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Abstract: Timely and accurate agricultural information is essential for food security assessment and
agricultural management. Synthetic aperture radar (SAR) systems are increasingly available in crop
mapping, as they provide all-weather imagery. In particular, the Sentinel-1 sensor provides dense
time-series data, thus offering a unique opportunity for crop mapping. However, in most studies,
the Sentinel-1 complex backscatter coefficient was used directly which limits the potential of the
Sentinel-1 in crop mapping. Meanwhile, most of the existing methods may not be tailored for the task
of crop classification in time-series polarimetric SAR data. To solve the above problem, we present
a novel deep learning strategy in this research. To be specific, we collected Sentinel-1 time-series
data in two study areas. The Sentinel-1 image covariance matrix is used as an input to maintain
the integrity of polarimetric information. Then, a depthwise separable convolution recurrent neural
network (DSCRNN) architecture is proposed to characterize crop types from multiple perspectives
and achieve better classification results. The experimental results indicate that the proposed method
achieves better accuracy in complex agricultural areas than other classical methods. Additionally,
the variable importance provided by the random forest (RF) illustrated that the covariance vector has
a far greater influence than the backscatter coefficient. Consequently, the strategy proposed in this
research is effective and promising for crop mapping.

Keywords: crop mapping; synthetic aperture radar; Sentinel-1; time-series; deep learning;
covariance matrix

1. Introduction

Many of the problems resulting from the rapid growth of the global population are related to
agricultural production [1,2]. In this context, it is necessary to have a comprehensive understanding of
crop production information. Timely and accurate agricultural information can achieve a range of
important purposes, such as improving agricultural production, ensuring food security, and facilitating
ecosystem services valuation [3]. Remote sensing, which provides timely earth observation data with
large spatial coverage, could serve as a convenient and reliable method for agricultural monitoring [4].
It is now possible to build a time-series image stack for full-season monitoring and differentiate crop
types according to their unique seasonal features [5].
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Over the past few decades, optical data has been regarded as the main earth observation strategy
for crop monitoring [4]. The photosynthetic and optical properties of the plant leaves are used to
distinguish between different crop types [6]. However, the acquisition of optical data depends heavily
on clear sky conditions. In areas with high frequency cloud cover, it is difficult to get enough usable
images [7], which hugely limits the application of dynamic crop monitoring [8]. Synthetic aperture
radar (SAR) can collect data regardless of weather conditions, solving the main problem of optical
sensors [9]. With the continuous development of SAR sensors, several studies have demonstrated that
SAR data has great potential to distinguish various land cover types [10,11]. However, compared to
optical data, SAR data has not been well used in agriculture [6].

Sentinel-1 provides high revisit frequency data and free access to historical archives, which greatly
improves the availability of SAR time-series in agricultural monitoring [12]. Some efforts have been
devoted to using Sentinel-1 data from the intensive time series for crop mapping and monitoring [13,14].
Nevertheless, these studies directly input the amplitude of the Sentinel-1 image (converted to dB scale),
while neglecting the phase information. Phase information is unique to the SAR image, and it plays an
important role in some retrieval applications (e.g., target recognition and classification). In particular,
the phase information of the off-diagonal elements in the coherence/covariance matrix can characterize
different land cover types [15]. Unfortunately, rich information and complex-valued data format make
polarimetric synthetic aperture radar (PolSAR) image interpretations difficult.

Up to now, various methods have been developed to process and analyze PolSAR data.
Some methods are based on the scattering mechanism of PolSAR data, such as Cameron decomposition,
H/a/ alpha decomposition [16], Freeman decomposition [17], and so forth. These methods have strong
physical interpretability. Unfortunately, Sentinel-1 is a dual-polarized SAR, and there are few methods
applicable to dual-polarization information decomposition. In complex scenarios, such as agricultural
land, it is not easy to use only one decomposition method to distinguish all crop types [18]. There are
also some methods based on machine learning techniques for crop mapping, such as random forest
(RF) [19], support vector machine (SVM), and AdaBoost [20]. These methods have strong universality,
but the ability of feature extraction is limited [21]. For information extraction in a complex agricultural
area, satisfactory results may not always be obtained. In short, most existing PolSAR feature extractors
have limitations for Sentinel-1 images crop classification. Thus, it is urgent to develop a proper way of
feature representations to make full use of the polarization information in Sentinel-1 data.

With the development of deep learning strategies, several solutions are provided for such tasks.
The main attraction of deep learning strategies is that they can extract high-level features with an
end-to-end learning strategy [5]. The deep learning-based image processing model represented
by convolutional neural networks (CNNs) is often used to interpret SAR data, such as SAR image
denoising [22], SAR target identification [23], and PolSAR image classification [24]. Zhang et al. [15]
designed a complex-valued convolutional neural network (CV-CNN) to fit the complex-valued PolSAR
data, where both the amplitude and phase information is used for image classification. In this work,
the regular patches extracted from PolSAR image are regarded as the CNN input, thus the geometric
features and topological relations within patches have been considered [25]. Moreover, due to the
scattering properties of PolSAR data, there is also a coupling relationship between the phase information
and directions received through transmitting. Therefore, some related studies proposing an extraction
of the phase information by using a depthwise separable convolutional neural network [26] have
achieved better results than those obtained through the conventional convolutional networks. Although
these networks focused on spatial and polarization feature extraction, the temporal feature remains
unexploited. Therefore, these methods may not be very suitable for research in agricultural areas.

The temporal feature is one of the most important indicators for crop classification because of its
unique patterns through the temporal domain. For instance, the structural characteristics and water
content of crops may vary greatly at different phenological stages with various crops. Recurrent neural
networks (RNN) have the ability to analyze sequential data, and are often considered as the preferred
choice to learn the temporal relationship for time series signal process [27]. Also, some studies have
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demonstrated the advantages of using RNN as a temporal extractor compared with other methods.
For example, Ndikumana et al. [14] designed the RNN framework to explore the temporal correlation
with Sentinel-1 data for crop classification. Meanwhile, some studies have proposed combined
methods by combining cyclic and convolution operations to process spatio-temporal cubes [28].
For instance, Rubwurm and Korner [29] designed a convolutional Recurrent model (convRNN) to
tackle land cover classification in the Sentinel-2 time series. Compared to single model methods,
the combined models generally provide better performance. Thus, it is necessary to develop a combined
model that simultaneously considers the spatial-polarization-temporal features for time series SAR
image classification.

In this study, we propose a Sentinel-1 time-series crop mapping strategy to further improve
the classification accuracy. To serve this purpose, deep learning strategies were introduced to
understand the spatial-temporal patterns and scattering mechanisms of crops. To be specific, we use
the Sentinel-1 covariance matrix as the input vector to provide polarization features information for
deep network training. Then, a novel depthwise separable convolution recurrent neural network
(DSCRNN) architecture is proposed to better extract complex features from the Sentinel-1 time series,
which integrates the operations of cyclic and convolution. Moreover, in order to better model the
potential correlations from the phase information, the conventional convolution is replaced by the
depthwise separable convolutions. The main contributions of this paper are:

1. By using the decomposed covariance matrix, the potential of the Sentinel-1 time series in crop
discrimination is fully explored.

2. An effective crop classification method is proposed for time-series polarimetric SAR data by
considering the temporal patterns of crop polarimetric and spatial characteristics.

The rest of this paper is organized as follows. Study areas and data are described in Section 2.
Section 3 details the specific architecture and method of DSCRNN. Section 4 presents the results of the
classification. The discussion and conclusion are presented in Sections 5 and 6, respectively.

2. Study Area and Data

2.1. Study Area

California is the largest agricultural state in the United States of America (U.S.) [30]. This indicates
the significance of crop mapping in California. Thus, this study is carried out at two different sites in
California, henceforth referred to as study area 1 and study area 2 (Figure 1).

Study area 1 is situated in Imperial, Southern California, at 33◦01′N and 115◦35′W, covering a
region about 10 km × 10 km. The area is in the Colorado Desert, with a tropical desert climate, which is
very hot. The area has one of the highest yields of crops such as alfalfa, onions, and lettuce in California.
The average mean temperature is higher than 27 ◦C [31], and the temperature variation is also very
large. There was little rain throughout the year, below the mean annual precipitation in the U.S. Six
classes were selected for analysis: winter wheat, alfalfa, other hay/non-alfalfa, sugar beets, onions,
and lettuce.

Study area 2 is situated in an agricultural district stretching over Solano and Yolo counties of
California, Northern California, at 38◦26′N and 121◦44′W, covering a region about 10 km × 10 km.
The area has a Mediterranean climate, characterized by dry hot summers and wet cool winters [32].
The region is flat, the agricultural system is complex, and one of the most productive agricultural
areas in the U.S. It has an annual precipitation of about 750 mm, concentrated in the spring and
winter [33]. Seven major crop types were selected for analysis: walnut, almond, alfalfa, winter wheat,
corn, sunflower, and tomato.
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Figure 1. The study areas in California. The crop areas of interest (AOI) in study area 1 and 2 with 
true color composite of Sentinel-2. (a) study area 2 dated on 2019/02/10 (b) study area 1 on 2018/03/12. 

2.2. Data 

2.2.1. Sentinel-1 Data 

In this study, the Sentinel-1 Interferometric Wide (IW) Single Look Complex (SLC) products 
were used. All the images were downloaded from the Sentinel-1 Scientific Data Hub. Since the major 
agricultural practices in both study areas were in spring and summer, we focused our data analysis 
on these seasons.Figure 2 shows the time distribution of Sentinel-1 images collected in the two study 
areas. In total, 15 scenes of Sentinel-1A images from 2018 were collected in the study area 1, and 11 
Sentinel-1A images from 2019 were collected in study area 2. 

The pre-processing of time series Sentinel-1 images was done using the sentinel application 
platform (SNAP) offered by European Space Agency (ESA). Data preprocessing consists of five steps: 
(1) terrain observation by progressive scans synthetic aperture radar (TOPSAR) split, (2) calibrate 
Sentinel-1 data to the complex number, (3) debursting, (4) refined Lee filter, and (5) range-doppler 
terrain correction for all images using the same digital elevation model data (SRTM DEM 30 m). Since 
we hoped that this study would facilitate the fusion of Sentinel-1 and Sentinel-2 features, we projected 
the data to the UTM reference and re-sampled it to 10 m to co-registration Sentinel-2. 

Sentinel-1 backscatter images were generated to investigate the relative importance of input data 
to crop classification. The steps include: (1) thermal noise removal, (2) apply orbit file, (3) 
radiometrically calibrated to sigma0, (4) geocoding, and (5) backscatter images (δ) transform to the 
logarithmic dB scale [34]. 

Figure 1. The study areas in California. The crop areas of interest (AOI) in study area 1 and 2 with true
color composite of Sentinel-2. (a) study area 2 dated on 2019/02/10 (b) study area 1 on 2018/03/12.

2.2. Data

2.2.1. Sentinel-1 Data

In this study, the Sentinel-1 Interferometric Wide (IW) Single Look Complex (SLC) products were
used. All the images were downloaded from the Sentinel-1 Scientific Data Hub. Since the major
agricultural practices in both study areas were in spring and summer, we focused our data analysis on
these seasons. Figure 2 shows the time distribution of Sentinel-1 images collected in the two study
areas. In total, 15 scenes of Sentinel-1A images from 2018 were collected in the study area 1, and 11
Sentinel-1A images from 2019 were collected in study area 2.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 19 
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The U.S. Department of Crop (USDA) Cropland Data Layer (CDL) of 2018 and 2019 was used as 
the reference data for crop classification and to test the experiment. The data is published regularly 
by the USDA and covers 48 states [35]. CDL has been widely used in all kinds of remote sensing crop 
research because of its high quality. However, there are some misclassifications in the data [36]. 
Through visual inspection, it was found that the misclassified pixels of CDL were concentrated at the 
boundary of the crop fields. Therefore, we performed a manual drawing of the reference data 
according to the CDL (Figure 3). 
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Table 1. Number of pixels for each of the 6 classes in study area 1. 
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Dry beans 19718 
Other hay 41834 

Figure 2. Data acquisition date in two study areas.

The pre-processing of time series Sentinel-1 images was done using the sentinel application
platform (SNAP) offered by European Space Agency (ESA). Data preprocessing consists of five steps:
(1) terrain observation by progressive scans synthetic aperture radar (TOPSAR) split, (2) calibrate
Sentinel-1 data to the complex number, (3) debursting, (4) refined Lee filter, and (5) range-doppler
terrain correction for all images using the same digital elevation model data (SRTM DEM 30 m).
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Since we hoped that this study would facilitate the fusion of Sentinel-1 and Sentinel-2 features,
we projected the data to the UTM reference and re-sampled it to 10 m to co-registration Sentinel-2.

Sentinel-1 backscatter images were generated to investigate the relative importance of input data to
crop classification. The steps include: (1) thermal noise removal, (2) apply orbit file, (3) radiometrically
calibrated to sigma0, (4) geocoding, and (5) backscatter images (δ) transform to the logarithmic dB
scale [34].

2.2.2. Cropland Reference Data

The U.S. Department of Crop (USDA) Cropland Data Layer (CDL) of 2018 and 2019 was used as
the reference data for crop classification and to test the experiment. The data is published regularly
by the USDA and covers 48 states [35]. CDL has been widely used in all kinds of remote sensing
crop research because of its high quality. However, there are some misclassifications in the data [36].
Through visual inspection, it was found that the misclassified pixels of CDL were concentrated at
the boundary of the crop fields. Therefore, we performed a manual drawing of the reference data
according to the CDL (Figure 3).Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 19 
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crop types) for 2018 and 2019, respectively. (c) (f) manually labeled ground reference data. 
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Figure 3. Ground truth maps of the study area. (a) RGB image of study area 1 from Sentinel-2 on
2018/03/12, (d) RGB image of study area 2 from Sentinel-2 on 2019/02/10. (b,e) the CDL data (major crop
types) for 2018 and 2019, respectively. (c,f) manually labeled ground reference data.

The process of drawing labeled data consists of three steps. First, the spatial resolution of the CDL
is resampled to 10 m before Sentinel-2 images overlaid on the CDL image to determine the crop field
boundary. Secondly, the field of each major crop is manually delineated and buffered one pixel inward
from the field boundary. Finally, fields of the same crop type are combined into a class. Detailed
information about the modified labeled data are reported in Tables 1 and 2.
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Table 1. Number of pixels for each of the 6 classes in study area 1.

Class Number of Pixels

Alfalfa 240,969
Sugar beets 91,176

Lettuce 50,504
Onions 46,053

Winter wheat 20,627
Other hay 33,017

Table 2. Number of pixels for each of the 7 classes in study area 2.

Class Number of Pixels

Almond 56,435
Winter wheat 34,308

Alfalfa 148,189
Sunflower 40,049

Tomato 44,277
Dry beans 19,718
Other hay 41,834

3. Methods

3.1. Representation of Sentinel-1 Data

PolSAR image can be represented by a 2×2 complex scattering matrix S. However, Sentinel-1
only provides dual-polarization information. Therefore, the expression of S needs to be modified.
The backscattering matrix of Sentinel-1 is expressed as:

S =

[
0 0

SVH SVV

]
, (1)

where SVH and SVV are backscattering coefficients under different polarimetric combinations. H and
V represent the horizontal and vertical directions of the electromagnetic wave, respectively.

Since the scattering matrix S is an inadequate representation of the scattering characteristics of
complex targets [37], the covariance matrix C is used. This is written as:

Cdual =


〈
SVVS∗VV

〉 〈
SVVS∗VH

〉〈
SVHS∗VV

〉 〈
SVHS∗VH

〉  = [
C11 C12

C21 C22

]
, (2)

where C11, C12, C21, C22 are the members of the covariance matrix, and * is the conjugate operation.
It can be seen from Equation (2) that the diagonal value of the matrix Cdual is real and the

off-diagonal complex value. Since the matrix Cdual is a symmetric matrix, this means that {C11, C12, C22}

contain all the information about Cdual. We separate the true and imaginary parts of C12 and convert
them to real values. Thus, we get a 4-dimensional vector:

Cv =
{
C11, re(C12), im(C12), C22

}
, (3)

where re and im represent the real and imaginary parts of complex numbers, respectively.
Finally, in order to accelerate the convergence of the model, each pixel is normalized. The equation is:

Cv[i] =
Cv[i] −Cv−min[i]

Cv−max[i] −Cv−min[i]
, (4)

where i represents channel of Cv. Cv−max and Cv−min are the maximum and minimum values of ith
channel, respectively.
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3.2. Architecture of DSCRNN Network

Figure 4 shows the proposed DSCRNN architecture. In order to maintain the integrity of the
Sentinel-1 data, the covariance matrix vectors are sliced into patches as the input of the neural network.
Then, the patches of T timestamps are fed into the DSCRNN. In this step, the same depthwise separable
convolution operation is performed for the patches of each timestamp to obtain the feature sequence.
Finally, the attentive LSTM layer is input to produce the crop classification. Next, we introduce the
components of the architecture and its advantages.
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Figure 4. The general view of the proposed depthwise separable convolution recurrent neural network (DSCRNN).

3.2.1. Depthwise Separable Convolution

As shown in Figure 5, the convolution mechanism in the conventional CNNs extracts features
from all dimensions of each image, including the spatial dimension and channel dimension [21].
For conventional CNNs, suppose the three-dimensional (3D) tensor x ∈ IRH×W×D input network,
where H, W, and D are the height, width, and depth of the input. This is written as:

Conv(x, f )(i, j) =
H,W,D∑
h,w,d

fh,w,d · xi+h, j+w,d, (5)

where f is the trainable parameter, (i, j) is the location of output feature maps, (h, w, d) is an element in
x, which is in spatial location (h, w) and in the d′s channel.
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Depthwise separable convolution is successfully applied to Xception [26] and MobileNet [38].
Different from the conventional CNNs, the depthwise separable convolution can be divided into
depthwise convolution and pointwise convolution. To be specific, the depthwise separable convolution
convolves kernels of each filter with each input channel, and pointwise convolution [39]. This is
written as:

DConv(x, f )(i, j) =
H,W∑
h,w

fh,w · xi+h, j+w (6)
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PConv(x, f )(i, j) =
D∑
d

fd (7)

where DConv is the depthwise convolution, PConv is the pointwise convolution, and fd represents a
convolution filter of size 1. Compared with the conventional CNNs, the parameters of the depthwise
separable convolution are significantly reduced [40].

For the data which is closely related between channels, the depthwise separable convolution
may yield better results [41]. Cdual matrix contains the phase information and amplitude information.
This means that the correlations between multi-channel can express the structure information of the
crop. Therefore, depthwise separable convolution is more suitable for feature extraction in PolSAR
images than conventional CNNs [41].

3.2.2. Attentive Long Short-Term Memory Neural Network

LSTM is one representative RNN architecture with the ability to maintain a temporal state between
continuous input data and it learns from long-term context dependencies [42]. Compared with RNN,
the inner structure of the hidden layer in LSTM is more complex [43]. An LSTM block consists of a
memory cell state, forget gate, input gate, and output gate. The specific steps of LSTM at time t are
as follows:

The previous cell state of Ct−1 is passed to the forget gate Ft, and the sigmoid activation function
is used to determine the proportion of discarded information. This can be represented as:

Ft = Sigmoid(WFxxt + WFhht−1 + biasF) (8)

Sigmoid(x) =
1

1 + e−x (9)

Then, through the input gate It, it decides the percentage of the new information C̃t is stored in
cell state Ct for input x, where the input gate It should be updated. This is written as:

It = Sigmoid(WIxxt + WIhht−1 + biasI) (10)

C̃t = tanh(WCxxt + WChht−1 + biasC) (11)

tanh(x) =
ex
− e−x

ex + e−x (12)

Update the present cell state Ct based on multiplying the cell state Ct−1 of the previous step by Ft

and the updated information C̃t by It. This can be represented as follow:

C j = Ft ∗Ct−1 + It ∗ C̃t (13)

Finally, confirm the new hidden state h in the output gate Ot, where the new cell state C j is used.
This can be written as:

Ot = Sigmoid(WOxxt + WOhht−1 + biasO), (14)

ht = Ot ∗ tanh(Ct), (15)

where WFx, WFh, WIx, WIh, WOx, WOh, WCx, WCh are the weight matrices and bias is the trainable
bias term.

Finally, we couple LSTM with an attention mechanism that can connect the information extracted
by the recursive neural network model in different time-lapse. Intuitively, the attention mechanism
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supports the model to pay attention to specific time stamps and discard useless contextual information.
This is written as:

rnn f eat =
N∑

j=1

so f tmax(tanh(xt, f ))× h j. (16)

where xt is the input vector at time t, h j is the output vector at time j, and f is the set of all trainable
parameters. The purpose of this step is to learn a set of weights to measure the importance of the
temporal information.

As discussed in Section 3.2.1, a 3D tensor is an input into the convolution network to obtain a feature
vector cnn f ea. In this way, the Sentinel-1 time-series data can be regarded as a 4D tensor x ∈ IRH×W×D×T

where T is the temporal dimension. This means that for each individual patch, the output feature
returned by the depthwise separable convolution model is Seqcnn

f eat (cnn f ea1, cnn f ea2, · · · cnn f eat), where the
feature map cnn f eat represents the feature vectors of depthwise separable convolution at time step t,
and each output feature has the same dimensions. Then, the convolved feature sequence Seqcnn

f eat is
inputted into the attentive LSTM layer, and output a feature vector rnn f eat. Finally, with the feature
vector rnn f eat, labels can be further assigned using the softmax classifier, as follow:

pi = so f tmax
(
rnn f eat

)
i
=

ernn f eat∑n
j=1 ernn f eat

, (17)

where pi is the probability that rnn f eat belonging to class i.

3.3. Competing Methods

In order to evaluate the performance of DSCRNN, several classification methods such as SVM, RF,
Conv1D, and LSTM were selected for comparison. In addition, in order to investigate the interplay
among the different components of DSCRNN, we disentangle the different parts of our framework.
They are simply recorded as Network (Net) A to Net C in the order of appearance for convenience:
Net A is based on a conventional CNN as shown in Figure 6a, Net B is based on depthwise separable
convolution as shown in Figure 6b, and Net C is based on a CRNN (using attentive LSTM and
conventional CNN) as shown in Figure 6c.
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3.4. Dataset Partition

In crop classification tasks, the labeled data is usually very limited. Therefore, according to the
modified ground truth data, we randomly select 1% of all available samples for each crop type as the
training set. For a model with a single-pixel as the input (e.g., RF, Conv1D, and LSTM), the time series
of the pixel corresponding to the labeled data is used as the input vector. For the DSCRNN and variant
model, we take a sample (labeled data) as the center point, and then we segment a square patch with
the size of 18×18 as input. The remaining non-overlapping samples for each study area are used for
testing (Table 3). It is important to note that there is no overlap between training and testing [44].

Table 3. The detail information of two study areas used in experiments.

Training Samples Testing Samples

Study area1 4837 16,124
Study area2 3707 10,131

3.5. Experimental Designs

In this study, a carefully designed DSCRNN model is applied. In order to make full use of the
rich information of the Sentinel-1 time series, the covariance matrix is used as an input vector to train
the model. The main crop vectors from the manually drawn reference data are identified to guide
the sample extraction for Sentinel-1 data. Take the study area 1 as an example; the sizes of input
samples are set to 15 × 18 × 18 × 4. For the first depthwise separable convolution layer, the inputs
are converted to 15 × 16 × 16 × 32. In this step, firstly, four 3 × 3 × 1 convolutional kernels are used
to convolute every single channel of the input map to obtain four 15×16×16 feature maps. Secondly,
thirty-two 1 × 1 × 4 convolution kernels are convoluted and generate 15 × 16 × 16 × 32 outputs. Then,
the second depthwise separable convolution layer has sixty-four convolutional kernels to obtain a
15 × 14 × 14 × 64 output map, which is then downsampled to 15 × 7 × 7 × 64 with the max pooling
operations. After the max pooling layer, the output feature map is flattened. Next, the temporal
features can be extracted by the attentive LSTM with 150 hidden units. Finally, a softmax classifier
outputs the 6 different labels. In the training stage, the Adam optimizer [45] was used and fixed as:
learning rate = 0.001, β1 = 0.9, β2 = 0.999, ε = 1 × 10−7 [5], and the batch size was set to 200. In all the
following experiments, the patch size is set to 18.

The Conv1D model consists of one convolution layer with 512 filters, one max-pooling layer,
and one fully connection layer. The LSTM model consists of two hidden layers with 150 units for each
layer. Net A, Net B, and Net C all have a similar architecture to DSCRNN, except for the differences
in some key components in DSCRNN (i.e., depthwise separable convolution and attentive LSTM).
The neural net models are implemented using the Python TensorFlow library, while other models are
implemented using the Python Scikit-learn library [46].

Considering leveraging the RF and SVM classifier, we optimize RF via tuning the number of trees
in the forest and the maximum depth of each tree, and the SVM by adjusting C and gamma. We employ
a “grid search” strategy to select the optimal parameters of the classifier: the classifier is repeatedly
trained many times to select the optimal combination of parameter values. The number of trees values
in the set of {200,400,600,800,1000}, the maximum depth of each tree in the range {20,40,60,80,100}, C in
the set {0.001,0.01,0.1,1,10,100,1000,3000,5000,10,000}, and gamma in the set {0.1, 1,2,5,10}. The average
accuracy (AA) [47], overall accuracy (OA), kappa coefficient (kappa), and F1-score are used as the
criteria for evaluating the performance of the models.
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4. Results

4.1. Classification Results

In this section, we describe and discuss the experimental results obtained on the two study date
sets introduced in Section 2. We evaluate the performance of DSCRNN and then compare it with
several competing methods.

4.1.1. Results on Study Area 1

The results of crop classification in study area 1 obtained by different methods are shown in
Figure 7. Obviously, for competitive methods such as SVM, RF, Conv1D, and LSTM, there is a lot of
speckle noise in the classification maps, which results in a low accuracy for crop mapping. However,
the spatial feature-based methods, especially DSCRNN, produced a noise-proof classification map.
Table 4 lists the detailed accuracy assessment of these classification methods. It can be easily noticed that
the overall classification accuracy of DSCRN (0.9603) is higher than that of LSTM (0.8744), RF (0.8911),
Conv1D (0.8998), Net A (0.9092), and the differences between the Net B (0.9477), Net C (0.9486),
and DSCRNN are not significant. However, it can be found that the AA, OA, Kappa, and F1-score
of DSCRNN are slightly higher than Net B and Net C. From the tables, the overall accuracy of Net B
(OA: 0.9477) is significantly higher than that of Net A (OA: 0.9092), which indicates that the depthwise
separable convolution can achieve a better classification than conventional CNN in study area 1. This is
because depthwise separable convolution can improve the ability to extract information from the phase
of Sentinel-1 images. Similarly, the OA of Net C is slightly higher than Net A. This result confirms the
importance of introducing time series temporal information into the SAR image classification.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 19 
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Table 4. Results of study area 1.

Class SVM RF Conv
1D LSTM Net A Net B Net C DSCR

NN

alfalfa 0.8695 0.8457 0.9004 0.8859 0.9436 0.9535 0.9509 0.9537
sugar beets 0.8858 0.9652 0.9380 0.9127 0.9164 0.9455 0.9821 0.9838

lettuce 0.9164 0.9700 0.8667 0.7978 0.8346 0.9977 0.9535 0.9687
onions 0.9158 0.9611 0.9410 0.9377 0.9960 0.9766 0.9443 0.9818

winter wheat 0.8169 0.9827 0.8161 0.8284 0.6948 0.8441 0.9449 0.9947
other hay 0.7459 0.9016 0.8021 0.6958 0.8273 0.8434 0.8270 0.8539

AA 0.8584 0.9377 0.8774 0.8430 0.8688 0.9268 0.9338 0.9561
OA 0.8735 0.8911 0.8998 0.8744 0.9092 0.9477 0.9486 0.9603

Kappa 0.8069 0.8297 0.8487 0.8110 0.8757 0.9284 0.9296 0.9456
F1_score 0.8709 0.8876 0.8982 0.8733 0.9086 0.9477 0.9483 0.9601

4.1.2. Results on Study Area 2

The classification results of study area 2 with various classification methods are shown in Figure 8.
The characteristics of the different crop types in study area 2 are very similar, which elevates the
difficulty of performing an accurate classification. Therefore, the classification performances of all
methods decrease compared with those of study area 1. Table 5 reports the classification accuracy
of each method; it can be seen that DSCRNN still has a high overall classification accuracy (0.9389).
It is worth noting that the Kappa of DSCRNN is 2.79% and 2.59% higher than that of Net B and Net
C. This shows that the combination of depthwise separation convolution and CRNN makes more
improvements in crop classification than using CRNN or depthwise separation convolution alone.
In the comparison with Net A and Net B, it can be seen that for the same architecture (CNN and
depthwise separable convolution), depthwise separable convolution improves the accuracy of alfalfa
(0.9096 vs. 0.9575) significantly. Similarly, in the comparison between Net A and Net C, we can
find that the context information for time series remarkable improvement in recognizing other hay
(0.7766 vs. 0.8912). In addition, DSCRNN has a good recognition performance for alfalfa and other
hay (0.9634 and 0.9549, respectively), which benefits from the utilization of the phase and temporal
information of time series data.

Table 5. Classification results of study area 2.

Class SVM RF Conv
1D LSTM Net A Net B Net C DSCR

NN

almond 0.7726 0.6887 0.8702 0.8418 0.8876 0.8456 0.8443 0.8736
winter wheat 0.6871 0.8487 0.8428 0.7229 0.9383 0.9274 0.9608 0.9403

alfalfa 0.8357 0.8122 0.8690 0.8771 0.9096 0.9575 0.9807 0.9634
sunflower 0.8950 0.8532 0.8859 0.9029 0.9254 0.9652 0.9716 0.9524

tomato 0.7467 0.6818 0.7836 0.8088 0.8744 0.8249 0.7913 0.9706
dry beans 0.7710 0.9492 0.7435 0.8177 0.8750 0.9126 0.8568 0.8707
other hay 0.5110 0.7252 0.7556 0.7700 0.7766 0.7623 0.8912 0.9036

AA 0.7455 0.7942 0.8215 0.8202 0.8838 0.8851 0.8925 0.9249
OA 0.8027 0.7894 0.8412 0.8378 0.8983 0.9110 0.9130 0.9389

Kappa 0.7337 0.7133 0.7960 0.7926 0.8640 0.8823 0.8850 0.9191
F1_score 0.7970 0.7760 0.8396 0.8359 0.8966 0.9103 0.9121 0.9390
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4.2. Influence of Different Input Data

In this section, experiments are implemented with different input data to verify the improvement
when using the covariance matrix of Sentinel-1 images instead of backscattering (VV and VH).
The common methods (RF, Net A, and Net B) with the input of amplitude are abbreviated as RF-v1,
Net A-v1, and Net B-v1, while the models using covariance matrix input are noted as RF-v2, Net A-v2,
and Net B-v2. Experiments are carried out on the Study area 1.

The results are reported in Table 6. In this study area 1, the RF with the covariance matrix as input
always shows better performances, which confirms our hypothesis that the phase information indeed
provides more useful information for the crop classification task. Clearly, the performance of Net B-v2
is much better than that of Net B-v1 which demonstrates that the depthwise separable convolution is
helpful for extracting the underlying correlations of the phase information. However, Net A-v1 and
Net A-v2 have similar classification accuracy. This means that conventional convolution has limited
ability to extract information from the SAR phase.
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Table 6. Results of study area 1 (v1 is amplitude data and v2 is covariance matrix data).

AA OA Kappa F1_Score

RF-v1 0.9051 0.8652 0.7875 0.8592
Net A-v1 0.8818 0.8953 0.8580 0.8968
Net B-v1 0.8821 0.9004 0.8640 0.9009

RF-v2 0.8914 0.8843 0.8256 0.8795
Net A-v2 0.8688 0.9092 0.8757 0.9086
Net B-v2 0.9268 0.9477 0.9284 0.9477

5. Discussion

5.1. Phase Information Importance

In this section, we discuss the contribution of the covariance matrix for crop classification. For most
of the previous researches on Sentinel-1 images crop mapping, it is common to only consider amplitude
information extraction and neglect the unique phase information of SAR. However, the complex-valued
polarization scattering matrix can extract useful phase information, and thus generate accurate
descriptions of crop type.

The classification results in Section 4 demonstrated that the RF with the covariance matrix as
input has greater overall classification accuracies than backscatter features. It should be noted that
the classification accuracy of the conventional convolution on the two data sets is similar (0.8953 and
0.9092, respectively). One possible reason may be that there is a significant difference between the
phase information and the amplitude information, so the phase information may not be fully utilized
when using conventional amplitude image classification methods (e.g., conventional CNN).

Further, to validate the importance of feature representations [48], the RF classifier with all
available features (90 features) is utilized to investigate the importance of the input features for crop
classification. For visual comparison, we add up the contribution score of features to represent the
importance of each feature and list them through the temporal axis in Figure 9. It is clear from Figure 8
that the features derived from the covariance matrix are generally more important compared to the
backscatter ones. This suggests that neglected phase information can be used to identify different types
of scatterers. Also, for the images collected in January, the covariance matrix is the most important
feature representation with the importance of 0.0653 and 0.0935, respectively. In particular, for the
entire time series data dataset, the images collected from January to March, the covariance matrix has
the most important impact on crop classification. This indicates that the largest separability amongst
crop types in study area 1 occurred during this period. In contrast, for the May to June time series
imagery, the phase information has limited influence on crop identification. It is important to note that
the more time series images are collected, the less important the phase information may be.
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5.2. Pros and Cons

In this work, we demonstrated that combining phase information and amplitude information from
the Sentinel-1 time-series data can be used to classify crops in complex agricultural areas. Most of the
time, for the Sentinel-1 covariance matrix images, both the classical method and the model proposed in
this study obtain good classification accuracy. It is worth noting that the proposed DSCRNN has the
highest overall classification accuracy in two study areas—AA, OA, Kappa, and F1-score of DSCRNN
are above 0.91 for both study areas. Moreover, we explored the contributions of depthwise separable
convolution and Attentive LSTM to the Sentinel-1 images classification to demonstrate the robustness
of the DSCRNN. To be specific, in the comparison between Net A and Net B, it can be found that the
overall accuracy of Net B is about 5 and 2 percentage points higher than that of Net A for both two
study areas. Similarly, from the classification results of Net A and Net C, Attentive LSTM extracts
temporal features from Sentinel-1 images are beneficial to the recognition of some complex crops
(such as sugar beets). In terms of Net B and Net C, the difference between them is not obvious in study
area 1. However, in study area 2, it is clear that Net C is superior to Net B. It seems that differences
are related to the complexity of the study area. This indicates that for complex agricultural areas, it is
difficult to fully describe the unique structure of crops by scattering characteristics alone, which can
result in false recognition. In contrast, the unique growth patterns of crops are much easier to be
distinguished than their structures.

In addition, some limitations of the proposed methodology must be stressed. First, the impacts of
inaccurate labeled data. The classification method relies heavily on ground-truth maps. This means
that the low quality of labeled data will have a negative impact on the performances. Therefore,
we visually checked the CDL data and manual labeling the ground truth maps for higher accuracy.
Another weakness of DSCRNN is the complexity of the model with a high computational cost.

5.3. Potential Applications

In this section, we summarize some of the studies in this paper and their potential impact on
collaborative Sentinel-1 and Sentinel-2 data for crop mapping. The analysis of Sentinel-1 time series
data led to recommendations for Sentinel-1 data selection in the synergy use of these two time-series.
Our results have shown that the classification results with the Sentinel-1 covariance matrix as the input
are better than the backscatter images, suggesting that much more valuable information is provided
by the covariance matrix. As such, it is possible to use the covariance matrix data to replace the
commonly used backscatter images to coordinate with the Sentinel-2 data. The analysis of DSCRNN
classification results led to recommendations for Sentinel-1 branch selection in custom architectures.
To be specific, in some collaborative Sentinel-1 and Sentinel-2 studies, the use of well-designed custom
networks has been proposed (e.g., the two-branch architecture). With the help of two network branches,
different types of Sentinel-2 and Sentinel-1 information can be processed differently to obtain the
information on the two branches). DSCRNN has shown strong competitiveness in the experiments of
the two study areas. Therefore, DSCRNN as a Sentinel-1 branch in two-branch networks may be of
great help to improve crop classification performance.

6. Conclusions

In this study, we proposed a combined strategy for crop classification using Sentinel-1 time
series data. Different from previous studies, the Sentinel-1 time series stack was replaced by the
complex-valued covariance matrix instead of the commonly used backscatter signals. In this way,
the original information of Sentinel-1 images could be effectively retained. Moreover, we proposed
the DSCRNN architecture to characterization of crop type from multiple perspectives (spatial
characteristics, phase correlation, and temporal information). The architecture utilized depthwise
separable convolution to better formulate the potential correlation of the phase and spatial information
of Sentinel-1 images. On this basis, we further introduced the Attentive LSTM into the network to extract
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the temporal relationship from the feature sequences. Compared to previous studies, the proposed
method provided an accurate crop mapping result even with complex crop areas. For future works,
we will focus on the combination of Sentinel-1 and Sentinel-2 data to boost crop mapping accuracy.
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