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Abstract— The 3-D information collected from sample plots is
significant for forest inventories. Terrestrial laser scanning (TLS)
has been demonstrated to be an effective device in data acqui-
sition of forest plots. Although TLS is able to achieve precise
measurements, multiple scans are usually necessary to collect
more detailed data, which generally requires more time in scan
preparation and field data acquisition. In contrast, mobile laser
scanning (MLS) is being increasingly utilized in mapping due
to its mobility. However, the geometrical peculiarity of forests
introduces challenges. In this article, a test backpack-based MLS
system, i.e., backpack laser scanning (BLS), is designed for forest
plot mapping without a global navigation satellite system/inertial
measurement unit (GNSS-IMU) system. To achieve accurate
matching, this article proposes to combine the line and point
features for calculating transformation, in which the line feature
is derived from trunk skeletons. Then, a scan-to-map matching
strategy is proposed for correcting positional drift. Finally, this
article evaluates the effectiveness and the mapping accuracy of
the proposed method in forest sample plots. The experimental
results indicate that the proposed method achieves accurate forest
plot mapping using the BLS; meanwhile, compared to the existing
methods, the proposed method utilizes the geometric attributes of
the trees and reaches a lower mapping error, in which the mean
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errors and the root square mean errors for the horizontal/vertical
direction in plots are less than 3 cm.

Index Terms— Backpack laser scanning (BLS), forest plot,
mobile mapping, point cloud, simultaneous localization, and
mapping (SLAM).

I. INTRODUCTION

PRECISE structural information collected from field mea-
surements is necessary for forest inventories, decision

making on forest resources, and ecological studies. Most of
the field measurements in a forest are based on field sample
plots, and these sample plots are typically representative of
the entire area of interest [1]. Generally, it is expensive to
measure plots utilizing conventional and simple measurement
tools. With the development of remotely sensed techniques,
a frequently used method of the forest measurements is known
as the light detection and ranging (LiDAR) technique, and
a common method uses laser scanners [2], [3]. One of the
aims of the LiDAR technique is mapping of the surrounding
environment [4]. In this context, LiDAR-based mapping has
become an active research topic for forest inventories.

Terrestrial laser scanning (TLS) has shown an advantage in
highly accurate forest mapping [5], [6]. TLS devices use either
a pulsed or continuous frequency-modulated laser beams that
measure the distance to an intercepting surface and allow for
the precise location of the object surface to be determined and
can create a highly detailed point cloud representation of the
scanning domain [7]. However, the occlusion effect limits the
use of the LiDAR device in forests [8]. To tackle the occlusion
effect, multiscan TLS is typically used to scan plots [9].
However, prescan preparations are generally required, e.g.,
placing artificial targets [10], which increases the cost of data
collection, increasingly hindered by the increasing size of the
forest plot to be mapped. Laser scanners have been mounted
on moving platforms to build mobile laser scanning (MLS)
systems and are being used for forests. Compared to the
TLS system, the main advantage of MLS is the immensely
rapid data collection in forest environments. Thus, it has great
opportunities for increasing the cost-effectiveness of TLS [11],
[12]. The greatest challenge for MLS is positional accuracy,
which is closely connected with the accuracy of mapping.

Due to the ability of the global navigation satellite sys-
tem (GNSS) to position the sensor and the ability of the inertial
measurement unit (IMU) to produce the attitude information,
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the GNSS-IMU system is usually used to derive the trajectory
information of MLS for various mapping tasks [13]–[15].
The GNSS works accurately in clear sky conditions, but the
task becomes increasingly difficult when satellite visibility
decreases or multipath effects increase [16]. In forests, satellite
availability largely depends on the amount of coverage by the
canopy, and the dense canopy absorbs, reflects, or completely
blocks the GNSS radio frequency signal, causing either a poor
signal or signal loss. Even with a high-precision GNSS-IMU
system, the positioning error can grow to several tens of
centimeters and even to meters due to trajectory drift and
will greatly limit the mapping accuracy in the dense forest
scenes. In such cases, the scanner MLS needs to be reposi-
tioned during the mapping step, which leads to the so-called
simultaneous localization and mapping (SLAM) problem [17].

SLAM is the process of mapping an unknown environ-
ment and locating the mobile platform simultaneously, which
has now been widely used to provide positioning informa-
tion in various environments [18]. In the initial stage of
the SLAM technique, a common sensor is a camera, and
currently, many excellent methods have been proposed for
positioning and mapping based on the camera, e.g., monoc-
ular SLAM (MonoSLAM) [19], large-scale direct monocular
SLAM (LSD-SLAM) [20], SVO: fast semidirect monocular
visual odometry (SVO) [21], and ORB-SLAM: a versatile and
accurate monocular SLAM system (ORB-SLAM) [22]. How-
ever, these methods require matching of landmarks and are
generally limited by depth precision. By contrast, LiDAR typ-
ically has an advantage in highly precise depth measurements.

Similarly, some LiDAR-based SLAM methods have been
developed for 3-D mapping of various environments, such
as Hector SLAM [23], Gmapping [24], Karto-SLAM [25],
and Cartographer [26]. The Hector SLAM and Gmapping
methods achieved the mapping based on the filter method
which relies on assumptions of the motion model and com-
monly has difficulty dealing with the loop-closure problem.
Moreover, Karto-SLAM and Cartographer are so-called graph-
based algorithms, which represent the map by means of
graphs that consist of nodes and edges. In a graph, each
node represents a pose of the sensor and each edge connects
two successive nodes and represents the motion between the
two nodes [27]. The related methods typically maintain a
pose graph, that is, using only the pose information, which
can suffice for the accuracy requirement of general mapping
(e.g., indoor or urban mapping), but their mapping results
encounter difficulty meeting the requirement of high-precision
forest measurement. Additionally, some methods consider
simultaneously optimizing pose and object features, which
can generally achieve highly accurate mapping, such as lidar
odometry and mapping in real-time (LOAM) [28] and implicit
moving least squares SLAM (IMLS-SLAM) [29]. The related
methods typically consist of these steps: feature extraction,
matching, and mapping update. In the literature, the features,
including the point, line, and plane of both the camera-based
SLAM technique and the LiDAR-based SLAM technique,
are usually used to estimate the position and attitude of
the sensors. For example, LOAM selects the line and plane
features that are extracted from the object surface, and solves

the matching problem by minimizing the distances between
the features and their correspondences to achieve mapping.
In the feature-based SLAM method, the position and attitude
solution are continuing to mature, but the feature selection
limits the effectiveness of the methods in various scenes. For
MLS data, the feature-based methods can acquire satisfactory
solutions due to rich and clear geometrical features in indoor
and urban scenes [30]. However, the features are not stable
or continuous in forest environments. In addition, objects in
the forests are remarkably similar and easily cause inaccurate
corresponding pairs [31], [32]. Moreover, during the nonlinear
optimization process, the scan matching easily falls into local
minima when the scans are matched with an inaccurate initial
transformation in forests. Therefore, the feature selection poses
challenges to the feature-based methods in forest mapping.

Some works have presented SLAM-based mapping methods
using the tree attributes and are specific to the forest scenarios.
For example, Chen et al. [33] utilized existing map informa-
tion (e.g., the center and radius of tree stems) to improve
SLAM positioning in a forest. Kukko et al. [34] extracted
the stems and correct the MLS forest data based on the
graph-based SLAM. Nevertheless, these methods commonly
rely on the GNSS and IMU measurements for forest map-
ping and may encounter the problem of the aforementioned
GNSS signal blocking in dense forests. Significantly, the tree
attributes (e.g., stems) have been considered for use in MLS-
based forest mapping. In practice, there are many studies
for registration of forest point clouds without the GNSS and
IMU system and are based on natural geometrical features
of trees. In the literature, the attributes of tree stems, e.g.,
stem curves [35] and the topological relation between the
stems [32], [36], are commonly adopted to execute automated
registration of forest point clouds. However, these studies
mainly serve for the coregistration of dense point clouds,
e.g., TLS to TLS data. In addition, these methods focus on
coarse alignment of point clouds and need a fine registration in
postprocessing. The iterative closest point (ICP) method [37]
is now the standard approach for fine registration. It starts
by searching the correspondences between point clouds and
then minimizes the distance between these correspondences.
Thus, the method requires a sufficient overlap of points for
obtaining accurate correspondences. Nevertheless, the sparsity
of single-frame MLS point cloud and the lack of overlapping
points between two scans caused by different MLS scan
locations easily lead to inaccurate pairs and affects registration
results. Therefore, this method is ill-suited to forest scenes.

MLS-based mapping has increasingly gained attention in
various scenes. However, the complex structure and irreg-
ular shape of the natural elements in the forest introduce
challenges to the existing methods using an MLS device.
Therefore, the authors integrate a single scanner backpack
laser scanning (BLS) system without the GNSS-IMU sys-
tem and propose a novel mapping method specific to forest
environments. Specifically, two steps, scan-to-scan matching
and scan-to-map matching, are implemented in the proposed
mapping method. In the matching step, we assume that tree
boles are approximately circular in cross section and extract
trunk skeleton lines that represent the center lines of stems for
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Fig. 1. Flowchart of BLS-based forest mapping.

feature matching, which can prevent inaccurate corresponding
pairs and allow scan matching with low overlap. Then, all the
BLS scans are mitigated of accumulative errors by performing
the scan-to-map matching step, in which two maps, including
the incremental BLS point clouds and trunk skeletons, are used
to prevent errors after consecutive scan matchings. Following
the Introduction, the overview and keys of the proposed
method are elaborated in Section II. Section III introduces
the performance of the proposed method. Finally, discussions
and conclusions are presented.

II. PROPOSED METHOD

A. Outline of the Method

In this article, we focus our attention on forest plot mapping
using a single scanner. First, a test BLS system is designed for
acquisition of point clouds. Then, a SLAM-based method is
implemented for forest plot mapping, which consists of three
components: feature extraction, scan-to-scan matching, and
scan-to-map matching. Scan-to-scan matching contains feature
matching and rigid transformation estimation. In practice,
we propose the combination of the semantic line and point
features for scan-to-scan matching, in which the lines are
derived from the tree trunk skeletons that are natural geometric
elements of trees, and the points are extracted from each
frame BLS point cloud evenly. Finally, we use a scan-to-map
matching strategy to mitigate the accumulative errors of all the
point clouds, in which the map that contains the incremental
BLS point clouds and their corresponding tree trunk skeleton
nodes is used to provide consistency constraints and optimize
the pose of each BLS point cloud. The flowchart is shown
in Fig. 1.

B. Feature Extraction

In the feature-based SLAM method, feature extraction is the
precondition of localization and mapping. To achieve accurate

matching, we propose to combine the line and point features to
locate the scanner in this article, of which the line features are
mainly used to optimize the matching error in the horizontal
direction and the point features are used to ensure the vertical
accuracy.

1) Line Features: For BLS data collected from different
viewpoints, accurate corresponding pairs between the two
frames are difficult to extract directly due to the sparsity of
data and the complexity of natural elements. In the forest, tree
trunks are remarkable and stable [38]. Although the surface
of the tree trunks rarely has significant geometric features,
the tree trunk skeletons that represent the tree center lines can
provide stable and robust constraints for motion estimation of
the scanner, especially in the horizontal direction. Therefore,
we study a hierarchical clustering method to extract the tree
trunk skeletons from each frame of the BLS point clouds.

According to the characteristics of the BLS data used,
the BLS point cloud is first divided into multiple subsets based
on the vertical angular resolution. This means that each subset
is a full field-of-view point cloud at a fixed vertical scan angle.
For each subset, distance-based region growing is used to
segment objects. Initially, a random point in each subset is
regarded as seed point and labeled as a new class, and the
neighboring points in a specified radius of the seed point are
labeled as the class of the seed, in which the radius value is
set to the maximum diameter at breast height (DBH) value.
If one of the neighboring points has been labeled, all the other
neighboring points and the seed point are regarded as the class
of the labeled point. Similarly, we traverse all the unlabeled
points and determine their classes. After, we can obtain
different segmentations, including the ground points, tree stem
points, and canopy points, in which the segmentation that has
its point number less than a set threshold will be regarded as
the outlier and removed. Next, we will determine the stem
points for detection of trunk skeletons. First, if the distance
between the two farthest points in segmentation is out of the
range of minimum DBH to maximum DBH, the segmentation
will be discarded. Then, due to the characteristic of the tree, for
each segmentation, the circle fit based on the weighted least-
squares method [39] is used to determine the stem points.
Specifically, if the diameter of a fit circle is between the
minimum DBH and the maximum DBH, the corresponding
segmentation will be labeled as the tree stem; meanwhile,
the center points of the detected circles are regarded as trunk
skeleton nodes, and the nodes that are continuously distributed
in the vertical direction are considered to be derived from
a trunk skeleton, in which the connected line between two
neighbor nodes is regarded as a line feature (Fig. 2).

2) Point Features: The trunk skeletons contribute to reduc-
ing horizontal error of forest mapping results, but due to the
approximate parallel relationship among tree trunk skeletons,
the line features have difficulty providing effective constraints
for feature matching in the vertical direction. Therefore,
we detect some points that are evenly distributed in each frame
point cloud to provide an overall constraint for the match-
ing process. Specifically, the difference of Gaussian (DoG)
approach [40] is used to extract point features. The major
advantages of DoG features are their invariance to scaling,
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Fig. 2. Line features extraction. Extracting trunk skeleton nodes (red points),
skeleton lines can be generated by connecting the neighboring nodes.

rotation, and translation [41]. Thus, we directly extract features
based on the point range.

The principle of DoG-based 3-D point feature extraction
is subtracting one blurred point cloud level from another
blurred level. The blurred levels are obtained by convolving
the BLS point cloud with Gaussian kernels having different
standard deviations (SDs). We first use the statistical outlier
removal (SOR) filter to remove the outliers [42]. Next, two
blurred levels of the filtered point cloud are calculated by using
different widths of the Gaussian kernel, in which the blurred
level describes the Gaussian responses of all points. For each
point, we input the point and its ten neighboring points to
the Gaussian kernel to calculate the Gaussian response at the
point. Finally, the DoG response is obtained by subtracting the
two blurred levels

F(x, y, z) = G1(x, y, z; σ1) − G2(x, y, z; σ2) (1)

where F is the DoG response of the filtered BLS point cloud
and represents the difference between the blurred levels, and
G is the 1-D Gaussian response

G(x, y, z; σ) = 1√
2πσ

e− (|(x,y,z)|−μ)2

2σ2 (2)

where the σ represents the width of the Gaussian kernel.
In statistics, σ is the SD and σ 2 is the variance. μ is the
average of depth and determined by a point and its ten
neighboring points. Finally, we detect these points with the
local minima or maxima F value as the point features.

In addition, to extract evenly distributed points, we divide
the filter BLS point cloud into multiple subsets according to
the aforementioned method of line feature extraction. For each
full field-of-view subset, we divide it into six equal parts and
then extract the points with the minimum and the maximum
F values (see Fig. 3). Let RL

n be the set of point features in
the time of sweep n.

C. Scan-to-Scan Matching

The scan-to-scan matching registers two adjacent scans,
in which one scan is regarded as the matched scan, and
the other is regarded as the reference. In practice, scan-
to-scan matching contains two steps: feature matching and
rigid transformation estimation. In the feature matching step,

Fig. 3. Point features extraction (blue points are the extracted features).

the Euclidean nearest neighbor search is adopted to find the
corresponding feature pairs, and the distance between the
matched features is regarded as the matching constraint.

Line-based registration method has been demonstrated as an
effective strategy for point cloud registration [43]. For a tree
stem, the trunk skeletons that are derived from the matched
scan and the correspondences are similar, but they are not
exactly the same because of the sparsity of the BLS data.
By contrast, the skeleton nodes maintain a uniform distribution
with the corresponding trunk skeleton in its reference, so the
point-to-line (skeleton node to line) distance establishes a more
accurate relationship between the BLS point clouds. If a trunk
skeleton node has two nearest skeleton nodes in the reference
data that are within a certain neighborhood of the node, then
we set the trunk skeleton node as a keypoint and regard the
line that is composed by the two nearest skeleton nodes as
a correspondence for transformation estimation. The point-to-
line distance dl can be computed by

dl =
∣∣(X(t+1,l) − X(t,a)

) × (
X(t+1,l) − X(t,b)

)∣∣∣∣X(t,a) − X(t,b)

∣∣ (3)

where X(t+1,l) is a trunk skeleton node at the time of sweep,
t + 1, and X(t,a) and X(t,b) are the two nearest skeleton nodes
of X(t+1,l) at the time of sweep, t .

In addition, due to fast convergence speed, the planar patch
is found to be the correspondence of the point feature. If a
point has three nearest points in the reference, and that are
within a certain neighborhood and not on the same line, then
a planar patch consisting of the three points is regarded as a
correspondence of the point feature, and the point will be used
as a keypoint for transformation estimation. The point-to-plane
distance dp can be computed by

dp =
∣∣∣−−−−−−−→
X(t+1,p) X(t,a) ·−→n

∣∣∣∣∣−→n ∣∣
=

∣∣(X(t+1,p)−X(t,a)

)·((X(t+1,p)−X(t,b)

)×(
X(t+1,p)−X(t,c)

))∣∣∣∣(X(t+1,p)−X(t,b)

)×(
X(t+1,p)−X(t,c)

)∣∣
(4)

where X(t+1,p) is a feature point at the time of sweep, t + 1,
and its corresponding plane at the time of sweep, t , is set to{

X(t,a), X(t,b), X(t,c)
}

and −→n is the normal vector of the plane.
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Both dl and dp tend toward 0. Therefore, the relationship of
the corresponding pairs will be more stable and accurate.

When T is the transformation vector between the point
cloud and its reference point cloud, the rigid transformation
can be represented by six degrees of freedom (6-DOF) and
consists of position and attitude during a sweep, i.e.,

T = [
tx , ty, tz, ω, ϕ, κ

]

where tx , ty, and tz are translations along the x-, y-, and z-
axes, respectively. ω, ϕ, and κ are rotation angles around the
x-, y-, and z-axes, respectively. Let Xt be the BLS scan at the
time of sweep, t , and Xt+1 be the scan at the time of sweep,
t + 1. Then, a rigid transformation relationship between Xt+1

and Xt can be established

Xt = RXt+1 + T(1 : 3) (5)

where R is the rotation matrix (R ∈ R
3×3). From (3), we can

derive a geometric relationship between each skeleton node
in Xt+1, and its corresponding line feature in Xt

fl
(

X(t+1,l)
) = dl . (6)

Similarly, from (4), we can derive a geometric relationship
between a point in Xt+1 and its correspondence in Xt

fp
(

X(t+1,p)

) = dp. (7)

Combining (6) and (7), a nonlinear function in terms of T
can be established

f(T) =
∑

fl
(
X(t+1,l)

) +
∑

fp
(
X(t+1,p)

)
(8)

where f(·) represents the distance between the keypoint and
its corresponding feature, and each row of f corresponds
to a feature. Finally, (8) can be solved through nonlinear
iterations by minimizing the error e toward zero with the
Levenberg–Marquardt (L–M) method

e = arg min
e

1

2

N∑
i=1

‖di − 0‖2 = arg min
1

2
f(T)Tf(T). (9)

First, we linearize (9) with the first-order approximation of
a Taylor expansion

f(T) = f
(
T̂ + �T

) = f
(
T̂

) + J�T (10)

where T̂ is the initial transformation in 6-DOF, and �T is
the correction of T̂ . J is the Jacobian matrix of f(·). Then,
the correction �T can be solved by

�T = (
JT J + λI

)−1
JTd (11)

where λ is the damping factor, and the scanner motion can be
calculated by

T = T̂ + �T . (12)

Once T is obtained, scan Xt+1 can be transformed into the
coordinate system of scan Xt .

Fig. 4. Schematic of the scan-to-map matching strategy. BLS(1,2,...,n−1,n)

and Skeletons(1,2,··· ,n−1,n) represent the BLS scan and its corresponding trunk
skeleton nodes at different sweep times, respectively. BLS(1+2+···n−1+n) and
Skeletons(1+2+···n−1+n) represent the incremental scans and the incremental
trunk skeleton nodes, respectively.

D. Scan-to-Map Matching

To maintain mapping accuracy, most of the related methods
need to perform numerous loop-closure detections, increasing
the algorithm complexity [44]. Compared to the indoor or
urban scenes, there are more occlusion effects in forests, but
the plot is generally within the range of the LiDAR and has
certain permeability. In other words, the objects in the previous
BLS scans can still be observed by the subsequent BLS scans.
Thus, to mitigate the accumulative error and transform all the
BLS point clouds into a common coordinate system, we use
the previous BLS scans as constraints and propose a scan-to-
map matching strategy for the SLAM process [45], in which
the coordinate system of the first frame of the BLS scan is
regarded as the common coordinate system, and the defined
map consists of the incremental BLS scans and trunk skeleton
nodes. The schematic is shown in Fig. 4.

In the strategy, the BLS scan at the time of sweep 1,
BLS1, and its corresponding trunk skeleton nodes, Skeletons1,
are regarded as the reference map, where the BLS scan is
used to provide constraint for the point features, and the
trunk skeleton nodes are used to provide a constraint for
the line features. For the BLS scan at the time of sweep 2,
the rigid transformation between BLS2 and BLS1 is calculated
according to Sections II-B and II-C, and then the current scan
and its corresponding skeleton nodes are transformed into
the common coordinate system; simultaneously, we rebuild
the incremental BLS point clouds BLS1+2 and trunk skeleton
nodes Skeletons1+2 by combining the data at the time of
sweep 1 and 2 and update the two incremental data as a
new reference map for optimization. Similarly, for each of
the subsequent scans, the transformation at the time of sweep,
n, adopts the transformation between the BLSn−1 and the
reference map as an initial pose, and then, the reference map
provides constraints for the rigid transformation estimation;
next, the BLS scan and its corresponding skeleton data will
be transformed into the common coordinate system and the
reference map is updated.
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In addition, the mean distance between the skeleton nodes
and their corresponding line features is used for determining
whether the current BLS point cloud is a keyframe. If the mean
distance is less than the set threshold, the current BLS scan
will be regarded as a keyframe; furthermore, the BLS scan
and its corresponding trunk skeleton nodes are added to the
reference map, of which the threshold is an empirical value
and set as twice the measurement precision of the scanner.

E. Evaluation Method

The performance of the proposed method is evaluated by the
following contents: forest mapping results, mapping accuracy,
scan-to-scan matching accuracy, and data performance.

To evaluate the effectiveness of the proposed method,
we used the designed BLS system to collect three data sets
in forest plots and execute mobile mapping. For evaluation of
mapping and scan-to-scan matching accuracy, tree position,
branch, and ground position were measured and compared to
references, of which the references were collected by using
a TLS device through the multiscan method. Specifically,
the tree position was used to evaluate the planimetric accuracy,
and the branch and ground positions were used to evaluate the
vertical accuracy. In addition, due to the limited field of view
of the single scanner, the BLS system was limited to acquiring
below-canopy information in plots, so DBH was measured to
evaluate data performance. In this article, the accuracy was
evaluated using the mean distance, root mean square error
(RMSE), SD, and the maximum distance, as defined in the
following equations:

mean =
∑n

i=1‖xBi − xT i‖
n

(13)

RMSE =
√∑n

i=1(xBi − xT i)
2

n
(14)

SD =
√√√√ 1

n

n∑
i=1

(‖xBi − xT i‖ − μ)2 (15)

max = max(‖xBi − xT i‖) (16)

where xBi is the i th measurement, xT i is the i th reference, and
μ is the average. In the evaluation of planimetric accuracy,
xBi is a coordinate component of the tree position in the
directions of the x- and y-axes. In the evaluation of vertical
accuracy, xBi is a coordinate component in the direction
of the z-axis. In the data performance, xBi is the DBH
measurement. The mean error indicates the mean difference
between all measured values and references, RMSE indicates
the variability of all errors, and SD indicates the dispersion of
all errors.

III. EXPERIMENTAL RESULTS

A. Study Area and Data Acquisition

The study area, located in Saihanba National Forest Park in
Hebei Province in northern China, is dominated by coniferous
trees. For this study, we acquired three sets of data in different
plots of approximately 30 m × 30 m in size. A single
scanner BLS system is designed in this study and consists

Fig. 5. BLS system, including a single laser scanner, a backpack frame,
a portable power source, and a laptop.

TABLE I

PARAMETERS OF THE BLS SYSTEM

of a single scanner (VELODYNE LiDAR Puck), a portable
power source, a data recording device, and a backpack frame
(a test system is shown in Fig. 5), where the single laser
scanner is mounted horizontally on the backpack frame and
approximately 10 cm above the head, and generates up to
approximately 400 000 points/s, across a 360◦ horizontal field
of view and a 30◦ vertical field of view, and the rotation
rate was set to 10 Hz in this study, i.e., ten BLS scans are
acquired in a second. In addition, a laptop is used to control
the scanner and record forest point clouds with the help of the
software VeloView. The parameters of the scanner are shown
in Table I [46].

To evaluate the effectiveness and reliability of the proposed
method, three sets of data were collected using the BLS
system, which was carried in the test plots at a moving
speed of 0.6–0.7 m/s. In the three data sets, 1918, 1395, and
1045 BLS scans were acquired from the forest plots by moving
with an s-shape pattern. After collecting forest point clouds
based on the BLS system, we immediately used a TLS (RIEGL
VZ-1000) device to acquire forest point clouds in each test plot
and provide references for algorithm evaluation, and the multi-
scan method was applied, i.e., five scans per plot at the center
and four-quadrant angles, and the scans were registered with
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TABLE II

PLANIMETRIC ACCURACY

the help of artificial reflectors and RIEGL RiSCAN PRO [47].
In addition, the tree positions and DBH values measured from
the TLS data were regarded as references for evaluating the
accuracy, in which the measurements from TLS data show that
the mean DBH varies between 0.2 and 0.4 m in the test forest
plots.

B. Forest Plot Mapping

The proposed method is implemented on a computer with
an Intel Core i7-3520M CPU at 2.90 GHz. We achieved forest
plot mapping and recovered the trajectory of the BLS system
(Fig. 6), of which the amount of keyframe BLS scans was a
third to a half of the amount of the total scans in each data
set, and the runtimes were approximately 30, 25, and 18 min
for the test data, i.e., approximately 1 s for each frame BLS
point cloud.

Fig. 6 shows that the below-canopy structural information
in the test plots is reconstructed by using the BLS system, and
the trajectories are coincident with the practical movements.
Each tree in the three data sets is registered with no significant
deviations, and the distribution of trees is identifiable, which
suggests that the individual trees reconstructed by the proposed
method have the potential to be applied to forest inventories.
In addition, the trajectories of the BLS system do not drift from
their correct values in the three data sets, e.g., the trajectory is
closed without a loop-closure detection process [in Fig. 6(a)],
and the open trajectories in Fig. 6(b) and (c) are still recovered
by the proposed method.

C. Mapping Accuracy

To quantitatively evaluate the performance of the proposed
method, the tree position measured in the mapping results
was compared to that from multiscan TLS data and used
to assess the planimetric accuracy of the mapping results.
Specifically, each mapping result was manually registered
with its corresponding multiscan TLS data; then, 17, 16, and
16 trees were selected from the three data sets and used for
calculating tree position distance (Table II).

Table II shows that mean errors, RMSEs, and the maxi-
mum errors are at the centimeter level, of which the mean
distances and SDs vary between 0.02 and 0.03 m. The SDs are
approximately 0.01 m, which indicated a stable distribution.
In addition to tree position, the branch points can reflect the
vertical accuracy. Therefore, the vertical distances between
the branch points in the mapping results and their references
in the multiscan TLS data were calculated for evaluating the
vertical accuracy (Table III).

Table III shows that the mean distances, RMSEs, and the
maximum distances are at the centimeter level, of which

Fig. 6. Forest mapping results. (a)–(c) Mapping results of data sets 1, 2,
and 3, respectively, where red curved points represent the moving trajectories
of the BLS system in the test plots.

the mean distances and RMSEs are approximately 0.02 m,
and the SDs are approximately 0.01 m. In general, high
accuracy is required for the registration in the horizontal
direction, which needs to meet the requirements of the forest
measurements (e.g., DBH), and the requirement of the vertical
accuracy is lower than in the horizontal direction (e.g., tree
height measurement), so the accuracies indicated effectiveness
of the results. In other words, the overall results suggested
that the proposed scan-to-map matching strategy can achieve
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TABLE III

VERTICAL ACCURACY

TABLE IV

PLANIMETRIC ERRORS

BLS-based forest plot mapping, of which the map provides
effective consistency constraints for each BLS point cloud.

IV. DISCUSSION

A. Comparison of Scan-to-Scan Matching

In this article, line and point features were used to solve
the planimetric and vertical errors of registration in the forest
plots, respectively. To evaluate the effectiveness of the features
in scan-to-scan matching, we analyzed two frames of BLS
point cloud registration results according to the trees and
ground position and compared the proposed method with two
methods: the ICP and LOAM methods. For the planimetric
accuracy, some trees were selected from the three data sets,
to calculate the tree position distances. We projected the stem
points that are above the ground to a plane and estimated
the centers of the circles by the least squares method. Then,
the centers were regarded as tree positions, and the distances
between the tree positions in the registered scan and the
corresponding positions in the reference scan were calculated.
The tree position distances are summarized in Table IV.

The results from the LOAM and ICP methods show greater
distances than those of the proposed method, especially the
LOAM method. The mean distances and RMSEs calculated
by the LOAM methods vary between 0.05 and 0.07 m for the
three data sets, and the maximum distance is approximately
0.1 m. The mean distances and RMSEs of the ICP method
vary between 0.03 and 0.06 m. In contrast, the proposed
method performs well, of which the mean distances and
RMSEs are less than 0.02 m in the three data sets, the SDs
are at the millimeter level, and the maximum distances are
approximately 0.03 m. The LOAM method matches scans,
combining the line and plane features, and requires a fine
initial transformation. Without an initial transformation for the
LOAM method, the reliable features are difficult to extract
directly from the forest, and inaccurate corresponding pairs
in adjacent scans cause the LOAM method to fall into local

TABLE V

VERTICAL ERRORS

minima and result in large planimetric errors. In addition,
the ICP method was used to estimate the transformation
between scans, which considers all points in the registration
and requires high overlap of point clouds. Although the BLS
scans were acquired in adjacent locations, there are certain
errors in the matching of the two adjacent BLS scans because
of the sparsity of the BLS scan. In contrast, the proposed line
features are stable and provide a strong constraint for scan-
to-scan matching in the horizontal direction, so the proposed
method obtained smaller tree position errors.

In addition to the planimetric accuracy, we also analyzed
the vertical error based on the branch position distance. In the
three data sets, some points on the ground were selected to
verify the proposed method. We then calculated the distance
between the points in the registered point cloud and their
correspondences in the reference scan (Table V).

The vertical distances from the LOAM method and the pro-
posed method show approximate performance, in which the
mean distances and RMSEs are approximately 0.01 m in the
three data sets, and the SDs are at the millimeter level, which
indicates highly accurate scan-to-scan matching. In contrast,
the results of the ICP method show large distances, of which
the mean distances and RMSEs are greater than 0.04 m
and the maximum deviations are greater than 0.1 m in the
three data sets. The LOAM method and the proposed method
extracted some uniform distributed features in the forest plots,
including some points of ground and branches. Due to strong
constraints from the ground and branches, the LOAM method
and the proposed method perform well in the vertical direction.
However, due to the specific attributes of the scanner, the BLS
scan is sparse in the vertical direction, and there is low overlap
between the point clouds acquired from different perspectives.
Consequently, sparse ground and branch points encounter
difficulty providing effective constraints for scan matching
based on the ICP method.

The results in Tables IV and V show that the major dif-
ference between the LOAM method and the proposed method
is shown in the planimetric deviations. The proposed method
estimates the rigid transformation between the BLS scans
without an initial transformation, in which the trunk skeleton
lines can provide accurate corresponding pairs and effectively
solve the problem of inaccurate registration in the horizontal
direction and then ensure the planimetric accuracy of for-
est mapping; meanwhile, the point-to-plane correspondence
provides an effective constraint for matching in the vertical
direction.
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Fig. 7. Scatterplots of the DBH values. The y-axis represents the reference
of DBH values from the multiscan TLS point cloud and the x-axis represents
the fit DBH from the results of the proposed method. (a)–(c) Data sets 1, 2,
and 3, respectively.

B. Data Performance

The test BLS system integrated a single scanner, which was
placed horizontally so that below-canopy data were scanned,

but the canopy and above-canopy information were limited by
the vertical field of view of the scanner. Therefore, to analyze
applications of the mapping results in forest measurements,
we selected an important forest parameter, DBH, to evaluate
the effectiveness of the mapping results. We calculated the
DBH values in the test plots and compared with those from
the multi-scan TLS data. The DBH of individual trees is
determined by extracting a cross-section of the point cloud
that falls between 1.2 and 1.4 m above the ground level.
First, we filtered the ground and nonground points [48] and
extracted points that represented the tree stem hull at the
breast height from the nonground points and then used the
least square method to fit a circle. The accuracy of the DBH
values is assessed by treating the reference as a variable
that is dependent upon the fit measurement and running a
simple linear regression analysis to determine the coefficient
of determination (R2) for the three data sets (Fig. 7).

The results of the linear regression analysis revealed that the
coefficient of determination between the fit DBH, measured
from the data via the proposed method and the fit DBH
from the multiscan TLS data, is greater than 0.8 in the test
plots, which indicated a significant correlation between the
DBH measured from the proposed method and the multi-scan
TLS data. In data set 1, the RMSE is 1.4 cm and the mean
absolute error (MAE) is 1.2 cm, of which the total error is
approximately 95%. In data set 2, the RMSE between the
fit DBH values and the measured DBH values from TLS
data is 2 cm and the MAE is 1.8 cm, and the total error is
approximately 94%. In data set 3, the MAE is 1 cm and the
RMSE is 1.2 cm, and the total error is approximately 96%.
Overall, the total errors are more than 90% in the test plots,
which indicated reliable mapping results. Therefore, the results
suggested the effectiveness of the proposed line features and
optimization strategy for maintaining the planimetric accuracy
of the forest plot mapping.

V. CONCLUSION

LiDAR-based mapping has been one of the most important
developments for forest measurements. To achieve fast forest
point cloud acquisition, this article designed a single scanner
BLS system and proposed a new mapping method. The system
is simple and specific to forest plots. Subsequently, practical
experiments were implemented to evaluate the effectiveness
and reliability of the BLS system and the proposed method.
In practice, the BLS system took only a few minutes to scan
a forest plot, and its efficiency is higher than that of the
multiscan TLS method. To achieve accurate matching, the line
features derived from the tree trunk skeletons were proposed
and used to calculate the rigid transformation, and the line
feature solved the inaccurate registration problem caused by
insufficient point cloud overlap and inaccurate corresponding
pairs in the horizontal direction. Compared to the existing
methods, the scan matching results from the proposed method
were more accurate. In addition, the optimization framework
based on the scan-to-map matching strategy is used to provide
consistency constraints for the BLS-based SLAM in the forest
environments and ensure mapping accuracies without a loop-
closure detection process, in which the map consists of the
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incremental BLS point clouds and the tree trunk skeleton
nodes, and the incremental trunk skeleton nodes maintained
accurate registration of all individual trees, especially tree
stems.

The proposed method achieved fast data acquisition in forest
plots, but the data acquired by a single scanner were limited to
below-canopy. In the future, therefore, to acquire higher forest
layer, two scanners will be considered, of which one is placed
horizontally for the SLAM method and below-canopy data
acquisition and the other vertically for acquiring information
in the higher forest layer. In addition, point cloud distortion
caused by motion blur also affects the measurement precision
and data quality, which can lead to inaccurate matching results.
Therefore, we still need to consider reducing the distortion and
improve point cloud quality.
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