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A B S T R A C T

Fractional vegetation cover (FVC) is considered one of the most important vegetation parameters and is relevant
to characterizing vegetation status and ecosystem function. An FVC with a fine spatial resolution of 30 m is
essential for monitoring vegetation change and regional studies, while an FVC with a coarse spatial resolution of
hundreds to thousands of metres plays an important role in global change studies. However, high spatial re-
solution data usually have low temporal resolution and are often affected by cloud cover. The objective of this
study is to propose a practical way to generate spatiotemporally consistent FVC products at Landsat and
Moderate Resolution Imaging Spectroradiometer (MODIS) scales, which are 30 m and 250 m, respectively. The
geostatistical neighbourhood similar pixel interpolator (GNSPI) was first used to fill in the missing values caused
by unscanned gaps and clouds/shadows on Landsat-7 Enhanced Thematic Mapper Plus (ETM+) data and to
generate spatially continuous Landsat reflectance. Then, the enhanced spatial and temporal adaptive reflectance
fusion model (ESTARFM) was used to generate time series Landsat reflectance data with the same temporal
resolution as that of Global LAnd Surface Satellite (GLASS) FVC generated from MODIS data. The high temporal
resolution Landsat reflectance was preliminarily used to estimate FVC at the Landsat scale. Finally,
MultiResolution Tree (MRT) was employed to fuse the Landsat FVC and GLASS FVC to generate spatiotemporally
consistent FVC products at different scales. The results show that the missing Landsat-7 ETM+ data were filled
well and spatial texture features were well preserved. The temporal resolutions of the Landsat and GLASS FVC
products became consistent with an interval of one day at most. After MRT fusion, most of the root mean square
error (RMSE) between the GLASS FVC and aggregated Landsat FVC dramatically decreased. The accuracy of the
Landsat FVC validated by the ground-measured FVC improved after MRT fusion (before MRT: RMSE = 0.1031,
R2 = 0.9172, bias = −0.0697; after MRT: RMSE = 0.0958, R2 = 0.9173, bias = −0.054). In addition, in the
GNSPI-filled unscanned gaps and the ESTARFM-generated images, the Landsat FVC accuracy also improved
slightly (before MRT: RMSE = 0.1065, R2 = 0.9011, bias = −0.0644; after MRT: RMSE = 0.1022,
R2 = 0.9023, bias = −0.051). The accuracy of the GLASS FVC also improved (before MRT: RMSE = 0.0913,
R2 = 0.884, bias = −0.0504; after MRT: RMSE = 0.0673, R2 = 0.9483, bias = −0.0444). Therefore, MRT
could decrease the inconsistencies of different scales and reduce uncertainties in the FVC. In addition, MRT could
fill in the missing data of the Landsat FVC directly, but there were a certain number of outliers in the fusion
results, and the spatial transition was poor.

1. Introduction

Fractional vegetation cover (FVC) is defined as the proportion of the
vertical projected area of green vegetation to the total statistical area,

which is recognized as one of the most important parameters for de-
scribing terrestrial ecosystems and monitoring vegetation conditions
(Gao et al., 2020; Wang et al., 2018). FVC has a significant influence on
the exchange of carbon, water and energy at the land surface (Wang
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et al., 2017b). FVC has also been applied to many land surface process
simulations and global change studies, such as soil erosion monitoring,
drought monitoring, desertification evaluation, hydrological simula-
tion, agricultural monitoring (de Asis and Omasa, 2007; Jia et al., 2016;
Matsui et al., 2005; Zhang et al., 2013), the Earth’s energy balance and
climate change (Gutman and Ignatov, 1998; Roujean and Lacaze,
2002). Therefore, accurate, timely and continuous FVC products at
global and regional scales are of great significance.

Remote sensing is the most effective way to estimate FVC due to its
advantages of extensive coverage and repeated observations (Liang
et al., 2012). However, there is a contradiction between the temporal
resolution and spatial resolution of remote sensing data; data with fine
spatial resolution usually have a long revisit cycle, and vice versa
(Bolton and Friedl, 2013). Currently, there are several large-scale FVC
products with coarse spatial resolution, such as the Envisat Medium
Resolution Imaging Spectrometer (MERIS) (Bacour et al., 2006), the
Carbon Cycle and Change in Land Observational Products from an
Ensemble of Satellites (CYCLOPES) (Baret et al., 2007), the Geoland-2/
BioPar version 1 (GEOV1) (Baret et al., 2013) and the GLASS (Jia et al.,
2015) FVC products. The spatial resolutions of these products range
from a few hundred metres to several kilometres. High temporal re-
solutions within 10 days allow these FVC products to capture rapid
changes in vegetation on the land surface. Furthermore, the spatial-
temporal continuity of these products makes them capable of mon-
itoring vegetation change over large areas and conducting global
change analysis (Yang et al., 2018; Yu et al., 2018). However, coarse
spatial resolution data are often inadequate for highly heterogeneous
areas such as agricultural landscapes because they cannot capture the
detailed spatial distribution and vegetation variation patterns, which
are crucial for crop classification, crop growth monitoring and yield
estimation (Azzari and Lobell, 2017; Doraiswamy et al., 2004). There-
fore, high spatial resolution data are vital for regional studies, such as
precision agriculture and ecosystem function monitoring (Lobell and
Asner, 2003; Röder et al., 2008).

Landsat data have a fine spatial resolution of 30 m, providing suf-
ficient details for land surface variation, which is an appropriate scale
to reflect human activities (Gao et al., 2015). However, the 16-day
revisit cycle and frequent cloud contamination make it difficult to di-
rectly utilize Landsat data to detect rapid vegetation change, such as
monitoring the critical periods of crop growth (Bolton and Friedl,
2013). In fact, there are few cloud-free data in most areas, and some of
them have to be discarded due to heavy cloud cover, which causes the
discontinuity of land surface information in time series and space.
Moreover, sensor failures (such as ETM+) make the application of
Landsat data more challenging (Zhu et al., 2012a). Therefore, FVC es-
timated from high spatial resolution data is usually spatially and tem-
porally discontinuous, which limits FVC application in land surface
process simulations and ecosystem modelling research (Bian et al.,
2017).

Many spatiotemporal fusion algorithms have been developed to
weaken the influence of clouds and obtain high spatial and high tem-
poral observations with Landsat satellites. The spatial and temporal
adaptive reflectance fusion model (STARFM) takes advantage of the
high temporal resolution of MODIS and high spatial resolution of ETM
+ to produce high spatial resolution and high frequency data (Feng
et al., 2006). Zhu et al. (2010) improved the STARFM and proposed the
ESTARFM algorithm by using two pairs of high- and low-resolution
images, which produces a more accurate prediction of surface re-
flectance in heterogeneous landscapes and has been widely used (Dong
et al., 2016; Fu et al., 2014; Yan et al., 2018). In regard to the un-
scanned gaps of Landsat-7 ETM+, several algorithms have been pro-
posed to fill the missing data, such as the neighbourhood similar pixel
interpolator (NSPI) (Chen et al., 2011) and GNSPI (Zhu et al., 2012b),
which can recover the missing spectral information with good preci-
sion. Although such spatiotemporal algorithms can increase the spatial
and temporal continuity while observing fine land surface variations

compared with that of medium spatial resolution data, uncertainties
will also be introduced to the reconstructed surface reflectance, which
are caused by a series of assumptions that simplify the complex land
surface conditions. GNSPI assumes that neighbouring similar pixels
have similar temporal changing patterns (Zhu et al., 2012b), while
ESTARFM assumes that reflectance changes linearly during a short
period and that both the proportion and reflectance change rate of each
endmember are stable (Zhu et al., 2010). Therefore, the accuracy of
subsequent FVC estimation will be affected (Deng et al., 2019). In ad-
dition, different FVC estimation methods commonly lead to different
results due to different algorithm mechanisms, such as empirical
methods and pixel unmixing model and physical-based methods (Jia
et al., 2017; Jiapaer et al., 2011; Zou et al., 2018). Moreover, FVC es-
timates derived from multiresource satellite data are usually spatially
and temporally inconsistent, particularly across different spatial re-
solutions. Therefore, generating spatiotemporally consistent FVC pro-
ducts across different scales is of great significance and potential for
related research.

To reduce the uncertainties and overcome the problem of data in-
consistency across different spatial resolutions, an MRT method has
been developed based on the assumption that a statistical model is
autoregressive in its levels of resolution (Chou et al., 1994b). MRT has
been used for a series of remote sensing issues, especially for estimating
satellite-based variables using mass data because it can provide an
optimal estimation with efficient computation. Parada and Liang
(2004) assimilated different resolution near-surface soil moistures and
demonstrated that MRT could recover relevant spatial features and
significantly reduce the RMSE. He et al. (2014) fused three surface al-
bedo products from Multiangle Imaging Spectroradiometer (MISR),
MODIS and Landsat to generate consistent albedo data at different
spatial resolutions. Shi et al. (2016) integrated advanced spaceborne
thermal emission and reflection radiometer (ASTER) and GLASS
broadband emissivity (BBE) products to obtain better BBE products.
However, few studies have explored the potential of MRT for in-
tegrating high and medium spatial resolution vegetation parameters,
including FVC. Considering the advantages of MRT in improving ac-
curacy, reducing uncertainty and minimizing bias across different
spatial resolutions, this method is explored to generate spatiotempo-
rally consistent FVC products from Landsat FVC and GLASS FVC pro-
ducts in this study.

There are two objectives in this study: (1) reduce the spatial and
temporal inconsistency between Landsat and GLASS FVC products and
generate spatiotemporally consistent FVC products at 30 m and 250 m
scales; and (2) improve the accuracy of FVC products, especially for the
data reconstructed by the spatiotemporal fusion algorithm. To achieve
these goals, the unscanned gaps of ETM+ were first filled using the
GNSPI method, and then the ESTARFM was used to generate temporally
consistent reflectance data between Landsat and MODIS, which was
subsequently used to estimate FVC. Finally, MRT was investigated to
produce spatially consistent FVC products across different spatial re-
solutions. In contrast, the missing Landsat FVC data were merged by
GLASS FVC directly without filling in the unscanned gaps of Landsat
reflectance data to test the ability of MRT to directly fill in missing
values.

2. Method

The flow chart of generating spatiotemporally consistent FVC pro-
ducts at different scales is shown in Fig. 1. In the data pre-processing
step, the function of mask (Fmask) algorithm (Zhu and Woodcock,
2012) was used to detect clouds and cloud shadows on Landsat-7 ETM
+ reflectance data, and then the cloud-contaminated pixels and un-
scanned gaps were filled by the GNSPI algorithm together. When data
pre-processing was completed, the ESTARFM was first implemented to
generate 30 m resolution reflectance with a temporal resolution of
approximately 8 days by using Landsat-7 ETM+ reflectance data and

B. Wang, et al. ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 214–229

215



MODIS Terra Surface Reflectance 8-Day L3 Global 250 m product
(MOD09Q1). The MODIS data acquisition dates were one day later than
those of Landsat, and this time difference could be ignored. Then, the
temporal resolution between Landsat and MODIS reflectance became
consistent. Next, the PROSPECT + SAIL (PROSAIL) canopy radiative
transfer model (Jacquemoud et al., 2009) was used to generate the si-
mulated reflectance of Landsat-7 ETM+ and the corresponding FVC
using various combinations of input variables. The neural network was
trained using these simulated data, and the Landsat FVC was estimated
based on the trained neural network model (Jia et al., 2016). Finally,
MRT was used to merge the Landsat FVC and GLASS FVC to make them
consistent in spatial pattern.

2.1. ESTARFM

ESTARFM was first proposed by Zhu et al. (2010) in 2010, and to
date, it is one of the most widely used spatial-temporal data fusion al-
gorithms. The algorithm was employed to blend multisource satellite
data and achieved satisfactory results, such as the fusion of Landsat-5/
7/8 and MODIS, Landsat-8 and Visible Infrared Imaging Radiometer
Suite (VIIRS), RapidEye and MODIS, and GaoFen-1 and MODIS (Dong
et al., 2016; Huang et al., 2016; Ma et al., 2018; Tao et al., 2019; Tewes
et al., 2015; Wang et al., 2017a), which demonstrated the good stability
and applicability of the algorithm. Therefore, ESTARFM was also uti-
lized in this study to blend the red and near-infrared (NIR) bands of the
Landsat reflectance and MOD09Q1 data to improve the temporal re-
solution of Landsat.

ESTARFM requires two pairs of Landsat and MOD09Q1 images
whose acquisition times (tm and tn) are earlier and later than the pre-
diction time (tp), respectively, to calculate a conversion coefficient v to
represent the ratio of change in Landsat to change in MOD09Q1 data. If
v and MOD09Q1 at the prediction time are known, the predicted
Landsat image can be calculated by Eq. (1):

= + ×F x y t F x y t v x y C x y t C x y t( , , ) ( , , ) ( , ) ( ( , , ) ( , , ))p p0 0 (1)

where F and C are the Landsat and MOD09Q1 reflectances, respec-
tively; (x, y) is the location of a given pixel; and t0 is the acquisition time

of the base image. The conversion coefficient v is calculated by linear
regression of the reflectance changes of all the similar Landsat and re-
sampled MOD09Q1 pixels within the coverage of a MOD09Q1 pixel.
However, Eq. (1) only uses the information of a single pixel. To take
advantage of information from neighbouring pixels, a moving search
window is used to select pixels similar to a given pixel based on the
spectral similarity, and the information of similar pixels is integrated
into Landsat reflectance. Thus, Eq. (1) can be modified as Eq. (2):

= + × ×
=

F x y t

F x y t W V C x y t C x y t

( , , )

( , , ) ( ( , , ) ( , , ))

w w p

w w
i

N

i i i i p i i

/2 /2

/2 /2 0
1

0
(2)

where w is the search window size, N is the number of similar pixels,
(xi, yi) is the location of the ith similar pixel, Wi is the weight of the ith
similar pixel, and Vi is the conversion coefficient of the ith similar pixel.
Considering that two Landsat images at tm and tn can be used as base
images and generate two predicted Landsat images at tp, the Landsat
result is the weighted combination of the two prediction results using
Eq. (3):

= × + ×F x y t T F x y t T F x y t( , , ) ( , , ) ( , , )w w p m m w w p n n w w p/2 /2 /2 /2 /2 /2 (3)

where Fm and Fn are the Landsat images generated by base images at tm
and tn, respectively, and Tm and Tn are the time weights of Fm and ,
respectively. The detailed introduction of the ESTARFM algorithms can
be found in (Zhu et al., 2010).

2.2. MRT

The MRT algorithm was initially introduced by Chou et al. (1994a),
and its kernel is Kalman filtering (Kalman, 1960). Different from con-
ventional Kalman filtering, which updates model variables in the tem-
poral domain, MRT applies Kalman filtering in the spatial domain. MRT
is organized as a linear tree structure (Fig. 2) with the assumption that
FVC at different spatial resolutions is autoregressive. Similar to the
dynamic model of conventional Kalman filtering, MRT also needs an
equation, named the state conversion model, to represent the transition

Fig. 1. Flow chart of the spatiotemporally consistent FVC generating method.
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from coarse to fine spatial resolution FVC:

= +FVC s A s FVC ps w s( ) ( ) ( ) ( ) (4)

where FVC(s) and FVC(ps) are the state variables at scale s and its parent
scale ps, respectively; A(s) is the state transition matrix from the parent
scale ps to its child scale s, and is generally set to an identity matrix
because the results of aggregation and decomposition between different
scales in the same region are invariable; and w(s) is the white noise that
represents the state transition error, which follows a Gaussian dis-
tribution N(0, Q(s)). Like Eq. (4), Eq. (5) is also a state conversion
model that transfers the state variable from fine to coarse spatial re-
solution data:

= +FVC ps F s FVC s w s( ) ( ) ( ) ( ) (5)

where F(s) is the state transition matrix from child scale (fine spatial
resolution) to parent scale (coarse spatial resolution), which can be
calculated by the following equation (Luettgen and Willsky, 1995):

=F s P ps A s P s( ) ( ) ( ) ( )1 (6)

where P(ps) and P(s) are the variances at the parent and children scales,
respectively.

Except for the state conversion model, MRT also needs an equation,
namely, an observation model, to link the observation variable and the
state variable:

+ +y s H FVC s v s( ) ( ) ( ) (7)

where y(s) is the satellite observation data, v(s) is the measurement
error that follows a Gaussian distribution N(0, R(s)), and H is the ob-
servation matrix that maps the state variable into the measurement
domain. Because the state variable and satellite data are the FVC of the
same area at the same time, H is taken as an identity matrix.

Equations (5), (6) and (7) describe the basic concept of the dynamic
process in MRT. Then, Kalman filtering is used to derive the optimal
estimator by incorporating the state conversion model and observa-
tional data. From children to parents, when observations are available,
the optimal estimator at scale ps is calculated:

= +FVC ps ps FVC ps s K ps y ps H FVC ps s( | ) ( | ) ( )( ( ) ( | )) (8)

where K(ps) is the Kalman gain and is derived from the following:

=K ps P ps s HV ps( ) ( | ) ( )1 (9)

where V(ps) is the innovation covariance, which is expressed as follows:

= +V ps HP ps s H R ps( ) ( | ) ( )T (10)

At the scale ps, the variance p(ps|ps) is updated:

=P ps ps I K ps H P ps s( | ) ( ( ) ) ( | ) (11)

where I is an identity matrix. If observations are unavailable, the pro-
cess evolves depending only on the state conversion model. Thus, the
upward loop of Kalman filtering can be performed recursively, and
observations are assimilated sequentially during this forward integra-
tion. Between every two adjacent scales of MRT, each child node pro-
vides an estimator to its parent node, and the optimal estimator
FVC ps ps( | ) is the weighted sum of the estimates of each child node. The
weight of the estimate depends on the variance P s( ), which represents
the uncertainty of an estimate; therefore, a node with larger uncertainty
will contribute less to its parent node (Xu et al., 2019). To make full use
of the information of the whole sequence of MRT at different resolu-
tions, when the ascending filtering process reaches the root of the tree,
Kalman smoothing is implemented to obtain accurate estimators
FVC s( ). The details of Kalman smoothing can be found in Kannan et al.
(2000).

MRT consists of two steps: “leaves-to-root” Kalman filtering and
“root-to-leaves” Kalman smoothing. High-to-low resolution filtering is
first implemented to provide finer information to the coarser resolution
and to estimate the state variable from higher-resolution data. This step
aims to fill the gaps at different resolutions. Low-to-high resolution
smoothing is then applied to update the state variable with the as-
sumption that the parent node provides the fundamental information
for children nodes that it directly links to. After Kalman smoothing, the
datasets at different spatial resolutions become smooth and consistent.
More details of MRT can be found in Van de Vyver and Roulin (2009).

To implement MRT for different resolution satellite FVC products,
there are four steps. (1) Evaluate and quantify the uncertainty of the
two satellite FVC products. There is no Landsat FVC product available
at the global scale. The Landsat FVC is usually generated by different
methods and used for regional studies individually, which lacks sys-
tematic validation. Commonly, the Landsat FVC is validated directly by
ground-measured FVC because the size of the ground sampling site can
match its 30 m spatial resolution pixel. Therefore, the uncertainty of
FVC derived from the processed Landsat-7 ETM+ reflectance data was
evaluated based on ground FVC measurements. For the GLASS FVC,
direct validation has been conducted in previous studies (Jia et al.,
2015; Yang et al., 2016), and the validation accuracy of these studies
was adopted in this study. (2) Considering the basic assumption that the
data processed in MRT have a mean value of zero, it is necessary to
extract the spatial trend surface and remove it from each of the original
satellite products to ensure that the detrended FVC meets the require-
ments of the data fusion process. Many detrending methods have been
proposed to extract spatial trend surfaces, such as spline fitting and
kriging (Marcotte and David, 1988; Shaw and Lynn, 1972). However,
these methods are usually time consuming and can hardly be applied in
operational practice. He et al. used a simple moving spatial window and
considered the mean value of the window as the trend (He et al., 2014).
Xu et al. considered the mean value of the entire image as the trend (Xu
et al., 2019). However, these mean value methods are empirical para-
meterization and fail to explain why the detrend result can be the
background value and how to estimate the observational errors of the
detrended data (Shi et al., 2016). In this study, the detrend method
proposed by Shi et al., 2016 was used, which involves a simple inter-
polation FVCd to obtain the background trend FVCtrend and the back-
ground error variance P s( )k (assuming that MRT has k scales) based on
the variance of the two measurements (RG, RL).

= + +FVC R y R y R R( )/( )d L G G L G L (12)

= +FVC FVC mean y FVC( )trend d d (13)

= +P s R R( ) ( )k L G
1 1 1 (14)

Fig. 2. Conceptual structure of MRT; node FVC(ps) is the parent node of node
FVC(s), and FVC(chs) is the child node of FVC(s).
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Based on the detrended data, the variance Q(s) is calculated for the
child nodes that are linked with the same parent node. To obtain the
observation error v(s) of the leaf nodes, R(s) is derived from the stan-
dard deviation of the relative difference between the finest resolution
data and the ground survey data. For the nodes that are not leaves, the
observation error is calculated by the relative difference between the
nodes and the aggregated values from their child nodes. (3) Kalman
filtering and Kalman smoothing are implemented successively to obtain
the optimal estimator at each scale. (4) The trended surface extracted
previously is added back to the fusion data to obtain the final fusion
result.

3. Study area and satellite data

3.1. Study area

The study area is located in an oasis of the upper reaches of the
Heihe River Basin, Gansu Province, China (Fig. 3). The geographical
location of the study area is between 100°18′5″E-100°27′15″E and
38°47′28″N-38°54′52″N. The annual average temperature and pre-
cipitation are approximately 7℃-10℃ and 140 mm, respectively (Wang
et al., 2016). The study area is a typical arid and semi-arid area and

Fig. 3. Geographic location of the study area.
The vector map at the upper left shows the lo-
cation of the Hehei River Basin in China. The
MODIS image at the lower left shows the entire
Heihe River Basin and the geographic location of
the study area. The standard false colour image
from Landsat-7 ETM+ on the right shows the
landscape of the study area, and the green points
represent the locations of sampling sites in the
study area.

Table 1
Data used in this study, including Landsat-7 ETM+ reflectance data, MOD09Q1, GLASS FVC data, ASTER FVC and field measured FVC data.

Data Spatial resolution (m) Temporal resolution (days) Day of Year (DOY)

Landsat-7 ETM+ reflectance 30 16 144/176/192/208/224/240/256/272/
MOD09Q1 250 8 145/153/161/169/177/185/193/201/209/217/225/233/241/249/257/265/273
GLASS FVC 463.3 8 145/153/161/169/177/185/193/201/209/217/225/233/241/249/257/265/273
ASTER FVC 15 15 151/176/192/224/240
Field measured FVC – 5 or 10 145/153/160/165/170/175/180/185/189/192/195/200/205/216/225/241

Fig. 4. Strategy of ground FVC measurement in one sampling site using digital
cameras.

Fig. 5. Scatterplot of Landsat FVC validated by ground-measured FVC.
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covers approximately 182.25 square kilometres. The landscape is
dominated by farmland, and the main crop is corn. Roads crisscross the
farmland and buildings are irregularly distributed, which increases
surface heterogeneity. Gobi occupies an area northwest of the study
area, where the FVC is generally zero. In addition, there are small
amounts of grass, water and wetlands in the study area.

3.2. Field survey data

The field FVC measurements were conducted from May to
September 2012, which covered the whole growing period of corn. The
FVC measurement frequency was initially 5 days (before late July) and
was then increased to 10 days, as listed in Table 1. The size of each
sampling site was a 10 m square, where nine photographs were taken
using digital cameras along two diagonals across the sampling site, as
shown in Fig. 4. The FVC was quantitatively extracted from these
photographs, and the average value of the nine photographs in one
sampling site was considered the true ground FVC (Mu et al., 2015).
Fifteen sampling sites were measured in corn fields, and their spatial
position distributions were determined by the mean of surfaces with the
non-homogeneity (MSN) method (Wang et al., 2009). The spatial dis-
tribution of sampling sites is shown in Fig. 3.

The FVC of one digital photograph is defined as the ratio of vege-
tation pixels to the total number of pixels. This study adopts the FVC

extraction method from digital images proposed by Liu et al. (2012).
First, twenty-five percent of the photograph edges were cropped to
eliminate the influence of the geometric distortion caused by a large
view angle. Then, all the digital images were transformed from RGB
colour space to Commission Internationale de L’Eclairage (CIE) L a b ,
and Gaussian models were used to fit the green vegetation and back-
ground distributions of the a component. Finally, an optimal threshold
was selected based on the fitted Gaussian models to segment the image
into green vegetation and non-green background. The proportion of
green vegetation was considered as FVC.

3.3. Satellite data and pre-processing

3.3.1. Landsat-7 ETM+ reflectance
The Landsat-7 ETM+ reflectance data were collected between May

23 and September 28, 2012, from EarthExplorer of the United States
Geological Survey (USGS) (https://earthexplorer.usgs.gov/). There
were 8 images with a spatial resolution of 30 m and temporal resolution
of 16 days (Table 1) that covered the entire growth period of corn. The
unscanned gaps and cloud contaminations led to some missing data in
the image, and the GNSPI was used to fill the unscanned gaps and cloud
contaminated areas. In this study, the red and NIR wavebands of
Landsat-7 ETM+ reflectance data were used to estimate high spatial
resolution FVC.

3.3.2. MOD09Q1 surface reflectance
The MOD09Q1 data were an 8-day composited MODIS surface re-

flectance product that provided the land surface reflectance of the red
and NIR bands with a frequency of 8 days and a spatial resolution of
250 m in the sinusoidal projection. The highest spatial resolution of
MODIS reflectance products is 250 m, which is beneficial for ESTARFM
to blend Landsat and MOD09Q1 data to generate more accurate
Landsat reflectance data. Therefore, the MOD09Q1 data from DOY 145
to 273 were collected (Table 1) as the coarse resolution reflectance data
in this study. The pixels of MOD09Q1 data contaminated by snow/
clouds were first identified using the time series cloud detection (TSCD)
algorithm (Tang et al., 2013) and removed using a temporal-spatial
filter, and then the missing values were filled using an optimum in-
terpolation algorithm (Jia et al., 2015). Therefore, the preprocessed
MOD09Q1 data used in this study were continuous spatially and tem-
porally.

Furthermore, MOD09Q1 data should be converted to Universal
Transverse Mercator (UTM) projection and resampled to 30 m spatial
resolution for consistency with Landsat-7 ETM+ data because the
ESTARFM algorithm requires that fine and coarse resolution data have
the same projection and spatial resolution. The reprojection and re-
sampling processes change the size, shape and position of a given pixel
and distort the relative arrangement of grid cell matrices (Christman
and Rogan, 2012), which introduces uncertainties into the processed
results. Therefore, appropriate methods should be adopted to reduce
the uncertainties caused by reprojection and resampling. The MODIS
Reprojection Tool is widely used in the projection conversion of MODIS
Level-2G, Level-3 and Level-4 products with high precision and efficient
computation (Brooks et al., 2012; Dwyer and Schmidt, 2006; Weiss
et al., 2014). The bilinear interpolation method considers the effect of
four adjacent pixels on the interpolation point and usually achieves
high interpolation accuracy with satisfactory computation efficiency.
Therefore, the MODIS Reprojection Tool and bilinear interpolation
method were used to reproject and resample MOD09Q1 data. These two
methods minimized the uncertainties in reprojecting and resampling
coarse-resolution MOD09Q1 data for integration with fine-resolution
Landsat-7 ETM+ data in this study.

3.3.3. GLASS FVC
The GLASS FVC product was generated using MOD09A1 data and

had the same preprocessing as MOD09Q1 data. The GLASS FVC was

Fig. 6. Interpolated result of the Landsat-7 ETM+ surface reflectance image on
DOY 176: (a) original image with unscanned gaps; and (b) interpolated image
by GNSPI.
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spatially completed with no missing data and temporally continuous
with a revisit interval of 8 days. The validation results showed that the
accuracy of the GLASS FVC was satisfactory (Jia et al., 2015; Liu et al.,
2019). Corresponding to MOD09Q1 data, the GLASS FVC was also
collected from DOY 145 to 273 (Table 1) with a sinusoidal projection
and spatial resolution of 500 m (the real grid size of the nominal 500 m
sinusoidal pixel size was 463.3 m). The GLASS FVC was also converted
to UTM projection by the MODIS Reprojection Tool and resampled to
450 m using the bilinear interpolation method to match the 30 m pixel
size of Landsat-7 ETM+ data by a factor of 15.

3.3.4. ASTER FVC
The ASTER L1B radiance data with 15 m spatial resolution on DOY

176, 192, 224 and 246 of 2012 were collected to generate high spatial
resolution reference FVC to validate the GLASS FVC. The ASTER L1B

data were atmospherically corrected by a second simulation of a sa-
tellite signal in the solar spectrum (6S) method (Vermote et al., 1997) to
obtain surface reflectance, which was used to calculate the normalized
difference vegetation index (NDVI). The following empirical transfer
function was used to convert the NDVI into the FVC, and the coeffi-
cients a, b and k were determined by fitting the ASTER NDVI and
ground-measured FVC (Mu et al., 2015).

= × +FVC a NDVI b( )k (15)

4. Results

4.1. The fusion results of two satellite-derived FVC products

The uncertainties of Landsat and GLASS FVC products must be

Fig. 7. Comparison of time series Landsat FVC from DOY 144 to DOY 272 before and after MRT. The images in the odd line are the original FVC, and the images in
the even line are the FVC after MRT.
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evaluated when merging two FVC products using the MRT method. The
uncertainty of the GLASS FVC was validated directly based on the va-
lidation samples from the Validation of Land European Remote sensing
Instruments (VALERI) site. The validation result indicated that the
GLASS FVC product had an accuracy with an RMSE of 0.149 (Jia et al.,
2019). Therefore, R(s) for the GLASS FVC was assigned to 0.149. The
uncertainty of the Landsat FVC was evaluated by ground FVC mea-
surements. Ground measurements on 10 dates were selected out of the
15 survey dates to validate the Landsat FVC, including DOY 145, 153,
160, 170, 175, 185, 192, 200, 216 and 241, which were at most one day
apart from the dates of the corresponding Landsat FVC. Fig. 5 shows the
validation results of the Landsat FVC with an RMSE of 0.1031. There-
fore, 0.1031 is assigned to the uncertainty of the Landsat FVC R(s).

The unscanned gaps and cloudy areas in the original Landsat-7 ETM
+ reflectance images were interpolated by GNSPI first to reconstruct

the complete images, and an example is shown in Fig. 6. In most of the
filled images, the unscanned gaps are well filled, and the details of the
spatial texture of the surface are recovered completely, as shown in
Fig. 6. There is no residual gap effect on the images, and the spatial
transition is good. All the filled images were checked carefully, and the
GNSPI show poor performance in filling in the unscanned gaps on the
DOY 161 image because of heavy clouds and cloud shadows. The pre-
dicted images on DOY 153 and 169 using ESTARFM would be affected
by the remaining gaps on the DOY 161 image. Therefore, images on
DOY 153, 161, and 169 were all generated by ESTARFM based on
images of DOY 144 and 176.

Fig. 7 shows the results of the time series Landsat-scale FVC before
and after MRT from DOY 144 to DOY 272. The revisit cycle of Landsat-7
ETM+ is 16 days, and the temporal resolution of GLASS FVC is 8 days.
Because the image acquisition dates of these two satellite-derived FVC

Fig. 8. Comparison of time series GLASS FVC from DOY 145 to DOY 273 before and after MRT. The images in the odd line are the original FVC, and the images in the
even line are the FVC after MRT.
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products are one day apart, the temporal resolution of fine spatial re-
solution FVC is 7 days or 9 days after ESTARFM, which means that
temporal inconsistency is eliminated. The ESTARFM helps improve the
temporal resolution of the Landsat FVC and does not violate the tem-
poral change characteristics of Landsat FVC. The upper left corner of
the study area is desert, where the FVC remains at a low value
throughout the entire growth period of corn. In the agricultural area,
FVC first increases and then stabilizes at a high level and finally de-
creases, which reflects the process of the growth, maturity and yel-
lowing of corn. At the beginning (DOY 144 to DOY 161) and middle
(DOY 192 to DOY 240) of the entire corn growth period, the value
range of FVC is small and remains at low and high values, respectively.
It is unnecessary to generate the FVC with high temporal resolution in
the beginning and middle of corn growth periods because there is very
little change in the FVC value. However, during the periods of rapid
crop growth (DOY 161 to DOY 192) and yellowing (DOY 240 to DOY

272), the FVC varies sharply, and high temporal resolution is essential
for monitoring crop changes. The original 16-day revisit cycle and
frequent cloud contamination limits the application of Landsat data to a
large extent, and it is very likely that the critical period of vegetation
growth would be missed. After MRT, the Landsat-scale FVC becomes
smoother than before, and the spatial texture details are well preserved.
Despite the spatial heterogeneity of the study area, the Landsat-scale
FVC images are also spatially continuous, and there is no abnormal
value after MRT. The seasonal variation in Landsat FVC does not change
and coincides with the original FVC.

Fig. 8 shows the time series GLASS FVC before and after MRT from
DOY 145 to DOY 273. Whether before or after MRT, the seasonal var-
iation in GLASS FVC is consistent with that of Landsat FVC. Generally,
coarse spatial resolution images are smoother than fine spatial resolu-
tion images because the latter are more capable of capturing the spatial
heterogeneity and spatial distribution patterns of the surface. This

Fig. 9. The difference between aggregated Landsat and GLASS FVC before and after MRT.
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phenomenon can be found by comparing the Landsat FVC and GLASS
FVC in Fig. 7 and Fig. 8. In the process of MRT, coarse and fine spatial
resolution data interact with each other. In the Kalman filtering pro-
cess, Landsat FVC provides GLASS FVC with finer spatial information
for capturing more details of spatial variations in the land surface.
Therefore, after MRT, the GLASS FVC becomes less smooth and more
heterogeneous than before. In the Kalman smoothing process, GLASS
FVC provides Landsat FVC with coarser information and makes it
smoother, and the spatial texture of Landsat FVC is slightly weakened
by MRT. Nevertheless, the fusion results after MRT are acceptable to
reflect the spatial pattern at the 30 m scale. Compared with Landsat and
GLASS FVC, high spatial and high temporal resolution FVC is capable of
tracking the surface changes in regional areas with high spatial het-
erogeneity, and low spatial and high temporal resolution FVC is suitable
for large areas with high spatial homogeneity.

4.2. Evaluation of spatial consistency and accuracy of the two scale FVC
products before and after MRT

The main purpose of MRT is to eliminate the spatial inconsistency of
FVC at different scales and reduce the uncertainties of both fine- and
coarse-resolution FVC. To measure the degree of consistency between
two satellite-derived FVC products, two statistical metrics, bias and
RMSE, were selected to quantitatively describe the spatial consistency.
The smaller the bias and RMSE are, the lower the spatial inconsistency.
The Landsat FVC was aggregated to 450 m to match the pixel size of the
GLASS FVC. The difference between the two FVC products was calcu-
lated by subtracting the aggregated Landsat FVC from the GLASS FVC.
Fig. 9 shows the results of the differences between two FVC products
before and after MRT. There are no obvious characteristics in the spatial
distribution of differences before MRT. A certain number of outliers
occur in the farmland area and result in large differences, which are
mainly due to the strong heterogeneity of the surface. In the homo-
geneous Gobi area, the differences are relatively low. Images from most
dates show large inconsistencies in the transition regions between Gobi
and farmland, which are caused by mixed pixels of Gobi and farmland.
After MRT, the outliers disappear, and the spatial inconsistencies be-
tween the two products are significantly reduced.

The statistical comparison between aggregated Landsat and GLASS
FVC before and after MRT is shown in Table 2, and a negative number
indicates that the inconsistency has declined. According to the statis-
tical results, the variation in bias on DOY 169, 192, 201, 208, 217, and

224 has a slight increase, which remains almost unchanged. Except for
these six days, the bias has a reduction on other days ranging from
0.0193% to 4.7516%. However, the bias levels before and after MRT
are both relatively low. The RMSE of all days has a significant reduction
ranging from 9.6766% to 94.3286%, and most of them are larger than
40%, which indicates that after MRT, the spatial inconsistencies of the
Landsat and GLASS FVC products have decreased to a great extent. The
improvement in accuracy demonstrates that MRT is capable of reducing
the inconsistencies of satellite-derived FVC across different scales and
generating spatially consistent FVC products.

Fig. 10 shows the histogram of the differences between GLASS FVC
and aggregated Landsat FVC. After MRT, most histograms are more
concentrated around zero, which indicates that the differences between
the GLASS FVC and aggregated Landsat FVC are reduced again. How-
ever, on DOY 144, 153, 249, 256, 265 and 272, the distribution of
histograms deviates from zero. Nevertheless, the distribution of histo-
grams after MRT is more concentrated than that before MRT on these
6 days, which indicates that the inconsistencies between the two pro-
ducts have a certain degree of decline. This phenomenon can also be
found in Table 2; the decrease in RMSE on these six days (−18.1482%,
−23.5441%, −18.4944%, −11.4980%, −11.0548%, −9.6766%) is
less than 24% and smaller than that on other days, which has a decrease
in RMSE almost larger than 40%. Therefore, the fine-resolution and
coarse-resolution FVC after MRT are spatially consistent, which is
convenient for research at different scales. The problem of inconsistent
results caused by the scale effect can be reduced to some extent.

The original Landsat-7 ETM+ reflectance was processed by GNSPI
to generate spatially continuous high-resolution images, and ESTARFM
was used to produce reflectance between two adjacent images in time
with the purpose of improving the temporal resolution and making the
frequency of the Landsat and GLASS FVC products consistent. These
two algorithms might introduce uncertainties to the fused reflectance,
which would affect the accuracy of FVC estimation. Therefore, MRT
algorithms were used to reduce the uncertainties and improve the ac-
curacy of FVC products. Fig. 11 (a) shows the scatterplots of the Landsat
FVC validated by the ground-measured FVC of 10 selected dates in-
cluding DOY 145, 153, 160, 170, 175, 185, 192, 200, 216 and 241.
After MRT, the FVC estimation accuracy (RMSE = 0.0958,
R2 = 0.9173, Bias = −0.054) is better than that before MRT
(RMSE = 0.1031, R2 = 0.9172, Bias = −0.0697, Fig. 5). Fig. 9 (b) and
(c) shows the scatterplots of ground-measured FVC located in GNSPI-
filled gaps and ESTARFM-generated images before and after MRT, in-
cluding DOY 153, 160, 170, 185, 200, 216 and part of points on DOY
160. Before MRT, the RMSE is 0.1056, R2 is 0.9011, and the bias is
−0.0644. The validation result shows that the FVC was slightly over-
estimated, which may be caused by the lack of shortwave-infrared
(SWIR) information because SWIR is helpful for FVC estimation (Wang
et al., 2018). After MRT, the RMSE is reduced to 0.1022, R2 increases to
0.9023 and bias decreases to −0.051. The statistical metrics indicate
that the accuracy of the Landsat FVC has been improved slightly.
Otherwise, the phenomenon of overestimation has been improved in
the median and high FVC values. The improvement of the Landsat FVC
accuracy demonstrates that MRT is capable of reducing the uncertainty
of fine spatial resolution FVC.

During the MRT process, the GLASS FVC was affected by the
Landsat FVC, and the ASTER high-resolution FVC was used as reference
data to evaluate the GLASS FVC before and after MRT. The ASTER FVC
with a spatial resolution of 15 m was aggregated to 450 m to match the
pixel size of the GLASS FVC. Fig. 12 shows the scatterplots of GLASS
FVC validated by aggregated ASTER FVC before and after MRT. The
scatter points contain DOY 152, 176, 192, 224 and 240. Before MRT,
the scatter points are dispersed, and for the low FVC values of ap-
proximately 0.1, the FVC was overestimated slightly. After MRT, the
accuracy is improved to some extent, and the scatter points are more
concentrated around the 1:1 line than before MRT. Overall, MRT can
reduce the uncertainty of coarse spatial resolution FVC.

Table 2
Statistical comparison of aggregated Landsat and GLASS FVC before and after
MRT.

DOY GLASS vs. Aggregated Landsat

Before MRT After MRT Variation

Bias RMSE Bias RMSE Bias RMSE

144 −0.0824 0.1002 −0.0801 0.08200 −2.8182% −18.1482%
153 −0.0454 0.0738 −0.0697 0.07121 −3.4585% −23.5441%
160 0.0276 0.0730 −0.0263 0.02686 −2.7412% −54.7116%
169 0.0213 0.0781 0.0103 0.01044 0.9097% −84.5335%
176 0.0916 0.1166 0.0907 0.09189 −0.9381% −21.1841%
185 0.0560 0.0967 0.0560 0.05618 −0.0193% −42.0061%
192 0.0265 0.0769 0.0267 0.02705 0.8253% −64.8093%
201 0.0436 0.0846 0.0436 0.04384 0.0799% −48.1785%
208 0.0273 0.0747 0.0275 0.02774 0.7062% −62.8879%
217 0.0300 0.0745 0.0301 0.03022 0.5841% −59.4364%
224 0.0009 0.0701 0.0015 0.00398 64.4674% −94.3286%
233 −0.0183 0.0716 −0.0174 0.01759 −4.7516% −75.4463%
240 −0.0412 0.0817 −0.0394 0.04000 −4.4718% −51.0434%
249 −0.1195 0.1436 −0.1149 0.11701 −3.8413% −18.4944%
256 −0.2067 0.2295 −0.1992 0.20315 −3.6107% −11.4980%
265 −0.1692 0.1877 −0.1637 0.16695 −3.2787% −11.0548%
272 −0.1177 0.1287 −0.1140 0.11623 −3.1534% −9.6766%
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4.3. Fusing Landsat FVC directly using MRT without filling unscanned gaps

In this study, the missing Landsat reflectance data caused by un-
scanned gaps and clouds/shadows were filled by the GNSPI algorithm
in advance, and the estimated Landsat FVC is spatially continuous.
However, MRT is capable of filling the missing data of Landsat FVC
directly because GLASS FVC is spatially continuous and can provide
coarse spatial information for missing Landsat FVC. Therefore, the
Landsat FVC was estimated using the reflectance image with unscanned
gaps, and then the Landsat FVC gaps were filled by MRT directly to

evaluate the ability of MRT to reconstruct the missing data of fine
spatial resolution data. Fig. 13 shows the results of Landsat-7 ETM+
FVC with unscanned gaps directly interpolated by MRT using GLASS
FVC. The unscanned gaps on Landsat FVC are completely filled with
valid values, but a clear gap effect is still obvious in the fusion results.
The filled areas have weak spatial texture, and spatial transitions are
smooth. The direct filling results are inferior to the results by the pro-
posed method in terms of their texture consistencies. The upper left
corner of the image is the desert, and the FVC changes dramatically at
the edge of the desert. It can be clearly seen from Fig. 13 that there are

Fig. 10. Histograms of the differences between the GLASS FVC and aggregated Landsat FVC before and after MRT from DOY 144 to DOY 272. (DOY refers to the DOY
of Landsat).
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some outliers in this area. The FVC values in the desert are supposed to
be very low, but the unscanned gap areas of the edge of the desert are
interpolated with higher values because the pixel of GLASS FVC with a
relatively higher value covers across the edge of the desert and fills the
unscanned gaps with high values, which are outliers on the side of the
desert. Comparing the four fusion results, DOY 192 and 224 have re-
latively good spatial transitions and texture consistencies, especially in
some homogeneous areas, but all the images are heterogeneous, and the
fusion results are not satisfactory in the spatial pattern. The main
reason that MRT cannot reasonably recover the spatial pattern is the
lack of fine spatial resolution information. In heterogeneous areas, the
GLASS FVC is comprehensive information due to the existence of mixed
pixels. However, MRT could not decompose the GLASS FVC accurately
without Landsat FVC information and therefore produced FVC values
similar to dominant features in a GLASS FVC pixel.

Fig. 14 shows the scatterplots of FVC located inside the unscanned
gaps of Landsat directly interpolated by MRT on DOY 176, 192, 224 and
240. The accuracy of FVC was validated by ASTER FVC. The RMSEs of
these four days are between 0.14 and 0.2, and the R2 values are

Fig. 11. Scatterplots of Landsat FVC validated by ground-measured FVC: (a) all
field survey points of 10 selected dates after MRT; and (b) and (c) the survey
points located in GNSPI-filled gaps and ESTARFM-generated images before and
after MRT, respectively.

Fig. 12. Scatterplots of GLASS FVC validated by aggregated ASTER FVC before
(a) and after (b) MRT.
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generally low. The bias of DOY 176 is above 0.1, relatively higher than
that of the other three with low values under 0.05. The FVC on DOY
176 is overestimated overall, and most of the scatter points are above
the 1:1 line. On DOY 192, 224 and 240, the high-density scatter points
are located near the 1:1 line; thus, the bias of these three days is small.
A certain percentage of scatter points are outliers in all four days, and
most of them are overestimated. This phenomenon is caused by two
factors: (1) as mentioned above, the edge of the desert has some
overestimated outliers, which are circled with green ellipses in Fig. 14;
(2) the reference FVC of other outliers circled by red ellipses in Fig. 14
has a large range, but the interpolated FVC has a certain small range.
This is because the unscanned gap areas are covered not only by
farmland but also by some buildings, roads and bare land, which have
relatively low FVC. However, these areas are filled with GLASS FVC, the
interpolated FVC cannot reflect the detailed spatial variation of the land
surface, and the areas with low FVC are filled with high and similar FVC
values, which causes the small changes in interpolated FVC. Overall, in
terms of fusion results and accuracy validation, the performance of
missing Landsat FVC directly filled by MRT using the GLASS FVC is
unsatisfactory.

5. Discussion

Missing data caused by sensor misfunctions and cloud/shadow
contamination as well as low revisit frequencies are two major reasons
that limit the applications of Landsat images. It is necessary to improve
the temporal resolution of Landsat and reconstruct missing values on
the image to ensure that the critical periods or areas of interest can be
captured. To address these issues, GNSPI was used to fill the missing
values of Landsat data, and the spatiotemporal fusion algorithm
ESTARFM was implemented to increase the temporal resolution of
Landsat data to be consistent with MOD09Q1. After these two steps, the
Landsat images are spatially continuous and have the same temporal
resolution as MOD09Q1. However, uncertainties are also introduced to
the fused reflectance, which affects the FVC estimates. MRT is used to
reduce the uncertainties and eliminate the inconsistences between FVC
at different scales. The results have demonstrated that MRT has the
ability to reduce uncertainties, and the issue of overestimation of
Landsat FVC at medium and high levels is addressed by MRT to some
extent, but overestimation is still evident in the case of a low FVC level.

This is mainly because the validation results of the two satellite-derived
FVC show overestimation at the same time and MRT cannot reconcile
the conflict that the data at fine and coarse resolution are both over-
estimated and generate reliable FVC values.

MRT has successfully reduced inconsistencies between FVC pro-
ducts at different scales according to statistical metrics and histograms.
However, there are still some data with large inconsistencies on DOY
249, 256, 265 and 272 and some data with relatively larger incon-
sistencies on DOY 144 and 153. This is mainly because the Landsat FVC
has a large deviation from the GLASS FVC. There may be two reasons
leading to the differences between Landsat and GLASS FVC: (1) the
estimation algorithms of the Landsat and GLASS FVC are different; and
(2) from DOY 249 to 272, the corn has matured and continuous har-
vesting has begun, and the Landsat and GLASS FVC products may
capture different states of corn due to their different temporal resolu-
tions. As shown in Fig. 10, the histograms before MRT (blue) follow a
Gaussian distribution with a mean difference between 0.1 and 0.2,
which indicates that there are large inconsistencies between these two
FVC products. A similar conclusion was also drawn by Xu et al. (2019)
and Shi et al. (2016). From the statistical comparison of Table 2, most
data have small variations in bias but large variations in RMSE. The bias
is calculated as the average value of the difference between the GLASS
FVC and aggregated Landsat FVC (Lindberg et al., 2012), and the dif-
ferences follow a Gaussian distribution with a certain mean value (most
of them are zero) around which the histograms after MRT are mainly
distributed. Therefore, the biases of most days have small values and
small variations. The RMSE reflects the error between two datasets, and
a low RMSE indicates the ability of MRT to reduce uncertainties be-
tween different data. Because the Landsat FVC largely deviates from the
GLASS FVC, the variation in the RMSE is small on DOY 144, 153, 249,
256, 265 and 272, which again suggests the limitation of MRT.

MRT can take advantage of data from other scales to recover the
missing values of the image. In this study, the GLASS FVC is spatially
continuous and directly used to fill in the unscanned gaps on the
Landsat ETM+ FVC. The interpolation results using MRT are similar to
those obtained by direct resampling from the GLASS FVC, but the fused
value is the sum of the trend surface and a random process estimation
(Shi et al., 2016). The interpolation results are better in homogeneous
areas than those in heterogeneous areas. If the two datasets used for
fusion have significant differences, the results will be worse. Although

Fig. 13. Landsat-7 ETM+ FVC without filling unscanned gaps before (first row) and after (second row) MRT on DOY 176, 192, 224 and 240.
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MRT can fill in the unscanned gaps of the Landsat ETM+ FVC com-
pletely, the algorithm is unable to recover the details of spatial texture,
and the spatial transition is poor. There are a certain number of outliers
in the fusion results. Therefore, in this study, the missing data caused by
cloud/shadow or unscanned gaps were filled by GNSPI to generate
reflectance images, which reflect the land cover more accurately, with
good spatial transition and clear details of texture and to avoid the
occurrence of outliers.

In this study, ESTARFM was used to improve the temporal resolu-
tion of Landsat reflectance images to 8 days. However, this temporal
resolution may be insufficient for monitoring the critical period of ve-
getation growth, especially for faster-growing crops. The application of
multisource data integration is a feasible way to further improve the
temporal resolution of high spatial resolution data, such as Landsat
(16 days), Sentinel-2 (5 days, pair of Sentinel-2 satellites) (Verrelst

et al., 2012), GaoFen-1 (4 days) and GaoFen-6 (Gu and Tong, 2015).

6. Conclusions

This study proposed a feasible way to generate spatiotemporally
consistent FVC products at different scales. The results indicate that
MRT is capable of weakening the inconsistencies between Landsat and
GLASS FVC products and reducing uncertainties to some extent. The
details of the Landsat FVC spatial pattern were well preserved, and the
heterogeneity of the GLASS FVC increased. MRT can also be used for
directly interpolating Landsat FVC, but the results are poor, which in-
dicates that the missing data in the high spatial resolution images must
be processed beforehand to achieve good results. Further work will be
focused on the application of multisource data to generate high spatial
resolution data with higher temporal resolution and try to fuse other

Fig. 14. Scatterplots of FVC directly interpolated by MRT using the GLASS FVC in the Landsat-7 ETM+ unscanned gaps validated by the ASTER FVC on DOY 176 (a),
192 (b), 224 (c) and 240 (d).
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vegetation parameters, such as leaf index area (LAI) and fractional
absorbed photosynthetically active radiation (FAPAR).
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