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Abstract: Leaf area index (LAI) is an essential vegetation parameter that represents the light energy
utilization and vegetation canopy structure. As the only in-operation hyperspectral satellite launched
by China, GF-5 is potentially useful for accurate LAI estimation. However, there is no research focus
on evaluating GF-5 data for LAI estimation. Hyperspectral remote sensing data contains abundant
information about the reflective characteristics of vegetation canopies, but these abound data also
easily result in a dimensionality curse. Therefore, feature selection (FS) is necessary to reduce data
redundancy to achieve more reliable estimations. Currently, machine learning (ML) algorithms
have been widely used for FS. Moreover, the same ML algorithm is usually conducted for both FS
and regression in LAI estimation. However, no evidence suggests that this is the optimal solution.
Therefore, this study focuses on evaluating the capacity of GF-5 spectral reflectance for estimating
LAI and the performances of different combination of FS and ML algorithms. Firstly, the PROSAIL
model, which coupled leaf optical properties model PROSPECT and the scattering by arbitrarily
inclined leaves (SAIL) model, was used to generate simulated GF-5 reflectance data under different
vegetation and soil conditions, and then three FS methods, including random forest (RF), K-means
clustering (K-means) and mean impact value (MIV), and three ML algorithms, including random
forest regression (RFR), back propagation neural network (BPNN) and K-nearest neighbor (KNN)
were used to develop nine LAI estimation models. The FS process was conducted twice using
different strategies: Firstly, three FS methods were conducted to search the lowest dimension number,
which maintained the estimation accuracy of all bands. Then, the sequential backward selection
(SBS) method was used to eliminate the bands having minimal impact on LAI estimation accuracy.
Finally, three best estimation models were selected and evaluated using reference LAI. The results
showed that although the RF_RFR model (RF used for feature selection and RFR used for regression)
achieved reliable LAI estimates (coefficient of determination (R2) = 0.828, root mean square error
(RMSE) = 0.839), the poor performance (R2 = 0.763, RMSE = 0.987) of the MIV_BPNN model (MIV
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used for feature selection and BPNN used for regression) suggested using feature selection and
regression conducted by the same ML algorithm could not always ensure an optimal estimation.
Moreover, RF selection preserved the most informative bands for LAI estimation so that each ML
regression method could achieve satisfactory estimation results. Finally, the results indicated that the
RF_KNN model (RF used as feature selection and KNN used for regression) with seven GF-5 spectral
band reflectance achieved the better estimation results than others when validated by simulated data
(R2 = 0.834, RMSE = 0.824) and actual reference LAI (R2 = 0.659, RMSE = 0.697).

Keywords: GF-5; LAI; feature selection; machine learning

1. Introduction

Leaf area index (LAI), which is defined as the ratio of total leaf area per unit of horizontal ground
surface area, is one of the key input parameters of numerous ecosystem models [1–3]. Since it can
characterize the substance and energy exchange in vegetation canopy, LAI is also regarded as an
essential indicator of vegetation condition, productivity and photosynthetic capacity [4]. Therefore,
accurate LAI estimation at different scales (regional and global) is crucial for many applications, such as
climate change, crop yield modeling, and ecological monitoring [5–7].

Remote sensing data with superiority in extensive coverage and nondestructive estimation provide
effective information for LAI estimation at the regional scale [8]. Therefore, accurate LAI estimation
becomes an essential issue in the field of quantitative remote sensing [9,10]. Recently, many global and
regional LAI estimation algorithms have been proposed using different multispectral satellite data
such as moderate resolution imaging spectroradiometer (MODIS), Satellite Pour l’ Observation de la
Terre (SPOT) VEGETATION, Landsat, Sentinel and GF-1 [11–17]. However, some studies show that
the saturation phenomenon occurred in LAI estimation when using multispectral band reflectance
or vegetation indices (VIs) [18–20]. In contrast, hyperspectral sensors acquire remote sensing data
with hundreds of consecutive narrow bands that have the capacity of detecting small changes in light
absorption and reflection [21,22]. Previous studies have shown that hyperspectral reflectance or VIs
can estimate forest aboveground biomass [23], LAI [24,25], fractional vegetation cover (FVC) [26] and
leaf chlorophyll content (LCC) accurately [27]. Some of them even indicated that it could resolve the
underestimation problem in LAI estimation [28,29]. However, since just a few hyperspectral satellite
data are available, most studies are conducted by airborne hyperspectral equipment or ground-based
spectral devices. However, those devices are limited to the spatial coverage. Therefore, as the only
in-operation hyperspectral satellite launched by China, GF-5 has a great potential for LAI estimation in
a large area. Unfortunately, there is scarcely any study for LAI estimation using GF-5 data.

Although GF-5 hyperspectral data describe more details about absorption features of canopy or
leaves than multispectral data, the contiguous bands also easily result in spectral autocorrelation, which
is also known as “high dimensional disaster” or “Hughes” [30,31]. Therefore, dimensionality reduction
methods are usually applied to overcome data redundancy, improve computational efficiency and
reduce the risk of overfitting [32–35]. There are two different ways of dimensionality reduction: one is
called feature extraction (FE), which is conducted to transform the original data into other feature spaces
that allow the generated low-dimensional data contain the vast majority of information [36–38], such as
principal component analysis (PCA). However, despite the principal components (PCs) obtained by
those methods are independent with each other, the meaning of each PC is not as clear as the original
data. Moreover, the PCs with small variance may contain important information on sample differences,
thus, discarding that information may have an impact on final LAI estimation accuracy. The other
dimensionality reduction approach is known as feature selection (FS), which is conducted to select
a group of features that contains the most important and useful information of the original data
set [39]. For instance, methods like simulated annealing (SA) [40], genetic algorithms (GA) [41] and
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correlation-based feature selection (CFS) [42] belong to this category. Compared with FE, FS methods
not only can avoid the curse of dimensionality but also maintain the original data characteristics,
which makes the results more interpretable. The purpose of dimensionality reduction is to eliminate
the negative impact of redundant features and improve model performance. However, other than
dimensionality reduction methods, the regression algorithm is another crucial aspect that also has
a great influence on LAI estimation accuracy. Some machine learning (ML) algorithms possess the
ability in both feature selection and regression. For instance, random forest (RF) [43] has its own
built-in feature selection method that can derive the importance of each variable on the tree decision.
Thus, the contribution of each variable to the estimation can be easily understood. RankSVM and kernel
RankSVM [44,45], which are extended from the basic support vector machine (SVM) [46], ranking the
features according to the performance of evaluation criterion such as root mean square error (RMSE).
However, although those ML algorithms can be used in feature selection and regression, there is no
evidence shows that using the same algorithm for feature selection and regression would achieve more
accurate estimations. Therefore, the LAI estimation performance of different FS and ML regression
combinations is still worth discussing.

In this study, three different FS methods with different searching standard, including K-means,
RF and mean impact value (MIV), and three ML regression algorithms, including RF regression
(RFR), back propagation neural network (BPNN) and K-nearest neighbor (KNN), were combined and
compared to develop the LAI estimation algorithm for GF-5 hyperspectral data. For this purpose,
the radiative transfer model PROSAIL [47], which coupled leaf optical properties model PROSPECT
and the scattering by arbitrarily inclined leaves (SAIL), was used to generate a simulated data set of
GF-5 band reflectance and corresponding LAI values under different conditions. Then, FS process
was conducted to find the best input variables for LAI estimation. Finally, three best LAI estimation
models for GF-5 hyperspectral data were selected and evaluated using reference LAI.

2. Materials and Methods

Figure 1 shows the experiment workflow of this study. Firstly, the PROSAIL model was used to
generate a number of simulated data that consist of the training and testing data sets. Then, the first FS
process was used to select three different subsets (RF data set, MIV data set and K-means data set),
and the second FS process, which combines the sequential backward selection (SBS) process with ML
regression, was conducted to select the final variables for LAI estimation. Next, the testing data set
was applied to select the top three best LAI estimation models. Finally, LAI was estimated using GF-5
reflectance by the three models and evaluated using the reference LAI data.
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Nebraska) in each plot. However, not all of the measured LAI values could be used in this study 
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Figure 2. Geographic location of the study area (left: administrative map of Jilin Province; middle: 

standard false color image of GF-5; right: land-use map). 

Figure 1. The flow chart of this study.

2.1. Study Area and Field Survey

The study area that covers approximately 3760 km2 is located in Changchun (43◦05′N–45◦15′N;
124◦18′E–127◦05′E), Jilin province of China (Figure 2). It has a flat terrain with an altitude varying
from 137 to 160 m. The temperate continental humid climate type with annual precipitation range
from 600 to 700 mm in this region is very suitable for crop growth. Field maize LAI measurements
were collected from 16 to 21 July, 2019. There are 26 sample plots with size of 20 m × 20 m and seven
LAI values were measured using a LAI-2200C plant canopy analyzer (LI-COR Inc., Lincoln, Nebraska)
in each plot. However, not all of the measured LAI values could be used in this study because of the
availability of GF-5 hyperspectral data. Therefore, Sentinel-2 data were firstly used to estimate LAI,
and then both the Sentinel-2 LAI estimates and measured LAI values were regarded as a reference LAI
to evaluate the estimation accuracy of each GF-5 model.
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2.2. Data Pre-Processing

2.2.1. Sentinel-2 Data

Sentinel-2 is a widely used satellite launched by the European Space Agency (ESA) in June
2015 [48,49]. Users can search and download Sentinel-2 data from the Copernicus Open Access Hub.
The Multi Spectral Instruments (MSI) installed in this satellite provide 13 spectral bands ranged from
visible (VIS) to shortwave infrared (SWIR). Sentinel-2 has three different high spatial resolutions.
For example, Band 1 (coastal aerosol), Band 9 (water vapor) and Band 10 (SWIR-Cirrus) have a spatial
resolution of 60 m. While four vegetation RE bands (Band 5, 6, 7 and 8a) and two SWIR bands (Band 11
and 12) have a spatial resolution of 20 m. The last four bands (Band 2, 3, 4 and 8) that have a distribution
in VIS and NIR have a spatial resolution of 10 m.

In this study, the sample plots were fully covered by one Sentinel-2B MSIL2A data (tile number
51TXK). To obtain high accuracy reference LAI, bands with 10 and 20 m spatial resolution, which are
proven to be very useful in LAI estimation [50–52], were used in this study.

2.2.2. GF-5 Hyperspectral Data

The GF-5, which was launched in May 2018 from Taiyuan Satellite Launch Centre, is the only
hyperspectral satellite in the China High-resolution Earth Observation System. Compared with other
GF satellites, GF-5 is also the only one that carries six different sensors for various academic and
application use. Among all the sensors carried by GF-5, the visible-shortwave infrared advanced
hyperspectral imager (AHSI) is the main payload, which was used to obtain 330 bands ranging from
400 to 2500 nm, with 30 m spatial resolution and 60 km swath width. There are two different spectral
resolutions of those bands: 5 nm in VNIR and 10 nm in SWIR. Compared to the Hyperion Imaging
Spectrometer [53,54], which is also a hyperspectral satellite sensor (with spectral resolution of 10 nm
and band number of 224), GF-5 not only provides more detailed information, but also has a higher
signal-to-noise ratio, which guarantees better data quality.

GF-5 hyperspectral data can be searched from the Land Observation Satellite Service website.
In this study, ortho-rectification and atmospheric correction are conducted to obtain the GF-5 land
surface reflectance. After removing the invalid bands, overlapped bands in the SWIR region and blue
bands, which are seriously affected by atmospheric scattering, 210 bands were selected for further LAI
estimation algorithm development.

2.3. Using PROSAIL Model to Generate Simulated Data

PROSAIL model [55] is widely used in biophysical parameters estimation because of its high
accuracy and computing efficiency [56,57]. In the PROSAIL model, the PROSPECT model was used to
simulate the reflectance and transmittance of leaves from 400 to 2500 nm. Then the spectral information
of leaves is regarded as the input of the SAIL model to generate canopy reflectance [56]. Since the
parameter setting will affect the calculation speed and the redundancy of outputs, reasonable ranges
and fixed values were applied according to the previous studies [58,59] (Table 1).

As the representation of underlying surface information, soil reflectance is also a vital parameter
for the PROSAIL model. In this study, 20 representative soil reflectance were generated from the
International Soil Reference and Information Center (http://www/isric.org) using the method proposed
by Wang et al. [57].

After simulating canopy reflectance at 400–2500 nm wavelength, resampling was conducted
to obtain GF-5 band reflectance according to the center wavelength and bandwidth of the selected
bands. Compared with the simulated data, canopy reflectance of plants driven by the satellite contains
some noise generated by the sensors. Therefore, a Gaussian white noise of 1% was added into the
simulated data [57,60]. The training set and validation set were produced separately. Considering the
computational efficiency, the simulation generated 24,000 samples as a training set and 4800 samples
as a validation set.

http://www/isric.org
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Table 1. The parameter setting of the PROSAIL model [57].

Model Parameters Units Min Max Distribution

PROSPECT

Cab µg/cm2 20 90 Uniform
Cm g/cm2 0.003 0.0011 Uniform
Car µg/cm2 4.4 4.4 -
Cw cm 0.005 0.015 Uniform

Cbrown - 0 2 Uniform
Cant µg/cm2 0 0 -

N - 1.2 2.2 Uniform

SAIL

LAI - 0 7 Uniform
ALA ◦ 30 70 Uniform
SZA ◦ 35 35 -
Hot - 0.1 0.5 Uniform

In Table 1, Cab, Cm, Car, Cw, Cbrown, Cant, N, LAI, ALA, SZA and Hot represent the leaf chlorophyll a + b
concentration, dry matter content, carotenoid content, equivalent water thickness, brown pigment content,
anthocyanin content, leaf structure parameter, leaf area index, average leaf angle inclination, solar zenith angle and
hot-spot parameter, respectively.

2.4. Feature Selection Methods

Feature selection is one of the core concepts in machine learning, which highly influences the
model performance. In this study, three FS methods with different criteria (RF, MIV and K-means) were
applied to the original data set to determine the appropriate dimension number, which still maintains
satisfactory LAI estimation accuracy. Then, the SBS method was used to search for the optimal subsets
for LAI estimation.

2.4.1. RF for Feature Selection

Random forest is one of the most popular and efficient algorithms for regression and classification
problems. Different from other machine learning algorithms, RF combines the idea of bagger with
random feature selection [61–63]. Based on the information of the randomly selected samples, RF can
predict the category (for classification) and value (for regression) of the target by establishing multiple
independent decision trees [64]. It achieves the final result and out-of-bag (OOB) error by voting for
the independent results of decision trees. The OOB error not only indicates the accuracy of RF model
but also can be used to evaluate the classification and estimation capacity of each variable. In the end,
the RF model would output the importance score of each variable. Then users can choose the suitable
variable subset according to the predefined dimension or accuracy.

2.4.2. MIV

MIV is another feature selection algorithm that belongs to the embedded category like RF. This
method assesses each variable by testing their stability of estimation performance by adding noise to
the original data set. The major steps are as follows [65,66]:

Step 1: Training network using BPNN algorithm, and then recording outputs as Ai;
Step 2: Every input variable value (Pi) in the original training data set was transformed by

increasing and decreasing 10% to form new training data sets.

Pi1 = 1.1× Pi, Pi2 = 0.9× Pi (1)
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Step 3: Taking Pi1 and Pi2 as input data, then training those data using network obtained in
step 1. The output is recorded as Ai1 and Ai2. Calculating the difference value between Ai j and Pi j, and
recording as impact value (IV):

IVi1 = Ai1 −Ai, IVi2 = Ai2 −Ai (2)

Step 4: Calculating the mean value of IV (MIV) according to the number of samples, and then
outputting the MIV for each variable. Finally, the variables are ranked according to the magnitude of
the absolute value of MIV.

2.4.3. K-means

K-means is a simply and efficient iterative clustering algorithm that can be used as the dimensional
reduction algorithm without label information [67,68]. Unlike RF and MIV, K-means need to combine
with alternative criteria such as the feature correlation index, mutual information [69] to achieve the
final results. In this study, the Pearson correlation coefficient (PCC) between the input variable and
LAI was used as criteria for K-means feature selection. The main steps are as follows:

Step 1: Selecting k initial clustering centers randomly in feature space;
Step 2: Calculating the distance between each feature and cluster center, then classifying them

into the closest category;
Step 3: Calculating the average value of all data in each category, then using this value to determine

the new center of each category;
Step 4: Evaluating the astringency of the clustering function based on the category center. Final

clustering result will be obtained when the function is convergent;
Step 5: Calculating the PCC between each variable and LAI, and then selecting the variable with

the highest PCC value in each category as the FS result.

2.5. Machine Learning Algorithm

2.5.1. RFR

Random forest regression is an ensemble learning technique developed by Breiman [70].
This algorithm achieves more accurate and stable results by combining the individual results of
a large number of decision trees [71]. RFR uses a bootstrap resampling method to extract a number of
sample sets (k) from the original data set, and then takes each set as a training sample to generate a
single decision tree. Every node variable at each split of decision tree is the best one chosen from the
input variables (m). The final estimation result is determined by the average value of each prediction
result of decision trees [72]. The number of sample sets (k) and the number of input variables (m) need
to be set by users in the RFR model. After several tests, those two parameters were set to 1/3 and
500, respectively.

2.5.2. BPNN

The back propagation neural network [73] is one of the effective and widely used neural networks
for vegetation parameter estimation [74–78]. The construction of this network is mainly achieved
by training the weights with a non-linear differentiable function. The basic concept of BPNN is to
adjust the network parameters by calculating the error between outputs and the expected values to
improve accuracy. This study adopted the three-layer network with a single hidden layer. Each layer is
connected by different functions. In this BPNN model, “tansig” is selected as the activation function to
construct a nonlinear mapping between the input layer and hidden layer, “pureline” is selected as the
transfer function to build a linear mapping between the hidden layer and output layer, and “trainlm”
is selected as the training function.
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The number of nodes (n) in the hidden layer is an important factor affecting fitting accuracy.
In this study, the number of nodes in the input layer (ni) was equal to the dimension of the subset that
was selected by FS methods, and the output had one node (n0), which corresponded to the LAI values.
The number of nodes in the hidden layer can be determined using Equation (5). Since a in Equation (5)
ranged from 1 to 10, the number of nodes in the hidden layer needs to be determined by evaluating
every possible value, and 15 was determined as the optimal value of n.

n =
√

ni + n0 + a (3)

2.5.3. KNN

KNN is one of the simple ML methods that determine the sample characteristic by considering
the performance of its nearest neighbors [79]. It is not only suitable for classification, but also for
quantitative estimation of vegetation parameters [80]. Since KNN does not depend on specific function
distribution, it is suitable for feature fusion and missing value estimation of multi-mode remote sensing.
The attribute values of the estimation pixels are obtained by weighting k pixels that are nearest to them.
The formula is as follows:

Vp =
k∑

i=1

Wp,piVpi, 1 ≤ i ≤ k (4)

where Vp and Vpi represent the attribute value of estimation pixel p and k pixels named pi; Wp,pi
represents the weight between p and pi. In this study, Wp,pi is defined by Euclidean distance.

In general, KNN estimates the value of the validation samples by taking average of some training
data. Therefore, the estimation accuracy of KNN model depends on the parameter k, which represents
the size of the training data near to the validation sample [81]. In this study, 10-fold cross-validation
was introduced to find optimal k in which the search range was set to 2–20.

In this study, three feature selection methods and three machine learning algorithms generate
nine LAI estimation models, and their abbreviations and descriptions are shown in Table 2.

Table 2. The abbreviations and descriptions of nine LAI estimation models.

Model Description

RF_RFR Using the random forest algorithm as feature selection and regression methods.

RF_BPNN Using the random forest algorithm and back propagation neural network algorithm
as feature selection method and regression method, respectively.

RF_KNN Using the random forest algorithm and K-nearest neighbor algorithm as the feature
selection method and regression method, respectively.

MIV_RFR Using the mean impact value algorithm and random forest regression algorithm as
the feature selection method and regression method, respectively.

MIV_BPNN Using the mean impact value algorithm and back propagation neural network
algorithm as the feature selection method and regression method, respectively.

MIV_KNN Using the mean impact value algorithm and K-nearest neighbor algorithm as the
feature selection method and regression method, respectively.

K-menas_RFR Using the K-means algorithm and random forest regression algorithm as the feature
selection method and regression method, respectively.

K-means_BPNN Using the K-means algorithm and back propagation neural network algorithm as the
feature selection method and regression method, respectively.

K-means_KNN Using the K-means algorithm and K-nearest neighbor algorithm as the feature
selection method and regression method, respectively.
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2.6. LAI Estimation Accuracy Evaluation

In this study, model validation consisted of two different parts. Firstly, the validation set that
contained 4800 simulated samples was used to access the performance of different FS and ML
combinations for LAI estimation. Secondly, the reference LAI contained field LAI measurements and
Sentinel-2 data derived LAI values were used for LAI estimation accuracy assessment of actual GF-5
hyperspectral data. The reference LAI values from Sentinel-2 were also obtained by PROSAIL and
machine learning algorithms. Firstly, PROSAIL model was used to generate simulated data including
Sentinel-2 reflectance and corresponding LAI. Then, nine spectral band reflectance (Band 2 to Band 8a,
Band 11 and Band 12) and five vegetation indices (Table 3) were selected as input variables. To prevent
the ML regression method used in the Sentinel-2 LAI estimation model from affecting the validation of
GF-5 LAI estimation, RFR, BPNN and KNN were all used to estimate LAI from Sentinel-2 data and the
average values of the three models were determined as the reference LAI (Figure 3). The reference LAI
achieved satisfactory estimation accuracy with R2 of 0.506 and RMSE of 0.679. Therefore, the Sentinel-2
derived LAI could be used as a reference to access the accuracy of LAI estimation models using
GF-5 data.

Table 3. Vegetation indexes of Sentinel-2.

Vegetation Index Abbreviation Formula

Normalized Difference Vegetation Index NDVI (Band8 − Band4)/(Band8 + Band4)
Normalized Difference Red Edge Index 1 NDRE1 (Band8 − Band5)/(Band8 + Band5)
Normalized Difference Red Edge Index 2 NDRE2 (Band8 − Band6)/(Band8 + Band6)
Normalized Difference Red Edge Index 3 NDRE3 (Band8 − Band7)/(Band8 + Band7)
Normalized Difference Red Edge Index 4 NDRE4 (Band8 − Band8a)/(Band8 + Band8a)
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The coefficient of determination (R2) and root mean square error (RMSE) were used to verify the
LAI estimation accuracy of each model. The computing formulas are as follows:

R2 = 1

n∑
i=1

(yi − y′i )
2

n∑
i=1

(yi − y)2
(5)
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RMSE = [
1
n

n∑
i=1

(yi − y′i )
2]

1/2

(6)

where yi, y′i y and n represent the reference LAI value, estimated LAI value, average of the reference
LAI value and the number of samples.

3. Results

3.1. Determining the Dimension Number of the First FS Process

The nine models were derived using three FS methods (RF, MIV and K-means) and three ML
algorithms (RFR, BPNN and KNN) in this study. The reason we chose these methods was that they
represent different feature selection and regression criteria, which makes the LAI estimates more
comparable. For example, although RF and MIV selection are both based on feature importance criteria,
they rely on different ML algorithms. K-means is an unsupervised clustering algorithm that is only
based on spectral similarity instead of the fixed regression method. Therefore, in theory, the features
selected by K-means are not able to abide to one specific ML algorithm.

Different models show different RMSE trends with the changing of the input variable dimension
(Figure 4). For example, the RMSE increased by 0.038 when the original data decreased to 10-dimension
using the RF_RFR model. While the RMSE increased by 0.252, which is almost 7 times larger than the
RF_RFR model when applying the RF_KNN model in the same dimensional condition. According to
Figure 4, the changes in LAI estimation accuracy of all models can be divided into three categories:
reducing continuously (MIV_KNN as category 1); decreasing sharply after a gradual change (RF_RFR,
RF_KNN, RF_BPNN as category 2); increasing at initial and then decreasing (MIV_RFR, MIV_BPNN,
K-means_RFR, K-means_KNN, K-means_BPNN as category 3). For category 2, the RMSE values only
changed by 0.012, 0.008 and 0.015 along with the decreasing of dimension from 210 to 20. While
with the dimension continuing to decrease (from 20 to 10), the RMSE values increased sharply by
0.026, 0.260 and 0.014. In addition, for category 3, the RMSE values continued to increase until the
dimension reduced to 40 or 50 (depend on the models), then the RMSE started to decrease until the
dimension decreased to 20. As the dimensions continue to decline, the LAI estimation accuracy reduced
significantly. Therefore, 20 would be a suitable dimension number that maintains most information
of the original data set while reduced nearly 90% redundant bands. Therefore, the complexity and
computational efficiency of models would be improved obviously.
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3.2. LAI Estimation Using Features Selected by the First FS Process

Table 4 shows the LAI estimation accuracy using different FS and ML algorithms. According to
the accuracy indicators (R2 and RMSE), RFR is the best ML algorithm with or without dimensionality
reduction. When using original data set, RFR algorithm obtained higher estimation accuracy (with
RMSE of 0.837) than KNN (with RMSE of 0.982) and BPNN (with RMSE of 0.910) algorithm. When the
input variable dimension was reduced to 20, RFR still achieved the lowest RMSE values in each data
set compared with other ML regression algorithms. In contrast, KNN achieved the lowest accuracy in
all ML algorithms except MIV-based models.
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Table 4. LAI estimation accuracy of different machine learning methods.

FS Machine Learning Method
Original Data Set 20 Dimensions

R2 RMSE R2 RMSE

RF
RFR 0.828 0.837 0.824 0.849
KNN 0.764 0.982 0.768 0.974
BPNN 0.797 0.910 0.791 0.925

MIV
RFR 0.828 0.837 0.784 0.940
KNN 0.764 0.982 0.753 1.004
BPNN 0.797 0.910 0.751 1.010

K-means
RFR 0.828 0.837 0.819 0.862
KNN 0.764 0.982 0.751 1.008
BPNN 0.797 0.910 0.793 0.921

Compared with MIV-selected and K-means-selected subsets (Table 4), using RF as feature selection
generated the highest accuracy when using RFR and KNN. When using BPNN as the regression
algorithm, the LAI estimation difference of the RF_BPNN and K-means_BPNN model could be
neglected (with RMSE difference of 0.004). By contrast, those RMSE values of K-means-selected models
(RMSE of 0.862, 1.008 and 0.921) and MIV-selected models (RMSE of 0.940, 1.004 and 1.010) were much
larger than RF-selected models (RMSE of 0.849, 0.974 and 0.925). Therefore, the results indicate that
the RF-selected data set retained more useful information of the original data set, while MIV selection
discarded some important spectral bands that could reveal difference in estimation of LAI.

Therefore, RF shows excellent performance as both FS and regression methods, which proved
the priority of RF among ML algorithms. Moreover, when using RF as the FS method, the RFR
regression achieved the best estimation result. While the same FS and regression method combinations
from MIV and BPNN have the worst LAI estimation accuracy among all the models, which indicates
that using the same ML algorithm as the FS method cannot always guarantee the satisfactory LAI
estimation accuracy.

To explain the reason why MIV-selected models achieve worse LAI estimation than other models,
the selected bands of each FS method and their Pearson correlation coefficients are shown in Table 5
and Figure 5, respectively. Each variable in Figure 5 is corresponding to the bands in Table 5 with the
same order. Bands selected by MIV were concentrated in the SWIR region with great linear correlation,
which have limitations on the representation of canopy spectral information and lead to low LAI
estimation accuracy. In contrast, bands selected by K-means and RF were well distributed in all regions
(VIS, red-edge, NIR and SWIR), which also result in the high similarity of estimation results using
K-means and RF selected data set.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 24 

Table 5. First feature selection (FS) process selected bands using random forest (RF), mean impact 
value (MIV) and K-means methods.

Methods Center Wavelength of Selected Bands of the Simulated Data and Its Corresponding Band 
Number of GF-5 Data 

RF 

502.5 nm (A1: Band27); 527.5 nm (A2: Band33); 672.5 nm (A3: Band67); 677.5 nm (A4: Band68); 723.5 
nm (A5: Band78); 728.5 nm (A6: Band80); 732.5 nm (A7: Band81); 737.5 nm (A8: Band82); 741.5 nm 

(A9: Band83); 1055.5 nm (A10: Band157); 1067.5 nm (A11: Band158); 1080.5 nm (A12: Band160); 
1089.5 nm (A13: Band161); 1097.5 nm (A14: Band162); 1105.5 nm (A15: Band163); 1114.5 nm (A16: 
Band164); 1266.5 nm (A17: Band182); 2007.5 nm (A18: Band270); 2209.5 nm (A19: Band294); 2428.5 

nm (A20: Band320) 

MIV 

848.5 nm (B1: Band108); 877.5 nm (B2: Band115); 890.5 nm (B3: Band118); 937.5 nm (B4: Band129); 
950.5 nm (B5: Band132); 967.5 nm (B6: Band136); 972.5 nm (B7: Band137); 1038.5 nm (B8: Band155); 

1046.5 nm (B9: Band156); 1097.5 nm (B10: Band162); 1105.5 nm (B11: Band163); 1131.5 nm (B12: 
Band166); 1139.5 nm (B13: Band167); 1215.5 nm (B14: Band176); 1274.5 nm (B15: Band183); 1316.5 

nm (B16: Band188); 1586.5 nm (B17: Band220); 1603.5 nm (B18: Band222); 1637.5 nm (B19: Band226); 
1754.5 nm (B20: Band240) 

K-means 

502.5 nm (C1: Band27); 565.5 nm (C2: Band42); 612.5 nm (C3: Band53); 668.5 nm (C4: Band66); 702.5 
nm (C5: Band74); 706.5 nm (C6: Band75); 711.5 nm (C7: Band76); 723.5 nm (C8: Band79); 728.5 nm 
(C9: Band80); 856.5 nm (C10: Band110); 886.5 nm (C11: Band117); 997.5 nm (C12: Band143); 1080.5 

nm (C13: Band160); 1148.5 nm (C14: Band168); 1494.5 nm (C15: Band209); 1519.5 nm (C16: 
Band212); 1754.5 nm (C17: Band240); 2007.5 nm (C18: B270); 2260.5 nm (C19: Band300); 2319.5 nm 

(C20: Band307) 

(a) (b) (c) 

Figure 5. Pearson correlation coefficients between bands selected by (a) RF, (b) MIV and (c) 
K-means. 

3.3. Optimal Bands Combination Searching in the Second FS Process 

SBS is a heuristical search method to remove the bands that have a minimal impact on
evaluating indicators. Figure 6 shows the performances of RF_RFR, RF_BPNN and RF_KNN models 
using SBS to search the optimal input variable data set for LAI estimation using GF-5 hyperspectral 
data. The results indicate that RFR and BPNN methods were robust with respect to the dimension 
number changing. When the dimension decreased from 20 to 8, the RMSE of RF_RFR and RF_BPNN 
decreased by 0.010 and 0.006, respectively. However, when the number of variables continued to 
decrease, the LAI estimation accuracy of those two models declined sharply. In contrast, the number 
of variables has a great influence on KNN. When the number decreased from 20 to 7, RMSE
decreased by 0.151, which is almost 15 times larger than those of RF_RFR and RF_BPNN.

Figure 5. Pearson correlation coefficients between bands selected by (a) RF, (b) MIV and (c) K-means.



Remote Sens. 2020, 12, 2110 13 of 23

Table 5. First feature selection (FS) process selected bands using random forest (RF), mean impact
value (MIV) and K-means methods.

Methods Center Wavelength of Selected Bands of the Simulated Data and Its Corresponding Band
Number of GF-5 Data

RF

502.5 nm (A1: Band27); 527.5 nm (A2: Band33); 672.5 nm (A3: Band67); 677.5 nm (A4: Band68);
723.5 nm (A5: Band78); 728.5 nm (A6: Band80); 732.5 nm (A7: Band81); 737.5 nm (A8: Band82);
741.5 nm (A9: Band83); 1055.5 nm (A10: Band157); 1067.5 nm (A11: Band158); 1080.5 nm (A12:
Band160); 1089.5 nm (A13: Band161); 1097.5 nm (A14: Band162); 1105.5 nm (A15: Band163);
1114.5 nm (A16: Band164); 1266.5 nm (A17: Band182); 2007.5 nm (A18: Band270); 2209.5 nm

(A19: Band294); 2428.5 nm (A20: Band320)

MIV

848.5 nm (B1: Band108); 877.5 nm (B2: Band115); 890.5 nm (B3: Band118); 937.5 nm
(B4: Band129); 950.5 nm (B5: Band132); 967.5 nm (B6: Band136); 972.5 nm (B7: Band137);

1038.5 nm (B8: Band155); 1046.5 nm (B9: Band156); 1097.5 nm (B10: Band162); 1105.5 nm (B11:
Band163); 1131.5 nm (B12: Band166); 1139.5 nm (B13: Band167); 1215.5 nm (B14: Band176);
1274.5 nm (B15: Band183); 1316.5 nm (B16: Band188); 1586.5 nm (B17: Band220); 1603.5 nm

(B18: Band222); 1637.5 nm (B19: Band226); 1754.5 nm (B20: Band240)

K-means

502.5 nm (C1: Band27); 565.5 nm (C2: Band42); 612.5 nm (C3: Band53); 668.5 nm (C4: Band66);
702.5 nm (C5: Band74); 706.5 nm (C6: Band75); 711.5 nm (C7: Band76); 723.5 nm (C8: Band79);

728.5 nm (C9: Band80); 856.5 nm (C10: Band110); 886.5 nm (C11: Band117); 997.5 nm (C12:
Band143); 1080.5 nm (C13: Band160); 1148.5 nm (C14: Band168); 1494.5 nm (C15: Band209);

1519.5 nm (C16: Band212); 1754.5 nm (C17: Band240); 2007.5 nm (C18: B270); 2260.5 nm
(C19: Band300); 2319.5 nm (C20: Band307)

3.3. Optimal Bands Combination Searching in the Second FS Process

SBS is a heuristical search method to remove the bands that have a minimal impact on evaluating
indicators. Figure 6 shows the performances of RF_RFR, RF_BPNN and RF_KNN models using
SBS to search the optimal input variable data set for LAI estimation using GF-5 hyperspectral data.
The results indicate that RFR and BPNN methods were robust with respect to the dimension number
changing. When the dimension decreased from 20 to 8, the RMSE of RF_RFR and RF_BPNN decreased
by 0.010 and 0.006, respectively. However, when the number of variables continued to decrease, the
LAI estimation accuracy of those two models declined sharply. In contrast, the number of variables
has a great influence on KNN. When the number decreased from 20 to 7, RMSE decreased by 0.151,
which is almost 15 times larger than those of RF_RFR and RF_BPNN.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 24 
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Figures 7 and 8 show the performances of different ML methods using K-means and MIV as
feature selection methods, respectively. RFR and BPNN methods were still robust to the input variable
dimension changing. When using K-means as the FS method, RFR and BPNN achieved their highest
LAI estimation accuracy when the input variables number decreased to 9 (RMSE of 0.809 and 0.906).
While when using MIV as the FS method, RFR and BPNN achieved their highest LAI estimation
accuracy when input variables number decreased to 8 and 11 (RMSE of 0.912 and 0.987).
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However, the trend of LAI estimation accuracy by KNN is related to input variables selected by
different FS methods. For instance, Figure 7 shows that RMSE of RF_KNN decreased by 0.026 when
the number of input variables decreased from 20 to 14, and then the accuracy dropped significantly
with the decrease of the input variables dimension. While using MIV as the FS method, KNN shows
good stability like RFR and BPNN.

Table 6 shows the best performance of each FS and ML method combination. According to Table 4,
Table 6 and Figure 6a, the bands distributed in RE and NIR (<1100 nm) had a negative effect on the
LAI estimation accuracy of the RF_KNN model. Removing those bands significantly improved the
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LAI estimation accuracy. However, the RE bands are indispensable to maintain the LAI estimation
accuracy of the K-means_KNN model since the RMSE will at least increase by 0.132 if the dimension
changed from 14 to 13. On the other hand, although RF_RFR and RF_KNN models achieved similar
LAI estimation accuracy, their final selected bands were distributed differently.

Table 6. Best LAI estimation accuracy of each FS and ML method combination.

FS ML
Method R2 RMSE Number of

Input Variables Center Wavelength of the Selected Bands

RF
RFR 0.828 0.839 8 502.5 nm; 527.5 nm; 677.5 nm; 1055.5 nm;

1080.5 nm; 1097.5 nm; 1266.5 nm; 2428.5 nm

BPNN 0.794 0.919 8 502.5 nm; 527.5 nm; 672.5 nm; 728.5 nm;
1080.5 nm; 2007.5 nm; 2209.5 nm; 2428.5 nm

KNN 0.834 0.824 7 502.5 nm; 677.5 nm; 1114.5 nm; 1266.5 nm;
2007.5 nm; 2209.5 nm; 2428.5 nm

K-means
RFR 0.840 0.809 9 502.5 nm; 612.5 nm; 723.5 nm; 856.5 nm;

997.5 nm; 1148.5 nm; 1519.5 nm; 1754.5 nm; 2319.5 nm

BPNN 0.799 0.906 9 502.5 nm; 565.5 nm; 668.5 nm; 702.5 nm;
723.5 nm; 856.5 nm; 1080.5 nm; 1519.5 nm; 2260.5 nm;

KNN 0.764 0.982 14

502.5 nm; 612.5 nm; 702.5 nm; 706.5 nm;
711.5 nm; 723.5 nm; 728.5 nm; 1080.5 nm;

1148.5 nm; 1494.5 nm; 1519.5 nm;
1754.5 nm; 2260.5 nm; 2319.5 nm

MIV
RFR 0.796 0.912 8 877.5 nm; 890.5 nm; 972.5 nm; 950.5 nm;

1046.5 nm; 1097.5 nm; 1215.5 nm; 1274.5 nm;

BPNN 0.763 0.987 11
967.5 nm; 972.5 nm; 1038.5 nm; 1046.5 nm;

1097.5 nm; 1131.5 nm; 1139.5 nm; 1215.5 nm;
1274.5 nm; 1316.5 nm; 1637.5 nm;

KNN 0.777 0.953 8 967.5 nm; 972.5 nm; 1097.5 nm; 1105.5 nm;
1139.5 nm; 1215.5 nm; 1274.5 nm; 1316.5 nm

3.4. Evaluation of GF-5 LAI Estimation

According to Table 6, there are only three models with RMSE less than 0.85. Therefore, RF_RFR,
RF_KNN and K-means_RFR models were selected to access the LAI estimation accuracy using actual
GF-5 hyperspectral data (Figure 9). RF_RFR model had the highest R2, but its RMSE value was the
largest one among all the LAI estimation results. In addition, some low LAI estimates present in the
reference value range of 2–4 when using the RF_RFR model. K-means_RFR shows an overestimation in
the range of 2–5, whereas the LAI estimates from RF_KNN achieved the best performance (R2 = 0.659,
RMSE = 0.697). In Figure 9, the purple triangles represent the filed-measured LAI points. Similarly,
RF_RFR and K-means_RFR models still show greater overestimation than the RF_KNN model.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 24 
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Figure 10 shows the LAI estimation results using the 7-band RF_KNN model. According to the
land-use map (FROM-GLC30) [82] shown in Figure 2, the LAI estimations of the RF_KNN model
conform to the distribution characteristics of different land cover types. For instant, the forest region,
which was mostly located in the southeast of Figure 2, had high LAI estimations ranging from 5 to 6. In
the northwest is the corn filed (classified as cropland in Figure 2), which also had high LAI estimations
ranging from 3 to 6. There are also some fallow land and vegetable filed regions (also classified as
cropland in Figure 2) located in the northeast and southeast, they had low LAI estimations ranging
from 0 to 3. The red regions in Figure 10, which had LAI estimations close to 0, were the impervious
surfaces and water bodies. In general, the 7 band RF_KNN model is suitable for LAI estimation using
GF-5 hyperspectral data.
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4. Discussion

This study proposed a LAI estimation algorithm for GF-5 hyperspectral data based on the PROSAIL
model as well as different feature selection and machine learning methods. The PROSAIL model can
simulate extensive vegetation and underlying surface situations, which result in wide applicability of
the proposed LAI estimation method. This LAI estimation method can be operated without any prior
knowledge, it is also robust to the vegetation type and soil background. The seven selected spectral
bands of the RF_KNN model maintain most information of the original hyperspectral data, which
have achieved satisfactory LAI estimation accuracy validated by both simulated data and actual GF-5
data. This LAI estimation model developing method through comparison of different feature selection
and machine learning methods is also suitable for other biophysical parameters inversion method
development using hyperspectral data, such as FVC, fraction of absorbed photosynthetically active
radiation (FPAR) and chlorophyll content.

Compared with multispectral data, hyperspectral data contains much more detailed information
about reflectance properties of vegetation canopies. The effects of those abundant spectral bands
in LAI estimation are always been discussed. For example, Lee et al. [83] confirmed the advantage
of those abundant bands by comparing the LAI estimation accuracies of AVIRS and Landsat ETM+

data. Similarly, the research conducted by Das et al. [84] also indicated that Hyperion hyperspectral
bands performed better than Landsat-8 and Sentinel-2 data in LAI estimation. The board-band
reflectance and VIs show occurrence of saturation in high amounts of biomass, therefore they usually
underestimate LAI in the high value region [85,86]. In contrast, the narrow-band VIs [28,29,87] are
more sensitive to biomass change than board-band VIs, therefore those valuable variables, which
provided by hyperspectral data contribute to achieve higher estimation accuracy in the high LAI value
region [88,89]. Moreover, the advantages of higher spectral resolution and narrow-band VIs give
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hyperspectral data abilities in distinguishing vegetation types, thus the LAI could be estimated more
accurately according to the different classification categories [90].

In general, the statistical regression methods applied in LAI estimation mainly based on the
multiple-linear model with spectral bands or VIs as inputs [91–93]. However, it is difficult to describe the
relationship between those independent variables and LAI using linear models. In contrast, the machine
learning algorithms have excellent performances on establishing the nonlinear relationship between
the dependent and independent variables [94,95]. Furthermore, traditional statistical regression
methods are more sensitive to the multicollinearity between independent variables [96,97]. Although
principal component regression (PCR) and partial least squared regression (PLSR) can improve the LAI
estimation accuracy, some studies indicated that they still achieved lower accuracy than ML regression
algorithms [98–100]. Table 7 shows the best LAI estimation accuracy using the PLSR algorithm based
on different data sets selected by RF, MIV and K-means algorithms in this study. Those best LAI
estimates generated by PLSR algorithms have higher RMSEs than ML-based methods, especially for
the GF-5 data. Those results confirm the previous research [98–100] by revealing the low robustness to
noise of the PLSR algorithm. Therefore, ML algorithms still will be considered as a better choice for
LAI (and other biophysical parameters) estimation.

Table 7. LAI estimation performances using the partial least squared regression (PLSR) algorithm
based on different data sets.

Data Set
Simulated Data GF-5 Data Optimal Number of

ComponentsR2 RMSE R2 RMSE

RF-based (20 bands) 0.822 0.841 0.547 1.168 3
MIV-based (20 bands) 0.791 0.918 0.523 1.346 2

K-means-based (20 bands) 0.809 0.922 0.528 1.199 3

The applications of ML regression methods to hyperspectral data processing in the field of
quantitative remote sensing are developed rapidly [39,101]. However, the collinear relationship
between adjacent bands hampers the vegetation parameter estimation accuracy. Most previous
studies on LAI estimation employing the hybrid model and some vegetation indices (VIs) from
hyperspectral data were preferred to be used to avert dimensionality curse [92,93,102]. Although VIs
have great linear or nonlinear relationships with LAI in some cases, they only represent a small part of
hyperspectral reflectance information. This study focused on searching the most representative input
variables by investigating all the hyperspectral reflectance. It not only avoids the subjectivity of input
variable selection for LAI estimation, but also makes full use of the advantage of hyperspectral bands.
Furthermore, feature selection algorithms usually applied only once in most studies [39,103,104],
such as choosing variables according to importance scores. However, most of the scores only represent
the correlation between one specific input variable and the LAI. Therefore, it does not guarantee that
the combination of high scored variables would be the optimal choice for LAI estimation. The two-step
FS process confirmed this hypothesis by showing more accurate estimations using only a small part of
the variables. Those RF-based and MIV-based models (selected by important score ranking) achieved
better performances after the optimal variables searching strategy conducted by the SBS algorithm.
Therefore, this two-step FS process has been proven to be suitable for LAI estimation.

Due to the limitation of available GF-5 hyperspectral data, the performance of the proposed
algorithm was verified by reference LAI, which including field measured LAI and Sentinel-2 data
derived LAI. According to the error transmission theory, the Sentinel-2 data derived LAI values
have some influence on accuracy validation of LAI estimation from GF-5 data. Therefore, more
field experiments are needed to conduct in the further to access the accuracy of this GF-5 LAI
estimation algorithm.
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5. Conclusions

In this study, a LAI estimation algorithm for GF-5 hyperspectral reflectance base on different FS and
ML methods was proposed. According to the performances presented in this study, GF-5 hyperspectral
reflectance data achieved satisfactory LAI estimations with R2 of 0.659 and RMSE of 0.697 using a
RF_KNN model (7 bands). The main conclusions are as follows:

(1) Using the same ML algorithm as feature selection and regression methods could not always
ensure an optimal LAI estimation result. In this study, the RF_RFR model using the random
forest algorithm as both FS and regression methods achieved higher estimation accuracy than
RF_BPNN and RF_KNN when using simulated data. The MIV_BPNN is another model that
uses the same algorithm as the FS and regression method. However, this model yielded lower
estimation accuracy than using other regression algorithms (MIV_RFR and MIV_KNN).

(2) The RF algorithm can be regarded as one of the most adaptable algorithms for further studies of
biophysical parameters estimation using hyperspectral data. Not only RF-based features retained
the most useful information for LAI estimation, but this algorithm was also less affected by the
redundant variables when used as the regression method.

(3) The proposed two-step feature selection process can achieve more satisfactory estimations with
even fewer inputs. The study indicates that the feature ranking provided by RF and MIV only
represents the importance of a single feature, thus the combination of high-score features could
not represent the best inputs of the LAI estimation model. While the additional selection process
based on the SBS algorithm was very effective in the optimal subset searching in a small or
moderate dimension. Therefore, this two-step feature selection method improved the model
performance by taking advantage of two FS algorithms with different criteria (first to reduce
dimension, then search for the optimal subset). This proposed method was not only suitable for
LAI estimation, but also can be used for classification based on hyperspectral remote sensing data.

The approach provided in this study assessed the application of GF-5 reflectance data in LAI
estimation. Further research will focus on developing some effective narrow-band vegetation indexes
for biophysical parameters estimation using GF-5 data.
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