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Abstract: Satellite remote sensing is a practical technique to estimate global precipitation with
adequate spatiotemporal resolution in ungauged regions. However, the performance of satellite-based
precipitation products is variable and uncertain for the Tibetan Plateau (TP) because of its complex
terrain and climate conditions. In this study, we evaluated the abilities of nine widely used
satellite-based precipitation products over the Eastern Tibetan Plateau (ETP) and quantified
precipitation dynamics over the entire TP. The evaluation was carried out from three aspects,
i.e., magnitude agreement, occurrence consistency, and elevation dependency, from grid-cell to
regional scales. The results show that the nine satellite-based products exhibited different agreement
with gauge-based reference data with median correlation coefficients ranging from 0.15 to 0.95.
Three products (climate hazards group infrared precipitation with stations (CHIRPS), multi-source
weighted-ensemble precipitation (MSWEP), and tropical rainfall measuring mission multi-satellite
precipitation analysis (TMPA)) generally presented the best performance with the reference data,
even in complex terrain regions, given their root mean square errors (RMSE) of less than 25 mm/mon.
The climate prediction center merged analysis of precipitation (CMAP) product has relatively coarse
spatial resolution, but it also exhibited good performance with a bias of less than 20% in watershed
scale. Two other products (precipitation estimation from remotely sensed information using artificial
neural networks-cloud classification system (PER-CCS) and climate prediction center morphing
technique-raw (CMORPH-RAW)) overestimated precipitation with median RMSEs of 87 mm/mon
and 45 mm/mon, respectively. All the precipitation products generally exhibited better agreement
with the reference data for rainy season and lower-elevation regions. All of the products captured
precipitation occurrence well, with hit event over 60%, and similar percentages of missed and false
event. According to the evaluation, the four products (CHIRPS, MSWEP, TMPA, and CMAP) revealed
that the annual precipitation over the TP fluctuated between 333 mm/yr and 488 mm/yr during the
period 2003 to 2015. The study indicates the importance of integration of multiple data sources and
post-processing (e.g., gauge data fusion and elevation correction) for satellite-based products and
have implications for selection of suitable precipitation products for hydrological modeling and water
resources assessment for the TP.
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1. Introduction

Precipitation is a critical variable dominating land surface hydrological processes, e.g., runoff

generation and soil moisture dynamics, and regulating energy balances associated with latent and
sensible heat fluxes [1,2]. Accurate estimation of precipitation is necessary for water resource
management, climate change detection, and hydrological modeling, and it is particularly important for
the Tibetan Plateau (TP), which is regarded as the Asian water tower for sources of major Asian river
basins [3].

Precipitation can be generally estimated using in situ gauge networks, global climate models
(GCMs), reanalysis systems, and remote sensing retrievals. In situ measurement with gauge networks
is a traditional approach to obtaining point-scale precipitation information [1,4]. Due to restrictions of
the cost and the environmental conditions, however, gauge networks are unfortunately sparse in many
remote areas [3]. For example, a large portion of TP, particularly in the western TP, does not have
in situ gauge networks for precipitation measurement because of the severe weather, high elevation,
and complex terrain [5].

GCMs, reanalysis systems, and satellite sensors provide attractive options for precipitation
estimation and make great compensation for the sparse distribution of in situ gauge networks.
GCMs can provide real-time climatic data and forecasting information, but they usually exhibit
considerable uncertainties because of large discrepancies between different general circulation models [6,7].
Reanalysis systems intend to merge background forecast models and data assimilation routines, and
their performance may depend on the quality of assimilated datasets [1]. Remote sensing retrievals are
based on the observations of sensors onboard satellite and related precipitation inversion formulas.
Satellite sensors are currently the only instruments that can provide global, homogeneous precipitation
estimates [1].

In recent years, satellite-based precipitation products (some assimilated in reanalysis systems)
have reached a good level of maturity and have been widely applied in hydrology and water
resources-related issues [8]. Various precipitation products with different temporal and spatial
resolutions are available [9–17]. However, satellite-based precipitation products are subject to a variety
of uncertainties associated with sensor accuracy, revisit time gaps, spatial resolution, relationships
between remotely sensed signals and rainfall rate, and atmospheric effects [18].

Many studies devoted to evaluating precipitation products at regional and global scales have
been conducted [19–27]. Among these studies, tropical rainfall measuring mission multi-satellite
precipitation analysis (TMPA) show a widely range of usability. It has been shown to perform well at
the monthly scale precipitation for various regions, including mainland China [28], coastal and island
sites in China [11], and India [2,23]. However, TMPA has limitations in capturing daily precipitation
and tends to overestimate rain event durations and underestimate rain event separations [29,30].
Some other satellite-based precipitation products exhibit similar performance. Examples include
applications of climate hazards group infrared precipitation with stations (CHIRPS) demonstrated
in Cyprus [16] and India [31], the global precipitation climatology project (GPCP) in tropical regions [32],
and precipitation estimation from remotely sensed information using artificial neural networks-climate
data record (PERSIANN-CDR) in the United States [20]. Global satellite mapping of precipitation
(GSMaP) and multi-source weighted-ensemble precipitation (MSWEP) have been shown to not perform
as well as TMPA in India [2], whereas the climate prediction center morphing technique (CMORPH)
product was found to exhibit better performance on a daily scale than TMPA in Meichuan [33].

Given that the performance of these precipitation products tends to vary widely for different
regions, a thorough and specific evaluation is particularly necessary for the TP region [18,34,35].
However, very few such studies concentrated on the TP—a region with a very complex topography and
high elevation. Two researchers revealed that TMPA 3B42 and CMORPH perform better for the TP than
TMPA 3B42RT and PERSIANN [18,36]. Bai and Liu [34] indicated that MSWEP agree better with the
gauge observations than the other four satellite-based products (CHIRPS, CMORPH, PERSIANN-CDR,
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and TMPA 3B42). However, these studies only focused on magnitude agreement (e.g., errors or biases
in precipitation amounts) and did not consider occurrence consistency or elevation dependency.

In this study, we evaluated the performance of nine popular satellite-based and one gauge-based
precipitation products against gauge observations from the China meteorological administration
(CMA). The evaluation was conducted at grid-cell and watershed scales and addressed not only
magnitude agreement but also occurrence consistency. Elevation dependency of estimation biases and
the spatiotemporal distribution of precipitation over the TP were examined. The results of this study
have useful implications for the application of satellite-based products for water resources assessment
and hydrological modeling in the TP and for the improvement of satellite-based precipitation products.

2. Data and Methods

2.1. Study Area

The TP, located in central Asia, has an area of approximately 2.6 million km2, and a mean
elevation of more than 4000 m above sea level (Figure 1). The study area is defined between
26.75–40.0◦N and 74.25–105.0◦E, covering the entire Tibet Autonomous region and some portions of
provinces in China, including all of Qinghai, northern Yunnan, western Sichuan, southwestern Gansu,
and southern Xinjiang.

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 23 

3 
 

In this study, we evaluated the performance of nine popular satellite-based and one gauge-based 
precipitation products against gauge observations from the China meteorological administration 
(CMA). The evaluation was conducted at grid-cell and watershed scales and addressed not only 
magnitude agreement but also occurrence consistency. Elevation dependency of estimation biases and 
the spatiotemporal distribution of precipitation over the TP were examined. The results of this study 
have useful implications for the application of satellite-based products for water resources assessment 
and hydrological modeling in the TP and for the improvement of satellite-based precipitation products. 

2. Data and Methods  

2.1. Study Area 

The TP, located in central Asia, has an area of approximately 2.6 million km2, and a mean elevation 
of more than 4000 m above sea level (Figure 1). The study area is defined between 26.75–40.0°N and 
74.25–105.0°E, covering the entire Tibet Autonomous region and some portions of provinces in China, 
including all of Qinghai, northern Yunnan, western Sichuan, southwestern Gansu, and southern 
Xinjiang. 

The average temperature in the TP ranged from −6 °C to 20 °C over the past two decades, with a 
northwest–southeast increasing gradient. The annual precipitation ranged from 50 mm to 2000 mm, 
with strong spatiotemporal variability because of the complex effects of multiple monsoons and 
mountain blockages. Specifically, in the summer, the TP has abundant moisture supply contributed by 
mid-latitude westerlies, Indian summer monsoons, and East Asian summer monsoons covering its 
northwestern, southern, and eastern parts, respectively. These three moisture sources come mainly from 
the North Atlantic, the Arabian Sea and the Bay of Bengal, and the South China Sea and the western 
Pacific, respectively [37]. In the winter, the zonal orientation of the Himalayas blocks synoptic-scale 
exchanges of warm tropical air with cold polar air, the only avenue of air exchange being east of the 
Himalayas [18]. Thus, the south-eastern monsoons produce heavy precipitation in the summer months; 
while westerly winds bring winter precipitation [38].  

In this work, the eastern TP (ETP) was specially extracted on the basis of the density of 
meteorological stations (i.e., CMA) in the TP (Figure 1) to better evaluate the precipitation products. The 
ETP is composed of source regions of seven watersheds, including Hexi, Yellow, Yangtze, Mekong, 
Salween, Qaidam, and Brahmaputra. The areas of the seven watersheds are between 0.06 million km2 
and 0.48 million km2. The watersheds of the Hexi, Yellow, and Qaidam Rivers locate in the northeastern 
TP, and their mean elevation is approximately 3600 m, while Yangtze, Mekong, Salween, and 
Brahmaputra Rivers in the southeastern TP with mean elevation of approximately 4400 m above sea 
level. 

 
Figure 1. Basic information of the Tibetan Plateau (TP). The area enclosed by the dark line denotes the
eastern TP (ETP) (with a high density of meteorological stations), the red circles denote meteorological
stations, and the two bands are used to evaluate elevation dependency of precipitation products’
estimation biases.

The average temperature in the TP ranged from −6 ◦C to 20 ◦C over the past two decades,
with a northwest–southeast increasing gradient. The annual precipitation ranged from 50 mm to
2000 mm, with strong spatiotemporal variability because of the complex effects of multiple monsoons
and mountain blockages. Specifically, in the summer, the TP has abundant moisture supply contributed
by mid-latitude westerlies, Indian summer monsoons, and East Asian summer monsoons covering its
northwestern, southern, and eastern parts, respectively. These three moisture sources come mainly from
the North Atlantic, the Arabian Sea and the Bay of Bengal, and the South China Sea and the western
Pacific, respectively [37]. In the winter, the zonal orientation of the Himalayas blocks synoptic-scale
exchanges of warm tropical air with cold polar air, the only avenue of air exchange being east of the
Himalayas [18]. Thus, the south-eastern monsoons produce heavy precipitation in the summer months;
while westerly winds bring winter precipitation [38].

In this work, the eastern TP (ETP) was specially extracted on the basis of the density of
meteorological stations (i.e., CMA) in the TP (Figure 1) to better evaluate the precipitation products.
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The ETP is composed of source regions of seven watersheds, including Hexi, Yellow, Yangtze,
Mekong, Salween, Qaidam, and Brahmaputra. The areas of the seven watersheds are between
0.06 million km2 and 0.48 million km2. The watersheds of the Hexi, Yellow, and Qaidam Rivers locate
in the northeastern TP, and their mean elevation is approximately 3600 m, while Yangtze, Mekong,
Salween, and Brahmaputra Rivers in the southeastern TP with mean elevation of approximately 4400 m
above sea level.

2.2. Data Sources

Satellite remote sensing is an invaluable tool for global measurements of atmospheric parameters
at regular intervals [21]. Among the satellite-based data sources, infrared (IR) and microwave are
considered as the major instruments to design for precipitation estimation. IR data can provide
excellent spatiotemporal coverage but have an indirect relationship to precipitation. In contrast,
MW observations give relatively accurate instantaneous rain rates but poor temporal sampling [1].
Thus, the concept of retrieving precipitation information from high-resolution satellite data is to take
advantage of their complementary strengths, i.e., combining information from the more frequent IR
data with the more accurate MW data [21]. Outgoing longwave radiation (OLR) can also provide nearly
complete global coverage of large-scale precipitation estimation with high quality [39]. The microwave
sounding unit (MSU) primarily focuses on oceanic precipitation monitor [40]. Based on these satellite
remote sensing and other measurement techniques, numerous precipitation products with different
spatiotemporal resolutions and coverages are freely available.

In this study, we focused on 10 precipitation products listed in Table 1, which can be divided into
three groups based on their data sources. The first group relies exclusively on satellite data, including
GSMaP-MVK/RNL V6, CMORPH-RAW V1.0, and PERSIANN-cloud classification system. The second
group, which relies on satellite and gauge data combined, includes GPCP-1DD, PERSIANN-CDR V1R1,
TMPA 3B42, CPC merged analysis of precipitation, CHIRPS V2.0, and MSWEP V2.0. The nine products
mentioned above are abbreviated hereinafter as GSMaP, CMORPH, PER-CCS, GPCP, PER-CDR,
TMPA, CMAP, CHIRPS and MSWEP, respectively, and are roughly referred to as satellite-based
products or datasets in this study. It is worth noting that GSMaP-RNL V6 (for period from March
2000 to February 2014) and GSMaP-MVK V6 (for period from March 2014 to the present) use same
algorithms, but GSMaP-RNL V6 uses the Japanese 55-year reanalysis (JRA-55) as ancillary data [41].
We grouped GSMaP-RNL V6 and GSMaP-MVK V6 to GSMaP as they have same algorithms with
temporal continuity. The third group consists of the fully gauge-based dataset, CPC-Global, which is
sourced from multiple networks, including the global telecommunication system (GTS), the cooperative
observer network (COOP), national meteorological agencies (NMAs), and CMA [42,43]. CPC-Global is
not a satellite-based product, and it incorporates approximately 120 CMA stations in TP. It was selected
in this study because it can be considered as reference data for evaluating the nine satellite-based
products after validation, which will be described in Sections 3.1–3.3. Given the different time durations
addressed by the ten products, we focused on the study period between January 2003 and October
2015, which all of the products cover.

To evaluate the above 10 products, we collected 156 stations of precipitation observations from the
CMA. The stations primarily locate in the ETP (Figure 1). Each of the stations has undergone quality
control procedures to eliminate erroneous and heterogeneous assessment, with additional routines to
identify potential outliers (e.g., precipitation values less than 0 mm) and stiffness values (consistent
values for long time series) [18]. Please note the CMA gauge observations and the CPC-Global
product also hold measurement/instrument errors from wind-induced errors, wetting loss, and trace
precipitation [44]. The total measurement error in the TP is up to 50 mm per year [45]. But we have
to take the gauge observations as standard reference to evaluate the other satellite-based products
(Table 1).
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Table 1. The 10 precipitation datasets evaluated in this study. The abbreviations Tem and Spa
donate temporal and spatial. In the Spa-coverage column, “global” indicates fully global coverage,
including ocean areas, while “land” indicates that the coverage is limited to the terrestrial surface.
The abbreviations in the data source can be found in the glossary.

Short Name Data Source Spa/Tem-Resolution Spa-Coverage Tem-Coverage References

CPC-Global CPC, GTS, COOP, NMAs, CMA 0.5◦/daily Land 1979.1–present [42,43,46]

CHIRPS V2.0 CCD, CHPlim, FAO, GHCN,
GriSat, CPC-TIR, GSOD, GTS 0.05◦/daily Land, 50◦S–50◦N 1981.1–present [47,48]

MSWEP V2.0
CHPlim, CPC, GPCC,

CMORPH, GSMaP, TMPA,
ERA-Interim, JRA-55

0.5◦/daily Global 1979.1–present [10,49]

TMPA 3B42
TMI, DMSP SSM/I, AMSR-E,
AMSU-B, MetOp, GEO-IR,
GOES, TCI, GPCC, CAMS

0.25◦/daily 50◦S–50◦N 1998.1–present [50,51]

CMAP CPCC, IR, OLR, SSM/I, MSU,
NCEP–NCAR 2.5◦/pentad Global 1979.1–2016.12 [52,53]

PERSIANN-CDR
V1R1 NCEP GridSat-B1, GPCP 0.25◦/daily 60◦S–60◦N 1983.1–present [9,54]

GPCP-1DD TOVS, GPROF SSM/I, GEO-IR,
AVHRR GPI 1.0◦/daily Global 1996.10–2015.10 [23,55]

GSMaP-MVK/RNL
V6

TRMM, AMSR-E, DMSP SSM/I,
NCEP CPC 0.25◦/daily 60◦S–60◦N 2000.3–present [17,56]

CMORPH-RAW
V1.0

GOES, Meteosat, GMS,
AMSU-B, SSM/I, TMI 0.25◦/daily 60◦S–60◦N 1998.1–2018.11 [15]

PERSIANN-CCS NCEP-CPC-IR 0.04◦/daily 60◦S–60◦N 2003.1–present [13,57]

2.3. Evaluation Procedures and Performance Indicators

The performance of the 10 precipitation products was evaluated from three aspects: magnitude
agreement, occurrence consistency and elevation dependency. The evaluation procedure is presented
in Figure 2. The magnitude agreement represents the errors of precipitation magnitude and temporal
consistency of a product, and it is calculated against the CMA data for monthly precipitation at the
grid-cell scale and watershed scale. To conduct a reasonable evaluation of the products against the
point-scale CMA observations, the CMA station observations were first interpolated into six different
spatial resolutions according to the resolutions of the ten precipitation products. The interpolation
method uses a linear regression model and considers both the elevation and inverse squared distance
between the stations [58–60]. Then, an effective grid cell (EGC) was defined according to the spatial
resolution of a product (Figure 2 (right)). For spatial resolutions of 0.04◦ or 0.05◦, an EGC is the grid
cell containing no less one station; otherwise, it is defined as a gird cell with at least five stations
around (0.75◦ from the center). Therefore, as indicated in Figure 2, the number of EGCs varies from 16
(for CMAP with resolution of 2.5◦) to 134 (for products with the resolution finer than 0.25◦) due to
the different spatial resolutions of the products. The interpolated CMA datasets with different spatial
resolutions are collectively referred to hereinafter as CMA data. We assume that the precipitation
estimates within the EGC of each precipitation product is comparable with the CMA data at the
corresponding resolution.

The performance of the 10 products at grid-cell scale may highly depend on the density of CMA
stations and the definition of the EGC. To remedy this issue, we further evaluated the magnitude
agreement at watershed scale. For this evaluation, we calculated the average precipitation of all grid
cells within a watershed and compared it with the average precipitation of all stations within the
same watershed. The magnitude agreement was represented by three measures, i.e., the correlation
coefficient (R), the root mean square error (RMSE), and the long-term percentage bias (PBias). Because
of different numbers of EGCs for the 10 precipitation products, we used the following statistics of
the three measures—their maxima, minima, medians, 75% percentiles (Q75), and 25% percentiles
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(Q25). The difference between the two percentiles (Q75–Q25) is a measure of the spread over the ETP,
quantifying its bias variability. The three measures are defined as follows:

R =

∑n
i=1

(
Gi −G

)(
Si − S

)
√∑n

i=1

(
Gi −G

)2
√∑n

i=1

(
Si − S

)2
(1)

RMSE =

√√
1
n

n∑
i=1

(Gi − Si)
2 (2)

PBias =

∑n
i=1 Si −

∑n
i=1 Gi∑n

i=1 Gi
× 100% (3)

where n is the number of months; Gi and G denote individual monthly and mean values of
CMA data, respectively; and Si and S denote individual monthly and mean values of precipitation
products, respectively.
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Occurrence consistency represents the capability of capturing the occurrence of daily precipitation.
In this study, we defined that precipitation occurs if an amount of precipitation is greater than the
threshold of 1.0 mm/day [18]. This aspect of evaluation was conducted for daily precipitation at
grid-cell scale based on the CMA precipitation data. Occurrence consistency can be characterized
by the contingency table-based categorical statistics, consisting of three measures—hit event, missed
event, and false event [61]. A hit event is defined as both the evaluated data and the CMA data report
precipitation occurrence coincidently. A missed event is defined as the evaluated data reporting no
precipitation occurrence when the CMA data report that precipitation did occur. A false event is
defined as the evaluation data reporting that a precipitation occurred when the CMA data report
that no such occurrence. The missed rate reflects how well the products capture true precipitation
occurrence, while the false rate represents the extent to which products report precipitation erroneously
or do not estimate the precipitation duration well.

Elevation dependency represents the sensitivity of precipitation estimation to complex terrain
conditions, because satellite sensors generally have difficulty in detecting precipitation in areas with
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complex terrain [36,62]. Elevation dependency can be measured using the correlation coefficient (R)
between the bias and associated elevation [36]. A higher R indicates that a product is less robust and
more sensitive to the effect of a complex terrain. The bias is calculated between each precipitation dataset
and the reference data (the mean value of CPC-Global and the CMA data). As shown in Figure 1, two
typical elevation bands in ETP were selected for analysis based on the elevation variation and density
of CMA stations. The two elevation bands are roughly parallel to latitudinal trends, as this direction
exhibits high consistency with the spatial distribution of environmental conditions (e.g., precipitation,
and atmospheric moisture supply) [37].

Based on the three evaluation aspects and the consistency of the spatiotemporal distribution
of precipitation in the ETP, we illustrated the temporal fluctuation of precipitation over the entire
TP area. It is worth noting that the precipitation is defined as the sum of snow, rain, freezing rain,
and hail. In addition, the CPC-Global product was first evaluated with respect to the magnitude
agreement and the occurrence consistency and was then integrated with the CMA data at a resolution
of 0.5◦ to produce a new reference dataset for use in the elevation dependency evaluation (Figure 2).
The aim of this integration was to remedy uncertainties associated with inadequate density of the
CMA observations and the interpolation method.

3. Results

3.1. Magnitude Agreement at Grid-Cell Scale

Magnitude agreement at grid-cell scale was evaluated based on the three previously mentioned
measures (i.e., R, RMSE, and PBias). The three measures for the nine satellite-based products presented
similar ranking patterns, and the products can be roughly divided into three groups (Figure 3).
Three products (CHIRPS, MSWEP, and TMPA) exhibited good performance, with high median R values
(>0.9), low median RMSE values (<25 mm/mon) and low median PBias values (<20%); Five other
products (CMAP, PER-CDR, GPCP, GSMaP, and CMORPH) presented moderate performance with high
median R values (≥0.6), but relatively high median RMSE values (30~45 mm/mon) and relatively high
median PBias values (>30%). PER-CCS revealed large discrepancies with the CMA data, with a median
R value of 0.15, a median RMSE value of 87 mm/mon, and a median PBias value of 100%. It is worth
noting that CMAP product given a large bias (as indicated by the median PBias value of 75%) but
favorable performance according to the other two measures (a median R value of 0.9 and a median
RMSE value of 40 mm/mon). However, the gauge-based CPC-Global exhibited the greatest agreement
with the CMA data, with the highest median R value (0.9), and the lowest median RMSE (14 mm/mon)
and PBias (8%) values.

The assessment of the magnitude agreement of the ten products revealed different spatial
variabilities according to the three measures (Figure 3). CPC-Global presented the lowest variability,
as indicated by the small spreads (Q75–Q25) of the three measures. In contrast, PER-CCS exhibited
the highest variability. We plotted the spatial distributions of the three measures for the 10 products
(Figures S1–S3) and selected three products (MSWEP, PER-CDR, and PER-CCS) as examples, shown
in Figure 4. The performance of each product varied from region to region. In general, monthly
precipitation was more easily detected in the northeastern ETP than it in the southern ETP. For instance,
MSWEP performed better in the northeastern ETP, as indicated by small RMSEs (~11.3 mm/mon)
and PBiases (~10.3%) than in the southern ETP, with higher RMSEs (~35.0 mm/mon) and PBias
(~40.1%). PER-CDR showed patterns similar to those of MSWEP. However, PER-CCS exhibited better
performance for the southern ETP than for the other areas.
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Figure 4. Spatial distribution of R, RMSE (mm/mon), and PBias (%) for the typical examples of
the multi-source weighted-ensemble precipitation (MSWEP), precipitation estimation from remotely
sensed information using artificial neural networks-climate data record (PER-CDR), and precipitation
estimation from remotely sensed information using artificial neural networks-cloud classification
system (PER-CCS) products against CMA data.
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3.2. Magnitude Agreement at Watershed Scale

We only employed the PBias measure to represent the performance of the 10 products at watershed
scale, as it exhibited a pattern similar to those of R and RMSE. Figure 5 shows the mean annual cycle of
monthly precipitation bias for the 10 products over the entire ETP and the seven watersheds. For the
entire ETP, the CMAP, CHIRPS, TMPA, and MSWEP products presented good performance, with mean
monthly biases of 18.9%, 19.7%, 22.5%, and 25.7%, respectively. The GPCP, PER-CDR, and GSMaP
products exhibited moderate performance with mean monthly bias values between 30% and 50%,
while CMORPH and PER-CCS products presented large differences against the CMA data, with bias
values in excess of 100%. However, CPC-Global showed the best performance, with a mean monthly
bias of 8.5%.

The performance of the 10 products over the entire ETP was similar to those over the
seven watersheds, but the products generally exhibited better performance in watersheds located
in northeastern ETP. For instance, MSWEP presented smaller bias (~18.6%) over four watersheds
(i.e., Hexi, Yellow, Qaidam, and Yangtze), while the biases over the other three watersheds (i.e., Mekong,
Salween, and Brahmaputra) were over 45%. GPCP exhibited a mean bias below 25% over three
northeastern watersheds (Hexi, Yellow, and Qaidam), but biases in excess of 40% over the other four.
The precipitation products perform best in Yellow among the seven watersheds, and especially, the three
products of CHIRPS, MSWEP, and TMPA achieve the lowest bias in Yellow (~12.4%). In contrast,
precipitation in Brahmaputra is not well captured by the nine satellite-based products due to the
highest bias of 218.5%.

The performance of the products varied with the season. We calculated the ratio of the mean
rainy season error (May-September) to the mean total error. This ratio was used to quantify the error
contribution from the rainy season (Table S1). For the ETP, we noticed that the ratios for PER-CCS
(5.1%), CMORPH (7.6%), CPC-Global (18.9%), CHIRPS (47.5%), GSMaP (61.4%), and CMAP (76.6%)
were below 100%, indicating that their errors were primarily contributed by the non-rainy season
(October–April). Note that the ratio for PER-CCS as the smallest among the 10 but that this does not
indicate it performed well for the rainy season because its mean total error was quite high at 729.2%.
However, the ratios for the other four products were approximately 100%.
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3.3. Hit-Missed-False Events

Occurrence consistency was evaluated for daily precipitation, and the statistics for the three
measures of hit-missed-false events were calculated at EGC scale. Figure 6 shows the statistics for each
precipitation product. For hit rate, the median values of all products were higher than 60%, MSWEP
exhibited the highest percentage of hit event, with a median value of 82.3%, PER-CCS presented the
lowest value of 60.7% (Figure 6a). For missed rate, CMAP showed the lowest median value of 3.7%,
followed by MSWEP (6.8%) and PER-CDR (9.1%) products. Five products (PER-CCS, TMPA, GPCP,
GSMaP, and CMORPH) also exhibited flaws in capturing precipitation occurrence, with median values
between 10 and 15%, while CHIRPS presented the highest median value of 17.6% (Figure 6b). As to the
false rate, CHIRPS product exhibited the lowest value of 7.0%, followed by MSWEP, TMPA, and GSMaP
(10 to 11%). CMORPH, CMAP, PER-CDR, and GPCP also showed poor performance in this aspect,
with percentages of false event between 15% and 22%. PER-CCS presented the highest percentage
of false event (25.0%) (Figure 6c). The gauge-based CPC-Global exhibited excellent performance,
with median percentages of hit, missed, and false events of 82.5%, 7.4%, and 9.8%, respectively.

According to the spreads (Q75–Q25), the 10 products showed similar variabilities with respect to
hit event, but different degrees of variability with respect to missed and false event. In missed event,
CHIRPS product presented the largest variability, and MSWEP had the lowest variability. In false event,
CMORPH exhibited the largest variability, and CHIRPS had the lowest variability. Three products
(i.e., MSWEP, TMPA, and GSMaP) can therefore be assumed to perform well in capturing precipitation
occurrence, while two products (CMORPH and PER-CCS) presented higher degrees of variability,
lower percentages of hit events, and higher percentages of missed and false events.

The spatial distribution of the three measures for the 10 products are illustrated in Figures S4–S6,
and MSWEP, PER-CDR, and PER-CCS were selected as examples, as in Section 3.1 (Figure 7).
The performance of the precipitation products varied in different regions. For instance, MSWEP
exhibited better consistency with the CMA data in the southern ETP, with a hit event percentage
of 85.0%, which dropped to 82.1% in the northeastern ETP. PER-CCS performed similarly, with the
percentage of hit events dropping from 72.9% to 60.1%. The change is mainly due to the increase in the
percentage of false events (from 14.7% to 27.5%). PER-CDR showed an even distribution over ETP
for hit events, but the percentage of missed events dropped from 10.2% (northeastern ETP) to 6.0%
(southern ETP), while the percentage of false events increased from 15.0% to 22.5%.
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CMA data.

3.4. Elevation Dependency of Bias

Elevation dependency is evaluated based on precipitation bias and elevation with respect to the
two elevation bands as shown in Figure 1. The bias of each satellite-based product was calculated based
on the new reference data (i.e., the mean value of CPC-Global and the interpolated CMA observations).
Figure 8 presents the variation of the satellite-based products’ biases and the corresponding elevation
over the two bands, as well as the R value between the two. In band 1, the elevation is between
2000 m and 4000 m, and generally showed a decreasing trend with longitude. The biases of most
products exhibited an inverse trend with the elevation. However, two products (PER-CCS and GSMaP)
presented high biases in high-altitude area (Figure 8a). In band 2, the elevation and biases presented
less significant trends, the elevation varies over a range of approximately 4000 m, and the biases of the
products exhibited a variation of approximately 50% (Figure 8b).

All nine satellite-based products exhibited varying degrees of correlation between elevation and
precipitation biases (Figure 8c). The biases of five products (GPCP, PER-CDR, PER-CCS, CHIRPS,
and GSMaP) showed obvious dependence on elevation (R value > 0.6) in band 1. The bias of GPCP had
the highest R value (0.78) with respect to elevation, followed by PER-CDR with a value of 0.75. In band
2, the biases of GPCP, PER-CDR, and PER-CCS also presented dependence on elevation with R values
between 0.4 and 0.5. However, CHIRPS and GSMaP did not present an apparent correlation between
precipitation bias and elevation in band 2, with R values of approximately 0.15. The bias of other
four satellite-based products (MSWEP, TMPA, CMAP, and CMORPH) showed a weak dependence on
elevation in both bands.
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3.5. Spatiotemporal Distribution

Figure 9 shows annual precipitation information derived from interpolated CMA data (0.25◦) over
the ETP and from the ten precipitation products over the entire TP. The reference precipitation data
(CPC-Global and CMA data) exhibited a southeast-northwest decreasing gradient over the ETP, ranging
from 1200 mm/yr in the southeast to 100 mm/yr in the northwest. Among the nine satellite-based
products, the distribution from three products (CHIRPS, MSWEP, and TMPA) agreed well with that of
the reference data in terms of the annual spatial patterns. Four products (CMAP, PER-CDR, GPCP,
and GSMaP) were able to approximate the large-scale spatial patterns of annual precipitation but
showed differences in certain regions. CMAP only captured the approximate spatial distribution of
precipitation for the low spatial resolution; PER-CDR and GPCP seemed to produce overestimations
compared to the reference data for the southern ETP, and GSMaP product produced an underestimation
for eastern ETP.

However, CMORPH showed obvious overestimation over the eastern ETP, as well as massive areas
of discrepancy over the entire TP that were not observed for the other products. PER-CCS presented
a very different spatial pattern from that of the reference data, with the highest precipitation in the central
TP (Figure 9). It is also worth noting that CPC-Global presented the highest precipitation in the southern
TP, but only three products (CHIRPS, MSWEP, and TMPA) exhibited similar precipitation pattern.

Figure 10a shows the annual precipitation fluctuations, according to the reference data (CPC-Global
and interpolated CMA data) and the nine satellite-based products over the ETP. It should be noted
that the annual fluctuations in ETP are very small according to the reference data, and the two sets
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of reference data presented slight differences with mostly similar fluctuation patterns. Among the
nine satellite-based products, six products (CHIRPS, CMAP, TMPA, GPCP, MSWEP, and PER-CDR)
were able to capture the fluctuation of precipitation in the reference data but exhibit different degrees
of underestimation or overestimation. The other three products (PER-CCS, CMORPH, and GSMaP)
exhibited different degrees of fluctuation with respect to the reference data.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 23 

 

 

Figure 9. Spatial distribution of annual precipitation according to the 10 precipitation products and 
the interpolated CMA estimates (mm/yr) from January 2003 to October 2015. 

 
Figure 10. Annual precipitation according to the 10 precipitation products and the interpolated CMA 
for the ETP (a); Annual precipitation according to CHIRPS, MSWEP, TMPA, and CMAP products for 
the entire TP (b). 

Figure 9. Spatial distribution of annual precipitation according to the 10 precipitation products and the
interpolated CMA estimates (mm/yr) from January 2003 to October 2015.

To make a general view of the performance of the nine satellite-based products, we classified
their performance into three groups marked as Good, Moderate, and Poor. Table 2 summarizes
the performance classification according to the three evaluation aspects (i.e., magnitude agreement,
occurrence consistency, elevation dependency) and related standards. We can see that CHIRPS, MSWEP,
and TMPA were marked as Good because of their good magnitude agreement. CMAP has Moderate
performance at grid-sell scale but Good performance at the watershed scale. The other products
present Moderate or Poor performance. Similar performance ranking is shown for the occurrence
consistency, where CHIRPS is in the Moderate group due to its relatively high missed rate (Figure 6b).
For the elevation dependency, PER-CDR, GPCP, and PER-CCS are in Poor group because they are
sensitive to the effects of complex terrain (Figure 8), while the other products were not classified into
a specific group because there may be unknown elevation dependency despite their low correlations.
It should be noted that the classification is only based on the judgement standard listed in Table 2, and
Poor performance does not mean the associated product is not applicable to hydrology and climate
related studies.



Remote Sens. 2020, 12, 1750 14 of 22

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 23 

 

 

Figure 9. Spatial distribution of annual precipitation according to the 10 precipitation products and 
the interpolated CMA estimates (mm/yr) from January 2003 to October 2015. 

 
Figure 10. Annual precipitation according to the 10 precipitation products and the interpolated CMA 
for the ETP (a); Annual precipitation according to CHIRPS, MSWEP, TMPA, and CMAP products for 
the entire TP (b). 

Figure 10. Annual precipitation according to the 10 precipitation products and the interpolated CMA
for the ETP (a); Annual precipitation according to CHIRPS, MSWEP, TMPA, and CMAP products for
the entire TP (b).

Table 2. Summary of evaluation outcomes of nine satellite-based precipitation products from different
aspects. The letters MA, OC, and ED are acronyms of magnitude agreement, occurrence consistency,
and elevation dependency. The letters G, M, and P are acronyms of Good, Moderate, Poor.

MA-EGCs MA-Watersheds OC ED

CHIRPS G G M -
MSWEP G G G -
TRMM G G G -
CMAP M G M -
PER-CDR M M M P
GPCP M M M P
GSMaP M M G -
CMORPH M P P -
PER-CCS P P P P

Judgement standard:
� MA-EGCs: G-R > 0.9, RMSE < 25 mm/mon, PBias < 30%; M-0.4 ≤ R ≤ 0.9,
25 mm/mon ≤ RMSE < 45 mm/mon, 30% ≤ PBias < 50%; P-R < 0.4, RMSE ≥ 25
mm/mon, PBias ≥ 50%;
� MA-Watersheds: G-PBias < 30%; M-30% ≤ PBias < 50%; P-PBias ≥ 50%;
� OC: G-Hit > 75%, Missed < 15%, False < 15%; M-70% ≤ Hit < 75%; P-60%
≤ Hit < 70%;
� ED: P-R ≥ 0.4.

According to the performance classification, four products (CHIRPS, MSWEP, TMPA, and CMAP)
in Good group were used to explore the annual precipitation distribution over the entire TP (Figure 10b).
The results show that, during the period of 2003–2015, the mean annual precipitation over the TP was
approximately 440 mm/yr, with the highest precipitation in 2010 (~472 mm), and the lowest in 2006
(~392 mm).
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4. Discussion

4.1. Performance of the Satellite-Based Products

This study extensively evaluated satellite-based precipitation products with respect to magnitude
agreement, occurrence consistency, elevation dependency and spatiotemporal distribution. All the
nine satellite-based precipitation products exhibited differences in magnitude agreement against the
reference data, but three products (CHIRPS, MSWEP, and TMPA) presented higher R values and lower
RMSE and PBias values. Most products showed higher biases in the non-rainy season (October–April),
which has complex types of precipitation (including rainfall, snowfall, and freezing rain), indicating
the limitations of satellite-based products in solid precipitation or light rainfall situations. And these
products achieved more favorable performance in the northeastern ETP (including Hexi, Yellow,
and Qaidam) than for the southern ETP (including Mekong, Salween, and Brahmaputra), where the
terrain is more complex and generally of higher elevation.

With respect to occurrence consistency, all products presented good performance, with median
hit rates higher than 60%, and relatively uniform values for missed and false rates. However,
CHIRPS showed the highest percentage of missed event (17.6%), reflective of defect in its ability to
correct for undetected (missed) precipitation events [18]. Three products (CMAP, CMORPH, and
PER-CCS) had high percentages with respect to false event, which may be due to their low spatial
resolution or lack of gauge correction. Furthermore, the capability of precipitation products to capture
the precipitation occurrence may also be impacted by the revisit cycle or orbit type of the sensors.
For elevation dependency, GPCP, PER-CDR, and PER-CCS products showed high elevation dependency.
While according to Figure 9, CHIRPS, MSWEP, and TMPA products well captured the elevation-affected
precipitation in the southern TP. The biases of the other three products (CMAP, GSMaP, and CMORPH)
have little correlation with the topography, but may be attributed to their free-gauge, free-elevation
correction, or their low spatial resolution.

Based on the above discussion, we can see that three of the nine satellite-based products, CHIRPS,
MSWEP, and TMPA performed the most consistently with respect to the reference data in all three
evaluation aspects. CMAP also exhibited good performance in ETP, but it is limited by lower spatial
resolution. Their favorable performance can be attributed to their effective integration of multiple data
sources and gauge correction during the estimation process. CHIRPS estimates precipitation based
on infrared Cold Cloud Duration observations, and merges multiple data, such as TMPA, CMORPH
and global geosynchronous TIR archives, etc. [48]. The design philosophy of MSWEP is to optimally
merge precipitation data sources available as a function of timescale and location, the data sources
include ERA-Interim, JRA-55, CMORPH, TMPA, etc. [10]. TMPA includes data sources from two
different types of satellite sensors (microwave and IR), and employs several additional inputs [51].
CMAP merges large-scale precipitation data, which can be divided into seven categories (i.e., gauge
observations, infrared, outgoing longwave radiation, microwave sounding unit, microwave scattering
and emission, and precipitation models) [52]. Other studies have confirmed the good performance of
these three products. CHIRPS has shown good correlation with recorded precipitation in Cyprus [16],
East Africa [47], and India [31]. MSWEP has been found to perform well for daily rainfall in India [63].
TMPA has presented good correlation with precipitation data at multiple temporal scales in India [23],
China [26], and Africa [64]. According to Beck et al. [21] and Yin et al. [65], MSWEP and CHIRPS were
strongly recommended for hydrological research because of their excellent performance.

The two products (PER-CCS and CMORPH) generally lose the capability of detecting the
magnitude variation and the precipitation occurrence. PER-CCS is a solely IR-based product without
gauge or elevation correction, its main aim is to retrieve high-resolution precipitation in near-real time.
Therefore, PER-CCS does not perform as well as the other products [54]. Kai et al. [18] also noted
the poor agreement of PER-CCS with gauge observations over the TP. Similar behavior for PER-CCS
has been noted on a global scale [21]. Moreover, PER-CCS has been found to exhibit strong elevation
dependency in other regions, such as the northwestern Mexico [13]. CMORPH is a primarily MW-based
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product, and it retrieves precipitation mainly based on scattering by ice aloft, with poor temporal
sampling [18]. Beck et al. [10] demonstrated the weak temporal correlation between CMORPH and
gauge data over the TP.

4.2. Implications for Precipitation Product Application

Accurate precipitation information plays an important role in hydrological simulations and
assessment of water resources. For satellite-based precipitation products, in addition to the product
performance, the spatiotemporal resolution and coverage achieved also need to be taken into account.
Several products (e.g., CHIRPS, MSWEP, PER-CDR) have been shown to have comparable abilities
in terms of streamflow simulations in various regions [21,34,66]. Based on our assessments of multiple
products in characterizing precipitation conditions over the TP region, the CHIRPS product is preferable
for hydrological simulations and water resource assessment. This product provides the best overall
correlation with measured data and has a long temporal record (1981–present) with a comparatively
high spatial resolution (0.05). For long-term climate change and water resource assessment, we also
recommend MSWEP and CMAP products, as both products present good performance and long
temporal records (~40 years). Furthermore, we confirmed that the performance of the satellite-based
products varies with season, i.e., most errors are concentrated in the non-rainy season (October–April)
with solid precipitation. Thus, the ability of satellite products to capture different types of precipitation
(including snowfall, freezing rain) also merits attention, as considerable uncertainty may arise during
the non-rainy season for a hydrological simulation.

4.3. Limitations

In this study, we used CMA precipitation data to evaluate the performance of the satellite retrievals.
Uncertainties in the CMA data may arise from the station density, the spatial scale mismatch between
satellite and gauges, and the interpolation method used to transform gauge data into gridded data [67].
And our study only covered nine satellite-based precipitation products and conducted the evaluations
without considering the precipitation intensities.

However, we used another gauge-based product (i.e., CPC-Global) to mitigate these uncertainties,
as CPC-Global product is sourced from multiple sets of gauge networks including CMA stations.
Our main purposes are to assess the capabilities and limitations of satellite-based products and to
characterize the temporal change of precipitation over the TP. Our results present that precipitation
estimated by the CHIRPS, MSWEP, TMPA, and CMAP products can capture the reference observations
well and that the mean annual precipitation over the TP was approximately 440 mm/yr during
the period of 2003–2015. Furthermore, our work reveals the limitations of satellite-based products
in complex terrain and light rainfall situations, and the importance of multiple data sources and of
elevation correction. Therefore, uncertainties caused by reference data or other factors should not
appreciably diminish the validity of the conclusions drawn from the results of this study.

5. Conclusions

In this study, 10 precipitation products were evaluated using CMA precipitation data: nine
satellite-based products (CHIRPS V2.0, MSWEP V2.0, TMPA 3B42, CMAP, PERSIANN-CDR V1R1,
GPCP-1DD, GSMaP-MVK/RNL V6, CMORPH-RAW V1.0, and PERSIANN-CCS), and one gauge-based
product (CPC-Global). The products were evaluated with respect to magnitude agreement, occurrence
consistency and elevation dependency. According to the evaluation results, annual precipitation
fluctuations over the TP are reflected well by four high-quality products. Our results are summarized
as follows:

Ten precipitation products exhibited different degrees of magnitude agreement with the CMA data.
Precipitation biases were mainly concentrated in the non-rainy season, and all precipitation products
generally achieved more favorable performance in the northeastern watersheds (including Hexi, Yellow,
and Qaidam) than in the southern watershed (including Mekong, Salween, and Brahmaputra) in ETP.
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The precipitation products perform best in Yellow among the seven watersheds and exhibited large
discrepancies against the reference data in Brahmaputra.

With respect to occurrence consistency, all products presented good performance with hit rates
higher than 60%, and rates of missed and false event that were relatively uniform. According to results
of the elevation dependency evaluation, three of the nine products (GPCP-1DD, PERSIANN-CDR, and
PERSIANN-CCS) had large room for improvement in terms of elevation correction because of their
high elevation dependency.

Among the nine satellite-based products, CHIRPS, MSWEP, and TMPA 3B42 generally presented
the best performance regarding the three aspects, even in regions with complex topography, followed
by CMAP product. However, two products (PERSIANN-CCS and CMORPH-RAW) showed large
biases against the reference data (median RMSE ≥ 45 mm/mon).

There are slight annual fluctuations in ETP in terms of the reference data. According to the
four products (CHIRPS, MSWEP, TMPA 3B42, and CMAP), the annual precipitation over the TP is
approximately 440 mm/yr during the period from January 2003 to October 2015, with the highest
precipitation in 2010 (~472 mm) and the lowest in 2006 (~392 mm).

We conclude that it is difficult to generate reliable precipitation products by relying solely on sensor
retrieval, and it is considerably important to integrate with gauge station data and to consider elevation
correction. However, satellite-based precipitation products are inevitably imbued with considerable
uncertainties. So, which precipitation product should be the most suitable for hydrological modeling
and water resource assessment for the TP? CHIRPS is highly recommended for this purpose, based
on the results of our study, followed by MSWEP. TMPA 3B42 and CMAP are also good alternatives
for relatively coarse-resolution applications. In addition, PERSIANN-CCS may have potential for
short-term hydrological forecasting as it provides near real-time precipitation information. Besides
their performance as indicated above, the spatiotemporal resolution and the coverage of the products
should be considered for various applications.
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Glossary

AMSR-E Advanced Microwave Scanning Radiometer for the Earth Observing System
AMSU-B Advanced Microwave Sounding Unit-B
AVHRR Advanced Very High Resolution Radiometer
CAMS Climate Assessment and Monitoring System
CCD Cold Cloud Duration
CHIRPS Climate Hazards group InfraRed Precipitation with Stations
CHPlim Climate Hazards group Precipitation climatology
CPC Climate Prediction Center
CMAP CPC Merged Analysis of Precipitation
CMORPH CPC MORPHing technique
COOP COOPerative observer network
DMSP Defense Meteorological Satellite Program
ERA European centre for medium-Range weather forecasts reAnalysis systems
FAO Food and Agriculture Organization
GEO GEOstationary
GHCN Global Historical Climatology Network
GMS Geostationary Meteorological Satellite
GOES Geostationary Operational Environmental Satellites
GPCC Global Precipitation Climatology Centre
GPCP Global Precipitation Climatology Project
GPCP-1DD GPCP one-degree daily precipitation analysis
GPI Geostationary operational environmental satellites Precipitation Index
GPROF Goddard PROFiling algorithm
GriSat Globally Gridded Satellite
GSMaP Global Satellite Mapping of Precipitation
GSOD Global Summary Of the Day
GTS Global Telecommunication System
JRA-55 Japanese 55-year ReAnalysis
MetOp European Operational Meteorological satellite.
MSU Microwave Sounding Unit
MSWEP Multi-Source Weighted-Ensemble Precipitation
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NMAs National Meteorological Agencies
OLR Outgoing Longwave Radiation

PERSIANN
Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks

PER-CCS PERSIANN - Cloud Classification System
PER-CDR PERSIANN - Climate Data Record
SSM/I Special Sensor Microwave/Imager
TCI TRMM Combined Instrument
TIR Thermal InfraRed
TRMM Tropical Rainfall Measuring Mission
TMI TRMM Microwave Imager
TMPA TRMM Multi-Satellite Precipitation Analysis
TOVS Television and infrared Observation satellite Operational Vertical Sounder
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