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A B S T R A C T

Satellite vegetation index (VI) time series data provide a feasible option for monitoring crop phenology at a large
scale. However, there are limited researches that investigated the accuracy of different methods for crop phe-
nology detection with various VIs over a large-scale region. In this study, we used four VIs, i.e. Normalized
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Two-band Enhanced Vegetation Index
(EVI2), and Normalized Difference Phenology Index (NDPI) derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) data, combined with six methods, i.e. relative threshold at 10%, 20% or 50% of the
VI's amplitude (RT10, RT20 and RT50), maxima of the curvature change rate of the fitted logistic curve
(CCRmax), maxima of the first derivation of the VI curve (βmax), and cross-correlogram spectral matching-phe-
nology (CCSM-P), to detect winter wheat green-up dates (GUDs) for the period of 2009–2013 in the Huanghuai
winter wheat region of China. The performance of the combinations of these methods and VIs was evaluated
using ground-observed GUDs from agrometeorological stations with correlation coefficient (r), regression
coefficient (a), root mean square error (RMSE) and bias. We further investigated the spatial trend of residuals
from a linear model between satellite- and ground-observed GUDs. Results show that NDPI outperforms the
other VIs with the highest consistency with ground data in the whole region. RT10, CCRmax and CCSM-P show
higher accuracy in the northern region, while in the southern region, RT20 shows relatively higher accuracy in
the case of poor performance of all six methods. However, the residuals of these six methods based on NDPI show
significantly positive correlations with latitude in the whole region, suggesting an uneven spatial distribution of
accuracy with a tendency of underestimating GUDs at the low latitude region and overestimating GUDs at the
high latitude region when applying the same method to detect GUDs over a large-scale region. It is suggested to
develop a new method or combine several methods to reduce the spatial incoherence of residuals.

1. Introduction

As a key phenological phase, the spring green-up date (GUD), de-
fined as the start time of photosynthetic activity of vegetation, is mainly
controlled by climatic factors (Badeck et al., 2004; Khare et al., 2017;
Richardson et al., 2006). For agriculture crops, GUD specifically refers
to the time when the new leaves begin to grow after the winter growth-
break (Zhou et al., 2013). With significant global warming, numerous

studies have reported that crop GUD has showed an advancing trend
over the past several decades (Estrella et al., 2007; Oteros et al., 2015).
Such advance of GUD can not only shape the later growth of crops
closely related to crop yield and agricultural practices such as fertili-
zation and irrigation, but also directly or indirectly affect carbon, water
cycling and energy balance (Chu et al., 2016). Consequently, accurate
monitoring the crop GUD dynamics is urgently needed for agricultural
management and better understanding of crop response and adaptation
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to climate change (Semenov, 2009; Xiao et al., 2015).
Traditionally, phenological information can be obtained through

ground observation following predefined criteria (Boschetti et al., 2009;
McMaster and Smika, 1998). Although the ground observation has the
advantages of high precision and high time frequency, it is difficult to
obtain the continuous phenological information in a large area due to
its time-consuming and labor-intensive nature (Guo et al., 2016;
Zhou et al., 2013). Remote sensing technology provides an alternative
tool to investigate the spatial and temporal dynamics of phenology at
regional or global scale (Chu et al., 2016; Cleland et al., 2007). Time-
series of vegetation index (VI) data derived from satellite data from
various sensors such as Advanced Very High Resolution Radiometer
(AVHRR), Systeme Probatoire d'Observation de la Terre (SPOT) or
MODerate-resolution Imaging Spectroradiometer (MODIS) have been
widely used for phenology observation (Piao et al., 2006; Guyon et al.,
2011; Zhang et al., 2003), among which Normalized Differential Ve-
getation Index (NDVI), Enhanced Vegetation Index (EVI) and two-band
Enhanced Vegetation Index (EVI2) are commonly used (Beck et al.,
2006; Qiu et al., 2017). However, it should be noted that each VI has its
inherent shortcomings. When using different VI, it may bring un-
certainty to the phenology detection results. For example, NDVI is liable
to saturate in high leaf area index (LAI) (Carlson et al., 1990; Rama Rao
et al., 2006), and is affected by soil background and bidirectional re-
flectance (Liu and Huete, 1995). EVI and EVI2 improve the perfor-
mance in saturation and reduce the sensitivity to atmosphere and soil
background (Thomsen et al., 2002), but they are still sensitive to to-
pographic effect (Matsushita et.al, 2007). Besides, none of these VIs can
effectively distinguish the VI increase caused by snow melting or ve-
getation growth in snow-covered areas, as snow melting may be con-
fused with actual GUD (Wang et al., 2013; Shen et al., 2013). Recently,
to address the issue, a new snow-free VI, i.e. Normalized Difference
Phenology Index (NDPI) has been developed by Wang et al. (2017a)
and demonstrated as a reliable VI for monitoring GUD in deciduous
ecosystems, thanks to its insensitivity to snow and soil background
(Chen et al., 2019). However, most of the existing studies applied these
VIs to the phenology detection of natural ecosystems, and it is not clear
how these VIs perform when detecting GUD of a crop ecosystem.

Currently, three types of methods have been employed to detect
GUD from VI time series data, i.e. the thresholding method, the phe-
nometrics derived from VI curve, and the curve match method
(Zeng et al., 2020). The thresholding method determines GUD through
a fixed VI threshold such as 0.099 (Lloyd, 1990) or a certain fraction of
VI's amplitude (i.e., a relative threshold). The fixed threshold varies
with vegetation types and environmental conditions, and it cannot be
used in a large area universally (Chu et al., 2016). Thus, the fixed
threshold is gradually replaced by the relative threshold. Commonly
used relative thresholds are 10% (RT10) (Jönsson and Eklundh, 2002),
20% (RT20) (White et al., 1997) and 50% (RT50) (Sakamoto, 2018).
The phenometrics-based method firstly fits the VI curve with a pre-
defined mathematic function, e.g. the logistic function, and then defines
GUD by reaching an inflection point, such as the maxima of the cur-
vature change rate (CCRmax) (Zhang et al., 2003), and the maxima of
the first derivation of the VI curve (βmax) (Lu et al., 2014). The curve
match method firstly defines a shape model or a reference curve with
given phenological dates. Then it matches the test VI curve with the
predefined curve by model fitting, e.g. shape model fitting (SMF)
(Sakamoto, 2018), or cross correlation, e.g. cross-correlogram spectral
matching-phenology (CCSM-P) (Chen et al., 2016). Due to the variety of
definitions and judgment rules of GUD in these detection methods, the
choice of methods is another source of uncertainty in GUD detection
(Liu et al., 2017). For example, some studies compared phenology de-
tection results from the same datasets with various commonly-used
methods and found significant differences, which could be up to±60
days (Schwartz et al., 2002; White et al., 2009; Vintrou et al., 2014).
Moreover, the current GUD detection methods were initially proposed
to study the phenology of forests or grasslands. On the other hand, the

phenological characteristics of a crop system are more complex due to
the multiple growth and rotation cycles under different agricultural
practices (Wang et al., 2017b; Rama Rao et al., 2007). There is no
consensus on which method is more suitable for crop system because
such comparative studies are limited (Delbart et al., 2006; Lu et al.,
2014; Wang et al., 2017a).

Considering the importance and uncertainty of detecting crop GUD
by satellite data, we detected GUDs of winter wheat by using different
combinations of four VIs and six methods in North China from 2009 to
2013, and evaluated the consistency of GUDs detected from VI data
with ground-observed GUDs. The main objectives of this study were: (1)
to find an appropriate VI and detection method to obtain more accurate
GUD of winter wheat in the study area; (2) to explore the feasibility of
applying a method over a large area by investigating the spatial trend of
residuals from a linear model between satellite- and ground-observed
GUDs. The results is expected to deepen the understanding of the in-
teraction between crop systems and climate change.

2. Study area and data

2.1. Study area

The Huanghuai winter wheat region (108°24′−121°36′E,
29°01′−40°12′N), located in the North China Plain of P. R. China, was
selected as the study area. It is the largest winter wheat planting region
in China (Fig. 1). The study area consists of eight provinces (Hebei,
Henan, Shanxi, Shandong, Shaanxi, Hubei, Anhui and Jiangsu) and two
municipalities (Beijing and Tianjin). It is further divided into two sub-
regions according to the characteristics of climate and wheat varieties
(http://www.zys.moa.gov.cn/flfg/201904/t20190428_6245155.htm),
namely the Huanghuai North (HHN) and the Huanghuai South (HHS).
Under the temperate monsoon climate, the annual averaged tempera-
ture ranges from 17 °C to 5 °C from south to north, while the annual
precipitation ranges from 2400 mm to 400 mm from southeast to
northwest in this area. The dominant cropping system is a winter wheat
and summer maize / rice rotation, with winter wheat cultivation from
early October to mid-June of the following year and maize or rice from
late June to late September (Sun et al., 2012). The winter wheat ex-
periences two stages of growth, with the first growth in autumn and
early winter before entering a dormancy period in winter, and the
second from spring of the next year. The date the plant renews its
growth and starts to grow rapidly is usually defined as the winter wheat
GUD, which is mainly controlled by temperature accumulation
(Wang et al., 2017b). With the spatial distribution of temperature, there
is a similar spatial pattern of GUD in the whole region, which ranges
from late February to late March from south to north.

2.2. Remote sensing and ground-observed data

The Moderate Resolution Imaging Spectroradiometer (MODIS)
surface reflectance products (MOD09A1) with 500 m spatial resolution
and 8-day temporal composite from 2009 to 2013 were used to calcu-
late VI time series data. MOD09A1 data is a level-3 product and has
been processed with geometric, radiometric and atmospheric correc-
tions. Though maximum composition technique could reduce the noise
effectively, there remain some disturbances in these VI time series
caused by cloud contamination, atmospheric condition and bi-direc-
tional effects (Chen et al., 2004). Accordingly, an improved Savitzky-
Golay filtering method (Cao et al., 2018) was used to smooth the ori-
ginal VI time series, further reducing the residual noise and ensuring
that the VI time series can better show the growth process of winter
wheat.

The winter wheat cropland map in 2013 was provided by
Qiu et al. (2017). The spatial resolution of the map is 250 m with an
overall accuracy of 88.86% (Qiu et al., 2017). Since the total planting
area of winter wheat in the study area only changed less than 2% from
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2009 to 2013 (http://www.stats.gov.cn), it can be reasonably assumed
that the distribution of winter wheat is quite stable, eliminating the
need for annual winter wheat maps.

Ground-observed GUD data for winter wheat during 2009–2013
were obtained from China Meteorological Data Sharing Service System
(http://data.cma.cn/). The ground GUD was recorded by observers
when half of the winter wheat leaves began to turn green and reached a
length of 1–2 cm in a field near an agrometeorological station
(Wang et al., 2017a). After excluding invalid records, 266 GUD records
from 54 agrometeorological stations were finally used as the validation
data.

3. Methodology

3.1. Vegetation indices

In this study, GUDs were identified on the time series of four
MODIS-derived VIs, i.e. NDVI, EVI, EVI2 and NDPI. The calculations of
the four VIs are listed in Table 1, where ρred, ρNIR, ρblue and ρSWIR are
MODIS band 1, 2, 3 and 6, respectively.

3.2. GUD detection methods

In this study, we employed six different methods to detect GUDs of
winter wheat, including RT10, RT20, RT50, βmax, CCRmax and CCSM-P.
The descriptions of these methods are as follows.

For the relative thresholding method, GUD is defined as the date
when VI value first reaches the 10% (RT10) or 20% (RT20) or 50%
(RT50) of VI time series amplitude. VI time series amplitude is obtained
by subtracting the minimum from maximum VI values in the annual VI
cycle.

The CCRmax method (Zhang et al., 2003) uses a logistic function to
fit a VI increasing period.

=
+

++VI t c
e

d( )
1 a bt (1)

where t is the day of year; VI(t) represents the VI value at time t; a, b, c
and d are fitting parameters, of which a and b control the shape of VI
growth curve, the sum of c and d is the maximum VI value, and d is the
initial background VI value. Then GUD is identified as the timing with
local maximum of curvature change rate, which is defined as:

Fig. 1. The study area. The black diamonds are the agrometeorological (AM) stations, and the green regions are winter wheat planting areas provided by
Qiu et al. (2017). The red line divides the whole study area into two winter wheat sub-regions, i.e. HHN and HHS. Right sub-figures are averaged patterns of multi-
year mean temperature and total precipitation from 1981 to 2010 in the study area (Li et al., 2014). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Vegetation indices used for winter wheat phenology detection and their calculations.

Vegetation index Calculation References

Normalized Difference Vegetation Index = −
+

NDVI ρNIR ρred
ρNIR ρred

(Rouse et al., 1973)

Enhanced Vegetation Index = × −
+ × − × +

EVI 2.5 ρNIR ρred
ρNIR ρred ρblue6 7.5 1

(Liu and Huete, 1995)

Two-band EVI = × −
+ × +

EVI2 2.5 ρNIR ρred
ρNIR ρred2.4 1

(Jiang et al., 2008)

Normalized Difference Phenology Index
=

−

+
NDPI

ρNIR ρred
SWIR

ρNIR ρred
SWIR = × + ×ρ ρ ρ0.74 0.26red

SWIR
red SWIR

(Wang et al., 2017; Chen et al., 2019)
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where K′ is the curvature change rate of the fitted VI curve, and
= +z ea bt .
The βmax method (Lu et al., 2014) is similar to CCRmax method ex-

cept that the maximum slope is used to identify GUD. The slope of a
logistic curve is defined as:

= −
+

S bc
z(1 )2 (3)

where S is the slope of the fitted VI curve, and = +z ea bt.
The weighted cross-correlogram spectral matching-phenology

(CCSM-P) was developed by Chen et al. (2016) to monitor interannual
phenological changes by using the similarity between a target VI curve
and a reference VI curve. The reference VI curve can be produced by
averaging the VI curves of all years of interest, and the GUD of the
reference curve is determined by CCRmax method or ground observa-
tion. The cross-correlogram matching is then performed by the fol-
lowing sequence: (1) shifting the target VI curve around GUD with a
certain time interval, (2) calculating the matching degree between the
shifted target VI curve and the reference VI curve, (3) defining the GUD
of the target curve by the sum of GUD of the reference curve and the
shifting days with the maximal matching degree. Chen et al. (2016)
confirmed that CCSM-P showed robustness to noise and the capacity to
capture the temporal trend of phenology. The matching degree Rw, m

between the target VI curve and the reference VI curve is calculated as
below:

=
∑ − −

∑ − ∑ −
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where m is the matching position, n is the number of overlapping days
between VI reference and target VI curve, wi is the weight of the i th
matching point determined by the temporal distance to the GUD of
reference curve, λ̄t

w and λ̄r
w are the weighted VI value averages of re-

ference and target curve. Fig. 2 shows the schematic diagrams for GUDs
detection by the six methods with NDPI curve.

3.3. Selection of pure winter wheat pixels

Due to the coarse spatial resolution of MODIS data, MODIS pixels
may contain multiple land cover types. Mixed pixel effect will cause
inconsistent GUD detection and bring uncertainty (Chen et al., 2018;
Liu et al., 2019). In order to minimize the adverse impact of the mixed
pixel effect, it is necessary to select ‘pure’ winter wheat pixels around
each agrometeorological station from the winter wheat map.

When producing the winter wheat map, Qiu et al. (2017) proposed
two indicators VE and VL, which were defined as the variations of VI
curves during the early or late growth stages. The calculations of VE
and VL are:

= − + −VE VI VI VI VI( ) ( )heading seedling max min1 1 (5)

= − + −VL VI VI VI VI( ) ( )heading harvesting max min2 2 (6)

where VIseedling, VIheading and VIharvesting represent the VI values at esti-
mated seedling, heading and harvesting dates of winter wheat; VImax1,
VImin1 represent the maximum, minimum VI values of winter wheat
during the period from seedling date to heading date; and VImax2, VImin2

represent the maximum, minimum VI values of winter wheat during the
period from heading date to harvesting date. Since Qiu et al. (2017)
found that VE and VL values of winter wheat were larger than those of
other land covers, it can be reasonably assumed that a higher fraction of
winter wheat in a pixel brings higher VE and VL values. Accordingly,
VE and VL values of each pixel are used to select ‘pure’ winter wheat
pixels. The steps are as follows: (1) selecting all pixels identified as
winter wheat from the winter wheat map Qiu et al., 2017), and then
calculating VE and VL values of the selected pixels for each year during
2009- 2013 by using four VIs (totally 40 values for each winter wheat
pixel); ((2) Calculating mean and standard deviation values of these 40
values for each winter wheat pixel; (3) Selecting ten winter wheat
pixels with the largest mean values within a 10 km distance around an
agrometeorological station; (4) Selecting three pixels for each station
with the smallest standard deviations from the ten winter wheat pixels.
Through these steps, the selected winter wheat pixels were considered
pure and unchanged from 2009 to 2013. Finally, we averaged the VI
values of these three pixels, and took the GUD detected from this
averaged VI time series as the satellite-observed result corresponding to
the agrometeorological station.

Fig. 2. The schematic diagram of the six
methods detecting GUDs (the solid dots) with
NDPI curve (the solid black line). Three re-
lative thresholding methods are shown by the
double arrows. The red dotted line is the cur-
vature change rate of fitted logistic curve used
in CCRmax method. The blue dotted line is the
slope of the fitted logistic curve used in βmax

method. The purple dotted line is the correla-
tion coefficient between the shifted target
NDPI curve and the reference NDPI curve used
in CCSM-P method. (For interpretation of the
references to color in this figure legend, the
reader is referred to the web version of this
article.)
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3.4. Accuracy assessment and experiment design

The ground-observed GUD data from the agrometeorological sta-
tions was used to assess the accuracy or consistence of satellite-ob-
served GUD results detected with aforementioned methods. Although
ground and satellite observations differ in the definition of GUD, their
trends had been proven to be consistent temporally and spatially
(Guo et al., 2016). Thus, it is reasonable to assume that there is a linear
relationship between the ground and the satellite observed GUD values.
Therefore, we used a linear regression model, i.e. = +y ax b to fit the
ground- and satellite-observed GUDs, in which the ground-observed
GUD is the independent variable and the satellite-observed GUD is the
dependent variable. All satellite-observed GUDs from 2009 to 2013
were pooled together to be evaluated with the ground-observed GUDs.
Four indicators were applied for accuracy evaluation, including the
Pearson correlation coefficient (r), regression coefficient a, root mean
square error (RMSE) and bias. Note that RMSE and bias were calculated
with both satellite- and ground- observations before we applied the
regression model.

We first used all GUDs to evaluate the performances of the four VIs
in the whole region. Then we compared the accuracy of the six methods
in HHN and HHS regions separately, combining with the VI that pre-
sented the best performance in the first step. Finally, we further ana-
lyzed the spatial coherence of the residuals from the above regression
model to evaluate the spatial applicability of each method. Since tem-
perature is the main control factor for GUD of winter wheat (Chu et al.,
2016; Ding et al., 2016), and latitude is negatively correlated with
temperature in the whole study area (Qiu et al., 2017), we used latitude
as the proxy to represent the temperature and spatial characteristics.

4. Results

4.1. The performances of the VIs and methods

Using 5-year (2009–2013) ground-observed GUD data, we eval-
uated the performances of the VIs, i.e. NDVI, EVI, EVI2 and NDPI.
Results show that all these four VIs combing with six methods can
capture winter wheat GUD information to a certain extent with all r
values greater than 0.4 (Fig. 3). Both NDPI and EVI achieve the highest
mean value of r (rmean=0.70, p<0.01) and standard deviation of r for

NDPI is the lowest (rstd=0.02), suggesting that NDPI has the best per-
formance and robustness of all methods. On the other hand, NDVI
presents the worst performance in detecting GUDs. Similarly, the re-
gression parameter a referring to the slope of the fitted line also shows
that NDPI outperforms the other three VIs with highest average of a
values close to 1. The values of RMSE and bias are both less than 35
days, and there is no apparent difference in RMSE and bias for these
four VIs. Considering the differences of GUD definition in six methods,
comparison of RMSE and bias is not straightforward for performance
evaluation of VIs. We thus only focused on the mean and standard
deviation of r and a, from which GUDs detected by NDPI display a
closer and more stable relationship with ground-observed GUDs than
other three VIs.

The above results show that NDPI time series is the most suitable for
GUDs detection. Accordingly, the performance of each method was
further evaluated only by using NDPI time series in HHN and HHS re-
gions (Fig. 4). In HHN region, GUDs detected with these six methods
were significantly correlated with the ground observations with r values
greater than 0.66. GUDs detected with RT50 method have the highest
correlation r value with 0.74, while r value from RT10 method is the
lowest with 0.66. But the difference between six r values is not sig-
nificant. For RMSE and bias, GUDs detected with RT10, CCRmax and
CCSM-P methods show the relatively smaller RMSE (~9 days) and bias
(~2 day), while the RMSE and bias of GUDs detected with RT50 and
βmax methods are much larger with values around 31 days and 30 days,
respectively. And all six bias are greater than 0, indicating that all of
these six methods overestimate GUDs to varying degrees in HHN re-
gion. As for the regression coefficient a, GUDs detected with CCRmax

method show the highest degree of consistency with the ground-ob-
served data with a value of 0.95, which is close to 1. However, in HHS
region, the performances of all six models are poor with r values lower
than 0.42. RT20 method instead of RT10 method presents the smallest
RMSE (10.67 days). According to bias, RT20, RT50 and βmax methods
overestimate GUDs while RT10, CCRmax and CCSM-P methods under-
estimate GUDs. Since RMSE mainly represents the proximity between
the satellite and ground observations, RMSE is more suitable for ac-
curacy evaluation. Accordingly, RT10, CCRmax and CCSM-P methods
with relatively smaller RMSE values are recommended for GUD de-
tection in HHN region, and RT20 method plays the same role in HHS
region.

Fig. 3. Performance comparison of four VIs for GUD detection. Each VI cooperated with all six methods.
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4.2. Spatial feasibility of the GUD detection methods

In order to examine the spatial feasibility of the six methods, we
further analyzed the relationship between the residuals from the six
linear models in Fig. 4 and the latitude with a linear regression model,

i.e. = +a bResidual latitude . The results are shown in Fig. 5. It is
evident that all coefficients of determination (R2) are significant at the
level of 0.01 and all values of a are positive, indicating that there is a
significantly positive correlation between residuals and latitudes for
each method. RT10 method shows the highest a (2.65), suggesting the

Fig. 4. Performance comparison of six GUD detection methods. The green dotted line represents the linear regression model fitted by all the data in the whole region.
The symbol ** and * is significant at level of 0.01 and 0.05, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. The relationship between residuals from the six linear models in Fig. 4 and the latitude. The symbol ** means significance at level of 0.01.
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strongest spatial coherence of residuals. The spatial trend of residuals
from βmax method is the weakest with the lowest a (1.61) and R2 (0.12)
values. The results in Fig. 5 indicate that all methods fail to generate
spatially consistent GUDs, with a tendency of underestimating (ad-
vancing) GUDs at low latitude regions and overestimating (delaying)
GUDs at high latitude regions. The spatial coherence of residuals and
latitude means that applying any of these six methods at a large-scale
region might result in expanding the spatial variance of GUDs of winter
wheat, which is not caused by the real GUD difference.

5. Discussion

5.1. The superiority of NDPI in GUD detection

In the study, we evaluated the performance of four commonly used
VIs for GUD detection and found that GUDs from NDPI showed the best
consistency with ground-based observations, followed by EVI and EVI2,
while NDVI held the worst consistency. Similar studies have been car-
ried out by other researchers. Peng et al. (2017) evaluated the accuracy
of GUDs from MOD09Q1P_NDVI and MOD09Q1P_EVI over different
vegetation types using ground GUD and AmeriFlux observation data.
They found that GUDs detected from EVI time series overall had a
better agreement with in situ observations than those from NDVI time
series. The results are basically consistent with ours, because their study
did not use NDPI. On the other hand, Huang et al. (2019) also compared
the performances of NDVI and EVI in detecting GUD with trained op-
timal thresholds. They found no significant difference in accuracy be-
tween NDVI and EVI derived GUDs. This conclusion may be proble-
matic, because their sample size was very small with data from only one
year.

As is well known, during winter and early spring before GUD oc-
currence, the temperature condition is not favorable for winter wheat
growth, resulting in a small canopy size and low coverage of winter
wheat, and more bare soil mixed in a pixel scope. Moreover, the study
region covers an extensive area with a large spatial heterogeneity in
terms of climatic conditions and soil types. Higher soil coverage and
larger differences in the soil type, soil color, and soil moisture condi-
tions induce substantial variability in the VIs even if the vegetation
conditions are identical. Accordingly, the adverse impact of the soil
background on the VIs is more significant during the period of GUD
occurrence with sparse vegetation, especially for NDVI (Montandon and
Small, 2008). Compared to NDVI, EVI was proposed to alleviate the soil
and atmospheric effects simultaneously based on the soil-line concept
(Huete et al., 1994). However, different soil types correspond to dif-
ferent soil-lines, thus there is no single universal soil-line (Baret et al.,
1993). Consequently, EVI based on soil-line conception may not com-
pletely reduce the soil effect across huge and heterogeneous areas.
Different from the concept of the soil-line in EVI, NDPI uses a weighted
red-SWIR (shortwave infrared) combination to replace the red band in
NDVI, by which the value of combined red-SWIR band become almost
equal to the value of NIR band for different types of soil. Therefore the
values of NDPI for different types of soil approach to zero, while its
sensitivity to the vegetation is unchanged (Wang et al., 2017b;
Chen et al., 2019). Apart from significantly reducing the impact of soil
background, NDPI is not susceptible to snowmelt. These two ad-
vantages could give NDPI a greater potential and superiority over the
other VIs in monitoring GUD in large-scale regions.

5.2. Uncertainty of the six GUD detection methods

Existing studies have shown that some GUD detection methods can
obtain similar results. For example, the percentage of VI curve ampli-
tude at the GUD point detected by CCRmax method is constant at 9.18%,
and at the GUD point detected by βmax method is 50% (Shang et al.,
2017), that is, CCRmax is equivalent to RT10, and βmax is equivalent to
RT50. Our results shown in Fig. 3 also support the conclusion that most

of the GUDs detected by RT10 are close to CCRmax, while those detected
by βmax are close to RT50. However, due to their respective inherent
defects, these results are not completely consistent. The relative
thresholding method is sensitive to the noises of VI curve, and its GUD
detection results are easily affected by soil background, clouds and
agricultural disasters. Different study areas or vegetation types need to
find the appropriate thresholds. Huang et al. (2019) used ground phe-
nology observations of all the agrometeorological stations in China to
acquire the optimal relative thresholds for GUDs of different crops. And
their results showed that the optimal relative thresholds for winter
wheat, summer maize, spring maize and early rice are 9%, 1%, 31%
and 30%, respectively. As for the phenometrics-based method, its per-
formance of GUD detection depends on the fitting accuracy of VI curve,
which is difficult to improve when VI curve does not follow the logistic
curve (Cao et al., 2015). Moreover, this method could fail to detect
GUD when VI value does not present abrupt increase at the time of GUD
(Zeng et al., 2020). Finally, the CCSM-P method relies on the re-
presentativeness of the reference curve and the accuracy of the re-
ference GUD detected from the reference curve. If there is considerable
variability of VI curves among different years, the accuracy of GUD
detection may be greatly affected (Zeng et al., 2020). Although RT10,
CCRmax and CCSM-P methods are recommended for GUD detection in
HHN region, as well as RT20 method for HHS region, more regional
studies are needed to corroborate the robustness of these re-
commendations. Moreover, we remind users to pay more attention to
the inherent defects and uncertainties of various methods when
choosing GUD detection methods.

5.3. The causes of spatial dependency of the GUD detection methods

In the study, although the GUDs detected by the six methods have
significant correlation with ground observations, their residuals are
latitude dependent (Fig. 5), resulting in spatial unevenness of the fitting
accuracy. We further explored whether the thresholds defined by
ground-observed GUDs were related to latitude. We defined the per-
centage of NDPI curve amplitude at the ground-observed GUD point as
the GGUD-threshold, and then established a linear model using the
GGUD-threshold and latitude (Fig. 6a). As expected, GGUD-threshold
also shows a significant negative correlation with latitude, which means
that higher relative thresholds are required to detect GUDs for southern
winter wheat. This is consistent with the conclusion in Fig. 4, which
shows that RT10 method is suitable for GUD detection in HHN region,
while RT20 is applicable in HHS region. There are two possible reasons
for this latitude dependency. Firstly, the crop growth period after
overwintering in south is shorter due to the larger development before
overwintering. From the VI curves, southern winter wheat has higher VI
values at the time of regrowth (Fig. 6b, blue dots and blue dash line),
and the increment of VI values from the time of regrowth to the heading
date are smaller (Fig. 6b, red dots and red dash line). Secondly, due to
the large leaf area at the end of overwintering, the VI values of southern
winter wheat increase significantly during the period of regrowth to
GUD, as shown in Fig. 6c. Consequently, the relative increment of VI
value at the time of GUD is greater for southern winter wheat than that
for northern winter wheat. In other words, the lower the latitude, the
higher the relative threshold for GUD detection. Accordingly, con-
sidering spatial dependency of the GUD detection methods, using dif-
ferent methods or thresholds over larger region may be a better choice
to generate spatially consistent GUDs by VI data.

5.4. Mixed pixel effect on crop GUD dectection

Some studies have shown that the mixed pixel effect actually affects
the accuracy of phenology detection based on VI data (Chen et al.,
2018; Liu et al., 2019). Although the relatively pure winter wheat pixels
were carefully selected to avoid the mixed pixel effect in this study, we
cannot guarantee that these pixels are truly ‘pure’ ones due to the

L. Gan, et al. Agricultural and Forest Meteorology 288–289 (2020) 108019

7



coarse spatial resolution of MODIS data. To quantify the mixed pixel
effect on satellite-observed GUDs, we carried out a simulation experi-
ment. The NDPI curves of forest, grass, built-up, water and other
cropland were selected, and NDPI curves of ‘pure’ winter wheat for each
agrometeorological station were from Section 3.3. Then, a large number
of the mixed pixels with coverages of 10% - 100% for winter wheat
were generated by using a linear mixture model. Finally, using the
RMSE indicator, GUDs detected from the simulated mixed pixels were
evaluated with GUDs from the ‘pure’ winter wheat pixels (Fig. 7). When
winter wheat coverage is greater than 60%, RMSE values approach
stable with RMSE less than 5 days no matter which method is used.
Considering that the temporal resolution of MODIS data is 8 days, the
RMSE value caused by the mixed pixel effect would be acceptable.
Accordingly, selecting the relatively pure pixels with coverage of winter
wheat greater than 60% is sufficient to alleviate the impact of mixed
pixels on the GUD detection accuracy based on NDPI data.

6. Conclusions

Using MODIS surface reflectance products with 8 day temporal re-
solution and 500 m spatial resolution during 2009–2013, this study

comprehensively evaluated the performances of winter wheat green-up
date (GUD) detection with four vegetation indices (NDVI, EVI, EVI2 and
NDPI) combined with six methods (RT10, RT20, RT50, βmax, CCRmax

and CCSM-P). Results show that satellite-derived GUDs significantly
correlate with ground-observed data, and results based on NDPI present
the highest accuracy and consistency, regardless of the methods used.
Combined with NDPI, RT10, CCRmax and CCSM-P methods are more
suitable to monitor GUD in the north of the study area (HHN region),
while RT20 performs relatively well in the south of the study area (HHS
region). We further investigated the residuals of detected GUDs with six
methods and NDPI, and found that residuals of all methods showed a
spatial trend, which might augment the spatial variance of GUDs. This
finding indicated the spatial heterogeneity of the accuracy of these
methods, which not only stresses the importance of appropriate
methods for improving the accuracy of winter wheat GUDs detection
using remote sensing data, but also presents a need for developing a
new method or designing a new combination of existing methods to
improve the spatial consistency of winter wheat GUDs at a large-scale
region.
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