefore, we adopt a
method based on a global map that does not consider loop closure and
the adjustment of all of the data to address the global optimization of
SLAM. In this paper, the single-scan TLS point cloud is used as a re-
ference, and a global map combining the reference and incremental
MLS point clouds provides a constraint for forest mapping. The detailed
schematic is shown in Fig. 5.

Let Mk (k = 1, 2, 3 … n-1, n) represent an MLS point cloud at the
time of sweep k, where forest mapping starts from point cloud M1. For
M1, we set prior information TLS as the reference and optimize the
transformed M1 using the L-M method. Then, we can obtain the motion
Tw

1 of MLS data at the time of sweep 1 and transform M1 into the
common coordinate system W{ }. Simultaneously, we build the global
map +G M1 by combining TLS and M1 and reset +G M1 as the global
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constraint.
For the MLS point cloud M2 at the time of sweep 2, we calculate the

transformation T2
1 between M1 and M2 using 3D-NDT; then, an initial

transformation T W
2 between M2 and the global map +G M1 can be cal-

culated based on Tw
1 and T2

1. Furthermore, an initial transformed point
cloud M p

2 from the local coordinate system of M2 to the common co-
ordinate system W{ } can be obtained based on T W

2 . Because of the
propagation of error, we optimize the initial transformation T W

2 and the
transformed point cloud M p

2 based on the global map +G M1 using the L-
M method. In the process, the corresponding points of virtual keypoints
and the corresponding patches of real keypoints are extracted from the
global map +G M1. According to the L-M method, we can obtain an
optimized transformation Tw

2 and a point cloud Mw
2 . Simultaneously, we

rebuild a new global map + +G M M1 2 by combining +G M1 and Mw
2 .

Similar to the MLS point cloud M2, we can estimate the motion Ti
w of the

subsequent MLS point clouds and transform each MLS point cloud Mi
into a global map and rebuild a new cumulative global map + =G Mi

n i1 .
We locate each MLS point cloud in the common coordinate system W{ }
and simultaneously map the environment by combining the MLS data
and the single-scan TLS data.

In practice, some MLS point clouds affected by motion distortion
and measurement error reduce the accuracy of forest mapping.
Therefore, we detect the key MLS point cloud by determining the re-
lationship between the virtual keypoints and their corresponding points
(Eqs. (1) and (4)). If the difference between the points in the corre-
sponding pair is less than the set threshold, we add the current point
cloud to the global map. In this paper, the threshold is set as 6 cm,
which is twice the measurement precision (i.e., 3 cm).

4. Results and discussion

4.1. Study area and data collection

The study area, located in Saihanba National Forest Park in Hebei
Province in northern China, is dominated by coniferous trees. The study
area includes dozens of square sample plots of size 25–30 m, and the
tree species is larch. For this study, we selected three datasets from two

sample plots: Plot A and Plot B (Fig. 6). In Plot A, we acquired two
datasets of point clouds at different periods: Dataset A1 and Dataset A2.
In addition, one dataset was acquired in Plot B, i.e., Dataset B. The
parameters of the two plots are summarized in Table 1.

The MLS data were captured by cross-moving around the forest
plots using the Velodyne VLP-16 laser scanning system. Its angular
resolution is 2° in the vertical direction, and the scan frequency was set
to 10 Hz. We obtained 1918 MLS point clouds in Dataset A1, 1395 point
clouds in Dataset A2, and 1045 point clouds in Dataset B. The TLS data
were captured using the Riegl VZ-1000 laser scanning system, and the
scan angular resolution was 0.03° in both the horizontal and vertical
directions. Table 2 gives the parameters of the two scanners.

The TLS system was placed in the middle of the forest plot to acquire
point clouds with a full field-of-view scan; the multi-scan TLS mode was
also used to verify and compare methods. In addition, the tree position
is represented by extracting the center of the cross section of the point
cloud above ground level and is used to evaluate the accuracy of the
forest mapping results.

4.2. Evaluation of feature extraction

The virtual feature is represented by the center of the tree stem cross
section, so we used the radius that corresponds to the center to assess
the virtual feature. Specifically, the deviation between the radius from
the MLS data and its corresponding radius from multi-scan TLS data
was calculated and used for the evaluation of the extracted virtual
features. Fig. 7 shows the results of feature extraction from one frame
MLS point cloud.

To ensure the reliability and correctness of the virtual features,
strong constraints are used for feature extraction. For example, a virtual
feature point is discarded if its radius is significantly different from the
other feature points on the same tree. Therefore, although this method
was unable to detect all trees in the MLS data, the virtual features from
the extracted trees with dense points could be correctly extracted (Fig. 7
(a)). Fig. 7 (b) shows that the radius deviations of the virtual features
are small, e.g., the radius deviations of almost all virtual features stay
within −0.03 m to 0.03 m. In addition, the mean absolute deviation

Fig. 5. Schematic of global optimization. M M M M{ , , }n1 2 3 with different colors represent the MLS point clouds at different times. Ti
w represents the motion of MLS

data at the time of sweep i, and Mi
p represents an initial transformed MLS point cloud. + =G i

n Mi1 represents the global incremental map.
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(mean) and the root mean square error (RMSE) values are less than
0.02 m, which indicates the reliability of the virtual feature points.
Meanwhile, as iterative optimization, some real features with large
errors were discarded (Fig. 7 (c)), and accurate correspondences were
generated (Fig. 7 (d)). Overall, the radius deviations of most virtual
feature points are small, and the accurate corresponding planes of real
features are obtained, so the extracted features suggest the potential for
accurate scan matching.

4.3. Evaluation of corresponding pairs

The corresponding pairs were composed of the feature points from
each frame MLS point cloud and their nearest neighbor points from the
single-scan TLS point cloud, of which the distance deviation between
the pairs was regarded as a constraint for motion estimation of the MLS
system. Therefore, we used Eq. (1) and Eq. (2) to quantitatively eval-
uate the performance of the corresponding pairs, of which the deviation
between the value of Eq. (1) and the corresponding radius and the value
of Eq. (2) were regarded as evaluation indices for evaluating the cor-
responding pairs of the real features and the virtual features, respec-
tively (Fig. 8).

Because the cross section of the tree stem is not strictly circular, the
distance between the center of the circle and its closest point on the
stem is generally less than the corresponding radius. Therefore, due to
the error of an initial transformation, the distances between the virtual
feature points and their closest points on the tree stems of reference are
usually less than their radius, and the deviations between the distances
and the corresponding radius are large (see Fig. 8 (a)). As the number of
iterations during the optimization increases, the corresponding pairs
will change, and the deviations will decrease, in which the virtual
feature points with large deviations are removed (see Fig. 8 (b)). For
example, the deviations of most virtual features vary between −0.1 m
and −0.03 m, and the mean and RMSE values are 0.057 m and
0.064 m, respectively (Fig. 8 (a)), which indicate inaccurate scan
matching in the horizontal direction. From Fig. 8 (c), the distances of
most real features vary between 0.0 m and 0.14 m, and the mean and
RMSE values are 0.069 m and 0.091 m, respectively. Apparently, with

an initial pose of the MLS system, the corresponding pairs derived from
the MLS and single-scan TLS data have difficulty achieving accurate
estimation of MLS motion. Therefore, nonlinear optimization is used to
update the corresponding pairs. In theory, if accurate corresponding
pairs can be generated at the end of the iterations, the deviation value
will be small and tend to zero. For example, the deviations of most
virtual features vary between −0.03 m and 0 m, and the mean and
RMSE values drop to 0.020 m and 0.024 m, respectively (see Fig. 8 (b)),
of which several factors, such as the inaccurate features and the non-
circular cross sections of the tree stems, led to large deviations in the
results. For the real features, the distances mainly vary between 0.0 m
and 0.05 m, and the mean and RMSE values drop to 0.024 m and
0.03 m, respectively (see Fig. 8 (d)). In addition, because some in-
accurate corresponding pairs were discarded in the process of nonlinear
optimization, the total number of features decreased. In general, the
evaluation results showed certain reliability of the corresponding pairs,
especially the virtual feature points and their corresponding points,
which also indicated a possibility for achieving accurate motion esti-
mation of the MLS system.

4.4. Forest mapping and positioning accuracy

In the proposed method, two results can be obtained: localization
and mapping. The localization is represented by the trajectory of the
MLS system, and the mapping is represented by the reconstruction of
the forest plots. To evaluate the effectiveness and robustness of the

Fig. 6. Study area.

Table 1
Parameters of the three datasets in the two plots.

Dataset Stem density (stems/ha) Tree height (m) DBH (m)

Max Min Mean SD Max Min Mean SD

A1 302 21.563 18.631 19.852 0.823 0.310 0.243 0.271 0.019
A2 302 21.602 18.714 20.097 0.733 0.349 0.258 0.291 0.028
B 415 21.012 18.431 19.674 0.801 0.302 0.248 0.279 0.018

Table 2
Parameters of the laser scanners used.

Scanner MLS
(Velodyne VLP-16)

TLS
(Riegl VZ-1000)

Channels 16 1
Range (max.) ~100 m ~1400 m
Measurement rate (max.) 600,000 points/sec 122,000 points/sec
Field of view

(horizontal × vertical)
360° × 30°
(+15°/−15°)

360° × 100°
(+60°/−40°)

Measurement precision ± 3 cm ± 0.5 cm
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Fig. 7. Feature extraction results (blue points are the MLS data). (a) The result of virtual feature extraction (red points are the virtual feature points). (b) The
distribution of the radius deviation; the x-axis represents the deviations, and the y-axis represents the number of virtual features in different ranges. (c) Shows the real
features used for motion estimation (orange points are the real features). (d) shows the result of scan matching (red points are the single-scan TLS data, and green
points are the correspondences of real features). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8. Evaluation of the corresponding pairs. The x-axis denotes the deviations, and the y-axis denotes the count of features in different deviation ranges. (a) and (b)
Represent the relation between the virtual features in the MLS data and their corresponding features in the single-scan TLS data before and after nonlinear opti-
mization, respectively. (c) and (d) Represent the distance between the real features in the MLS data and their corresponding features in the single-TLS data before and
after nonlinear optimization, respectively.
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proposed method in forests, we tested two forest plots in which the
movements of the MLS system had different trajectories (see Fig. 9).

The results in Fig. 9 (a), (c), and (e) are coincident with the practical
movements of the MLS system. Fig. 9 (b), (d), and (f) show that the
forest plots can be reconstructed well, and the distributions and shapes
of individual trees reconstructed by the proposed method are clear and
identifiable. In addition, the proposed method is implemented on a

computer with an Intel® Core™ i7-3520 M CPU @ 2.90 GHz and with
8.00 GB RAM, and forest plot mapping is achieved by offline proces-
sing, in which the runtimes of the proposed method are approximately
100 min, 70 min, and 50 min for the three datasets, i.e., approximately
three seconds for one frame MLS point cloud.

In the reference, the locations of trees were available for evaluation
of planimetric accuracy, so to quantitatively evaluate the performance

Fig. 9. Forest mapping results. (a) and (b) represent the mapping of Dataset A1, (c) and (d) represent the mapping of Dataset A2, and (e) and (f) represent the
mapping of Dataset B. (a), (c), and (e) Represent the trajectories of the MLS system in the three datasets (blue points are the positions of the MLS system, and red stars
represent the scan locations of the single-scan TLS). (b), (d), and (f) show the reconstruction results of the three datasets. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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of the proposed method, the locations of trees obtained from the pro-
posed method were compared to those from the multi-scan TLS data.
First, each forest mapping result was manually registered with its cor-
responding multi-scan TLS data. Then, 16 trees, 14 trees, and 14 trees
were extracted from the three datasets to evaluate the mapping results.
The accuracy results of the tree position are summarized in Table 3.

In the three datasets, both the mean and RMSE values varied be-
tween 0.01 m and 0.02 m. The results in Table 3 reveal the small tree
position deviation values, which indicated accurate forest plot mapping
results. Combining the results in Fig. 9, the location and orientation of
the optimized data do not drift from their correct values during global
optimization, e.g., the trajectory of the MLS system can be closed
without loop-closure detection in Dataset A1 (see Fig. 9 (a)), and the
open trajectories in Dataset A2 and Dataset B can still be accurately
recovered by the proposed method (Fig. 9 (b) and (c)). Therefore, the
reference, i.e., single-scan TLS data, can provide an effective con-
sistency constraint for MLS-based forest plot mapping, of which these
virtual features retain the location accuracies of trees in the horizontal
direction.

In addition to the evaluation of planimetric accuracy, we compared
some feature points from MLS data with their corresponding points in
multi-scan TLS data to reflect the mapping accuracy in the vertical
direction. The tree branch position deviations in the vertical direction
were calculated for the evaluation of mapping accuracy in this paper. In
practice, 15 feature points on the branches were evenly selected from
each of the three datasets to evaluate the vertical accuracy. The accu-
racy results are shown in Table 4.

As seen in Table 4, the deviations were at the centimeter level in the
three datasets, of which the mean absolute deviations varied between
0.015 m and 0.02 m, the RMSE values were approximately 0.02 m, and
the maximum deviations were 0.04 m or less. Because of the constraints
from the ground and canopy, especially the ground, the NDT algorithm
could maintain the forest mapping accuracy in the vertical direction;
the real features further optimized the vertical accuracy using evenly
distributed points in forests, and the proposed optimization framework
provided certain global consistency constraints for MLS-based forest
plot mapping. In forest measurements, the requirement of accuracy in
the vertical direction is generally lower than that in the horizontal di-
rection (e.g., tree height measurement), which is at the centimeter or
decimeter level. Thus, the results in Table 4 indicate highly accurate
mapping results in the vertical direction. Overall, the results from

Fig. 9, Table 3, and Table 4, suggest the high reliability and robustness
of the proposed method.

4.5. Data completeness and performance

The completeness of the structural information is an important basis
on which to select a data-acquisition method. The paper combined the
single-scan TLS and MLS data to reconstruct the forest plots so that the
MLS data could offer compensation for the omission of single-scan TLS
data. Therefore, we analyzed and compared the data completeness on
the plot scale by the proposed method with the single-scan TLS data.
The results in Dataset A1 are shown in Fig. 10.

As shown in Fig. 10 (a), due to the occlusion effects from the other
objects, there are some regions that cannot be scanned by the single-
scan TLS at the forest plot scale, such as the sector regions labeled by
the green triangles. According to the proposed method, these omitted
regions can be filled by the MLS point clouds (Fig. 10 (b)). Thus, the
proposed method can obtain more complete structural information of
the forest. In addition, ground-based LiDAR systems are mainly used for
data acquisition below the canopy, of which the tree stem is one of the
significant tree-level attributes that is being widely studied. Therefore,
we compared the proposed method with the single-scan TLS method
and multi-scan TLS method from the completeness of individual tree
stem data in Dataset A1. Fig. 11 shows a comparison of the three data-
acquisition methods.

From the side view and the cross section of the stem in Fig. 11 (a),
only one side of the tree stem can be scanned by the single-scan TLS
method because the laser cannot penetrate the tree stem. Fig. 11 (b)
shows that the omission of tree stems caused by one scan (see Fig. 11
(a)) can be compensated for by the MLS data of the proposed method.
Fig. 11 (c) shows that the proposed method and the multi-scan TLS
method acquired a complete tree stem structure. Nevertheless, the
structural information above the canopy acquired by the multi-scan TLS
method is more complete than that of the proposed method. Further-
more, due to the limitation of the field of view, a single MLS scanner
can only achieve stem mapping using the proposed method, and the
canopy structural information is generally limited. Consequently, the
tree attributes related to tree height are difficult to estimate accurately.
In contrast, the tree attributes related to the DBH can be obtained be-
cause of the complete stem. Therefore, to evaluate the performance of
the MLS data, we calculated the DBH and stem curve values.

The DBH is an important structural parameter in forestry in-
ventories and can be used to analyze tree growth. Therefore, we cal-
culated the DBH values in the three datasets and compared the results
with those from multi-scan TLS data. The DBH value is determined by
extracting a cross section of the stem that falls between 1.2 m and 1.4 m
above ground level. Thus, we first filtered the ground and nonground
points (Zhang et al., 2016b) and extracted points that represented the
tree stem at breast height from the nonground points and then used the
least square method to fit a circle. To evaluate the accuracy of the DBH
fitted by the proposed method, the DBH fitted by multi-scan TLS data is
regarded as the reference and the DBH deviation is calculated (Table 5).

In the results of Table 5, the mean absolute deviations and the RMSE
values were approximately 0.01 m, and the maximum deviations were
approximately 0.02 m. In general, the overall accuracies could reach
more than 90%. In addition, the mean bias was 0.001 m in Dataset A1.
In Dataset A2 and Dataset B, the average DBH values from the proposed
method were less than those from multi-scan TLS data, and the bias
values were approximately −0.01 m. Overall, accurate DBH values can
be obtained from the mapping results of the proposed method.

In forest measurements, the stem curve is usually used to describe
the shape of tree stems and consists of stem diameters from specific tree
heights. Therefore, we compared the stem curve from the MLS data to
its corresponding stem curve from the multi-scan TLS data, of which the
stem curve is represented by several diameters at different heights, and
the corresponding diameters from the MLS and TLS data were at the

Table 3
Tree position accuracy. The ‘Trees’ column gives the number NT of the detected
trees in each dataset. Tree position deviation is calculated as the planimetric
distance between the detected tree and its reference in multi-scan TLS data.

Dataset Trees
NT

Tree position deviations (m)

Mean RMSE Max

A1 16 0.013 0.017 0.031
A2 14 0.018 0.020 0.029
B 14 0.012 0.014 0.023

Table 4
Vertical accuracy. The ‘Points’ column gives the number NP of the selected
sample points on branches of each dataset. The deviation is calculated as the
vertical distance between the sample point and its reference in multi-scan TLS
data.

Dataset Points
NP

Vertical deviations (m)

Mean RMSE Max

A1 15 0.019 0.021 0.040
A2 15 0.016 0.019 0.036
B 15 0.017 0.019 0.037
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same heights. The accuracies, including the mean absolute deviation,
RMSE, and the maximum deviation, are summarized in Table 6. The
mean absolute deviations and the RMSE values were at the centimeter
level, approximately 0.01 m, and the maximum deviations were less
than 0.03 m. The results indicated that the overall correctness of the
stem curve could reach 90% in the three datasets, which suggests cer-
tain effectiveness of the mapping results from the proposed method.

4.6. Comparison of data-acquisition methods

Compared to the TLS system, the major advantage of the MLS
system is the rapid acquisition of point clouds. In addition, one of the
purposes of this paper is to supplement single-scan TLS data with MLS
data. Thus, to evaluate the performance of the proposed method, we
compared it with the single-scan TLS and multi-scan TLS modes from
the time of the field measurement and the completeness of individual

tree stems in Dataset A1 (Table 7).
At the time of the field measurement, the single-scan method re-

quires the least amount of time of the three methods. To ensure an
adequate precision and detection rate, we took approximately 20 min

Fig. 10. Comparison between the single-scan TLS point cloud and the result of the proposed method. (a) represents the single-scan TLS point cloud (red points), and
green triangles show the omitted regions. (b) represents the mapping result of the proposed method (red points are the single-scan TLS point cloud and blue points are
the MLS data). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Comparison of individual tree mapping. (a) Tree mapping by the single-scan mode. (b) Comparison between the single-scan TLS mode (red points) and the
proposed method (blue points). (c) Comparison between the multi-scan TLS mode (red points) and the proposed method (blue points). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
The accuracy of DBH. The ‘Trees’ column gives the number NT of the extracted
trees in each dataset. DBH deviation is the difference between the DBH from the
proposed method and the DBH from multi-scan TLS data.

Dataset Trees
NT

DBH deviations (m)

Mean RMSE Max Bias

A1 16 0.009 0.010 0.021 0.001
A2 14 0.011 0.013 0.023 −0.008
B 14 0.010 0.011 0.019 −0.009
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for the field measurement: selection of scan position and set up of the
scanner took 5–10 min, and a full field-of-view scan in fine-scan mode
took approximately 10 min. For the proposed method, the single-scan
TLS and MLS devices were combined for data acquisition. In addition to
single-scan TLS, the MLS took approximately 5 min to acquire point
clouds in a forest plot, including planning trajectory and scanning. In
total, the proposed method took approximately 25 min for plot A. In

practice, the TLS system of the proposed method can be directly placed
at the middle of the forest plot and acquires a point cloud with a coarse-
scan mode, and we do not consider the detection rate and the precision
of trees in the placement of the TLS system, which only takes 5–10 min
to set up and scan the plot. In theory, therefore, we only need ap-
proximately 15 min to scan plot A. On the other hand, the multi-scan
TLS method used five scan positions to scan plot A with fine-scan mode
and placed some reflective targets in the plot for point cloud registra-
tion. In complex forests, these placed reflective targets need to be
scanned from different scan positions so that the set of these reflective
targets generally takes at least one hour. In each scan position, TLS
performed horizontal and vertical scans and needed to find and extract
reflective targets, which took approximately half an hour. As a result,
the method took approximately 210 min to field-measure one forest
plot. Therefore, single-scan TLS and the proposed method are more
efficient (see Table 7).

In practice, although the single-scan TLS method offers low detec-
tion to the complete forest scenario, the method is capable of achieving
stem detection with approximately 75% completeness and 90% cor-
rectness in easy forest stands (Liang et al., 2018b). Nevertheless, due to
the occlusions from a stem and its nearby stems, the single-scan TLS
mode only scanned one side of the stem, and the mean completeness of
individual stems was less than 50%. The multi-scan TLS method and the
proposed method acquired more complete tree stems from multiple
perspectives in plots, and their mean scan completeness of individual
tree stems were approximately 100%.

In conclusion, according to the evaluation criteria, the three data-
acquisition methods all have their own advantages. When the amount
of time needed for field measurements is of interest, the single-scan TLS
method and the proposed method are the best choices. If the com-
pleteness of the stem is needed, multi-scan TLS and the proposed
method have a slight advantage over single-scan TLS. Nevertheless, if

Table 6
The accuracy of the stem curve. The ‘Stems’ column gives the number NS of the
detected stems in each dataset. The stem curve is calculated by averaging the
diameters at different heights.

Dataset Stems
NS

Stem curve deviations (m)

Mean RMSE Max

A1 16 0.011 0.012 0.027
A2 14 0.010 0.011 0.020
B 14 0.010 0.011 0.019

Table 7
The completeness of individual stem data and the time of the field measurement
in Dataset A1. The “Criteria” column lists two evaluation criteria, and “%”
represents the point cloud coverage rate.

Criteria Data-acquisition methods

Single-scan
TLS

Multi-scan TLS The proposed
method

Time of the field
measurement (min)

≈20 min ≈210 min ≈25 min

Completeness of individual
tree stems (%)

< 50% ≈100% ≈100%

Table 8
Cross sections of four tree stems in registration results by different methods (red points are from the TLS point cloud; blue points are from the MLS point cloud). Each
line represents tree stem data.

Methods NDT
(Magnusson et al., 2007)

LOAM
(Zhang and Singh, 2014)

ICP
(Besl and Mckay, 1992)

The proposed method

Low-overlap in Dataset A1

High-overlap in Dataset A1

Low-overlap in Dataset A2

High-overlap in Dataset A2

Low-overlap in Dataset B

High-overlap in Dataset B

J. Shao, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 214–230

226



the completeness of tree stems and the time needed for field measure-
ments are all considered together, the proposed method may be the best
choice.

4.7. Comparison of motion estimation

To evaluate the performance and effectiveness of the proposed
virtual feature, tree stem position is used to evaluate the horizontal
accuracy of motion estimation. Furthermore, we compared the pro-
posed method with three methods: the NDT method, the ICP method,
and the LOAM method. Specifically, we visualized the cross sections of
four tree stems in the low-overlap and high-overlap regions of the three
datasets (see Table 8).

From Table 8, distinct deviations were observed in the results from
the NDT, LOAM, and ICP methods, in which the deviations in the NDT
and LOAM methods are similar and more obvious, and the stem points
in the MLS data transformed by the two methods intersect with the
reference points, especially the stems in the high-overlap regions of the
three datasets. In contrast, the results of the proposed method showed
that the cross sections of the tree stems in the low-overlap regions are
approximately circular, and the tree stems in the MLS point cloud
transformed by the proposed method in the high-overlap regions agree
with the TLS point cloud. Furthermore, to quantitatively evaluate re-
gistration accuracy in the horizontal direction, we detected several
easily identifiable stems to calculate the position deviations and com-
pared the performances of the four methods. The results are summar-
ized in Table 9.

The results show large deviations in the results from the NDT,
LOAM, and ICP methods. In practice, the three methods consider the
points on different sides of one tree stem to be on the same surface. The
NDT and ICP methods are collectively called dense point registration
methods because they consider all points in the registration. The NDT
algorithm considers the distribution of all points in the overlap area,
and the ICP algorithm achieves the registration based on the mini-
mization of the distances between matching points, which are easily
influenced by those points on different sides of the stems, so there are
large errors in their results. The deviations in the NDT and LOAM
methods were approximately equal in the three datasets (Table 9) and
corresponded to the visual performances in Table 8. The LOAM method
is a sparse feature method that combines line and plane features that
are extracted from the object surface for motion estimation, and it
generally requires a fine initial transformation between point clouds.

Although only a few features are required by the method, the in-
accurate corresponding pairs in the low-overlap region make the
method easily fall into a local minimum. Because the initial transfor-
mation was provided by the NDT method in this study, the results of the
LOAM and NDT methods were similar. The results of the proposed
method show a vast overall improvement in the three datasets. The
mean absolute stem position deviations between the correspondences
decrease to approximately 0.015 m (in Dataset A1 and Dataset B) and
even millimeters (in Dataset A2). In addition, the RMSE values and the
maximum deviations drop below 0.02 m and 0.03 m, respectively.

Table 10 shows the mapping accuracy of the proposed method and
the NDT, ICP, and LOAM methods in the vertical direction. We selected
some stable feature points from the ground and branches in the MLS
point cloud and their corresponding points in the TLS data, and then the
vertical distance deviations between the corresponding pairs are cal-
culated. From Table 10, the deviations obtained by the four methods
are small and approximate in the three datasets, of which the mean
distance deviations and the RMSE values varied between 0.01 m and
0.03 m, and the maximum deviations were less than 0.05 m. Because
the ground provides strong constraints, the NDT and ICP methods,
which achieve registration based on the whole points, obtain accurate
registration results in the vertical direction. The proposed method and
the LOAM method achieve registration based on some features, and
their initial transformations between the MLS data and the single-scan
TLS data are provided by the NDT method in this paper, so after non-
linear optimization, the vertical deviations from the two methods are
close to the results from the NDT method. Overall, the proposed method
performs well in the three datasets.

The above results of the proposed method are more reliable than the
results of the other three methods. Due to weak constraints, the regis-
tration errors of the NDT, ICP, and LOAM methods are mainly in the
horizontal direction. The proposed method is highly dependent on
virtual features and real features, especially virtual features. Thus, in
the process of motion estimation, the virtual features effectively de-
crease the errors in tree stem locations that exist in the other three
methods by providing a constraint between the center and the surface
of the tree stem; the real features retain the overall accuracy of the
LiDAR odometry.

5. Conclusions

LiDAR-based forest mapping is a significant method for obtaining
precise forestry inventories. To achieve complete and fast forest map-
ping, this paper proposed a novel method combining the single-scan
TLS and MLS systems for forest measurements. Meanwhile, compre-
hensive experiments were performed to verify the feasibility and ef-
fectiveness of the proposed method, and a good result was obtained. In

Table 9
Stem position accuracy of different methods.

Dataset Method Trees
NT

Stem position deviations (m)

Mean RMSE Max

A1 NDT (Magnusson et al.,
2007)

11 0.071 0.075 0.100

LOAM (Zhang and Singh,
2014)

11 0.064 0.070 0.104

ICP (Besl and Mckay, 1992) 11 0.060 0.065 0.102
The proposed method 11 0.013 0.014 0.021

A2 NDT (Magnusson et al.,
2007)

11 0.048 0.053 0.080

LOAM (Zhang and Singh,
2014)

11 0.049 0.054 0.096

ICP (Besl and Mckay, 1992) 11 0.033 0.034 0.055
The proposed method 11 0.008 0.010 0.026

B NDT (Magnusson et al.,
2007)

10 0.041 0.044 0.057

LOAM (Zhang and Singh,
2014)

10 0.050 0.053 0.065

ICP (Besl and Mckay, 1992) 10 0.057 0.060 0.082
The proposed method 10 0.016 0.018 0.028

Table 10
Vertical accuracy of different methods.

Dataset Method Points
NP

Vertical deviations (m)

Mean RMSE Max

A1 NDT (Magnusson et al., 2007) 15 0.022 0.027 0.044
LOAM (Zhang and Singh, 2014) 15 0.018 0.024 0.049
ICP (Besl and Mckay, 1992) 15 0.021 0.025 0.042
The proposed method 15 0.018 0.020 0.037

A2 NDT (Magnusson et al., 2007) 15 0.015 0.017 0.029
LOAM (Zhang and Singh, 2014) 15 0.021 0.024 0.049
ICP (Besl and Mckay, 1992) 15 0.014 0.016 0.029
The proposed method 15 0.012 0.015 0.035

B NDT (Magnusson et al., 2007) 15 0.014 0.015 0.027
LOAM (Zhang and Singh, 2014) 15 0.013 0.014 0.020
ICP (Besl and Mckay, 1992) 15 0.013 0.014 0.022
The proposed method 15 0.011 0.012 0.018
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the data acquisition phase, the proposed method acquired more com-
plete data than the single-scan TLS method, and the efficiency is higher
than that of the multi-scan TLS method. In the forest mapping phase,
the single-scan TLS point cloud provided a strong global consistency
constraint for the MLS-based SLAM technique and maintained ac-
curacies without a GNSS-IMU system. Moreover, in the case without
loop-closure detection, the proposed method still achieved accurate
forest mapping. In addition, a new point cloud registration method for
combining the virtual features and the real features specific to forest
environments was proposed by the paper. The method effectively
solved the inaccurate registration problem caused by insufficient
overlap and inaccurate corresponding pairs, for which the virtual fea-
tures played an important role in reducing the horizontal errors.
Compared to other classic methods, the registration results of the pro-
posed method were also more accurate.

As an aerial platform, the UAV-LiDAR system (ULS) can obtain
structural information below the canopy that approximates that ob-
tained by the TLS system. Moreover, the ULS is more efficient than the
TLS system, and the information from above the canopy is more

complete. As a result, the ULS is increasingly being used more widely in
recent years. In the future, therefore, to achieve fast and complete data
acquisition in large-scale forest plots, the ULS and MLS will be com-
bined for forest mapping based on the proposed method.
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where = + +p p p ps a b c
2 2 2 . Then, for the real feature, the elements of matrix J can be established by,
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