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ABSTRACT
Current remote sensing products are mainly generated from polar- 
orbiting satellite data using parameter-specific algorithms. These 
products lack physical consistency and cannot accurately charac
terize intra-day variations of parameters, such as the fraction of 
absorbed photosynthetically active radiation (FAPAR) and surface 
albedo. In this study, a multi-parameter consistent retrieval method 
is proposed to simultaneously retrieve aerosol optical depth (AOD), 
leaf area index (LAI), photosynthetically active radiation (PAR), 
FAPAR, surface albedo, and incident shortwave radiation (ISR) 
from top of atmosphere (TOA) reflectance data acquired by the 
Advanced Baseline Imager (ABI) aboard the Geostationary 
Operational Environmental Satellite-R series (GOES-R). The retrieved 
parameter values were evaluated through comparisons with corre
sponding Moderate Resolution Imaging Spectroradiometer 
(MODIS), the second version of the Geoland2 (GEOV2), and GOES- 
R products and ground measurements over five surface radiation 
budget network (SURFRAD) sites with different vegetation types. 
The results demonstrate that the retrieved AOD, PAR, ISR, and sur
face albedo values have consistent intra-day variations with the 
ground measurements, and the retrieved parameter values achieve 
good performance against the ground measurements for all the 
five SURFRAD sites. The root mean square errors of the retrieved 
AOD, shortwave albedo, ISR, and PAR values against the ground 
measurements are 0.071, 0.032, 50.943 W m–2, and 27.975 W m–2, 
respectively.
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1. Introduction

In order to monitor the status of terrestrial, oceanic, and atmospheric resources on 
a global scale, a variety of satellites were launched. These satellites can be divided 
approximately into two categories: polar-orbiting satellites and geostationary satellites. 
Common polar-orbiting satellites include Terra equipped with Moderate Resolution 
Imaging Spectroradiometer (MODIS) (Salomonson et al. 1989), National Oceanic and 
Atmospheric Administration (NOAA) Polar-Orbiting Environmental Satellite (POES) 
equipped with Advanced Very High Resolution Radiometer (AVHRR) (Townshend 2007), 
Landsat equipped with Multi-spectral Scanner (MSS)/Thematic Mapper (TM)/Enhanced 
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Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI), SPOT equipped with high- 
resolution visible (HRV)/high-resolution visible and infrared (HRVLR)/VEGETATION (Henry 
et al. 1996), Environmental Satellite (ENVISAT) equipped with Medium Resolution Imaging 
Spectroradiometer (MERIS), and Advanced Earth Observation Satellite (ADEOS) equipped 
with Polarization and Directionality of the Earth’s Reflectances (POLDER). Representative 
geostationary satellites mainly include Himawari-8 equipped with Advanced Himawari 
Imager (AHI) (Bessho et al. 2016), Geostationary Operational Environmental Satellite-R 
(GOES-R) equipped with Advanced Baseline Imager (ABI) (Schmit et al. 2008), and 
Communication, Ocean and Meteorological Satellite (COMS) equipped with 
Geostationary Ocean Colour Imager (GOCI). The sensors carried by these polar-orbiting 
and geostationary satellites have acquired a large amount of Earth observation data, 
which makes it possible to obtain remote sensing parameter products on a global scale.

Currently, various remote sensing products were generated from satellite observations. 
The National Aeronautics and Space Administration (NASA) produced a series of para
meter products, including aerosol optical depth (AOD), leaf area index (LAI), the fraction of 
absorbed photosynthetically active radiation (FAPAR), surface reflectance, and surface 
albedo, from MODIS observations. To date, the MODIS series products provide the widest 
range of applications. The Centre for Global Change Data Processing and Analysis of 
Beijing Normal University produced the Global Land Surface Satellite (GLASS) products, 
including LAI, surface albedo, broadband emissivity, photosynthetically active radiation 
(PAR) and incident shortwave radiation (ISR), from MODIS, AVHRR, and geostationary 
satellite data (Liang et al. 2013). There are also many similar products such as GEOV1/2 
and CYCLOPES LAI, FAPAR, and FCOVER products retrieved from SPOT/VEGETATION 
observations (Baret et al. 2007, 2013); GIMMS3 g LAI and FAPAR products generated 
from GIMMS NDVI3 g (Zhu et al. 2013), and the NOAA’s National Centres for 
Environmental Information (NCEI) LAI and FAPAR products derived from the NOAA 
AVHRR Surface Reflectance data (Claverie, Vermote, and Program 2014).

Although the quality of these parameter products has been hugely enhanced over 
previous versions, some problems still exist. Current parameter products are separately 
retrieved from different satellite observations by using the parameter-specific methods, 
which leads to physical inconsistency among them. Therefore, some studies have 
attempted to estimate multiple parameters simultaneously with the same physical 
model and assumptions. Xiao et al. (2015) proposed a data assimilation framework to 
simultaneously retrieve LAI, FAPAR, and surface albedo from MODIS time-series surface 
reflectance data. However, complex atmospheric corrections are required to produce 
surface reflectance data from top of atmosphere (TOA) satellite observations. To avoid 
the source of some errors caused by atmospheric correction, some methods were devel
oped to estimate remote sensing parameters directly from TOA reflectance data. 
Lauvernet et al. (2008) used a surface-atmosphere radiative transfer coupled models 
(PROSPECT+ SAIL+ SMAC) to retrieve AOD, LAI, LAI × Cab (chlorophyll a and b), and 
average leaf angle (ALA) from MERIS TOA reflectance data by exploiting spatial and 
temporal constraints. Shi et al. (2016) utilized a soil-canopy-atmosphere radiative transfer 
coupled model (ACRM+6 S) to simultaneously estimate LAI, AOD, PAR, FAPAR, surface 
albedo, and surface reflectance from MODIS TOA reflectance data. By using the same 
radiative transfer models, physical consistency among the retrieved parameters is 
ensured.
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The above work mainly used polar-orbiting satellite data to retrieve remote sensing 
parameters. However, many parameters such as AOD, PAR, ISR, and surface albedo have 
obvious intra-day variations. The parameter products generated from the polar-orbiting 
satellite data are insufficient if the intra-day variations of these parameters are required. 
Compared to polar-orbiting satellites, geostationary satellites are able to provide hourly 
or even higher-frequency observations. Therefore, some methods were developed to 
estimate remote sensing parameters from geostationary satellite data. Zhang et al. 
(2011) used a modified Multi-Angle Implementation of Atmospheric Correction (MAIAC) 
approach to estimate AOD from GOES-12 satellite data. This method can obtain values 
with a half-hourly temporal resolution. Zhang et al. (2013) developed a ‘hybrid’ method 
for consistent AOD retrievals from GOES-East and GOES-West TOA reflectance data.

In addition to the GOES series of geostationary satellite data, other geostationary 
satellite data, such as MSG/SEVIRI, GOCI, GEMS, and Himawari-8/AHI, have been also 
used to retrieve remote sensing parameters. Mei et al. (2012) developed an approach 
for synergistic estimation of AOD and surface reflectance from MSG/SEVIRI data. The 
retrieved AOD values have a high correlation coefficient with ground measurements 
from 42 Aerosol Robotic Network (AERONET) sites. Lee et al. (2010) developed 
a method to estimate aerosol types, AOD, and fine-mode fraction (FMF) with a spatial 
resolution of 500 m over clear water from GOCI data. This method showed reliable AOD 
retrievals compared with the MODIS collection 5 and AERONET AOD. Kim et al. (2018) 
developed an optimal estimation-based algorithm to retrieve AOD and single scattering 
albedo (SSA) simultaneously from ultraviolet to visible data, which acquired by the 
Geostationary Environment Monitoring Spectrometer (GEMS) over Asia. Based on aerosol 
models and band relationships between visible and shortwave infrared (SWIR) channels, 
Zhang, Hui, and Zheng (2018) proposed an algorithm to retrieve AOD over East Asia with 
high temporal resolution from Himawari-8/AHI data. The AOD retrievals are able to 
provide a reference for monitoring the variation of aerosols and forecasting air quality 
at an hourly scale. Shi et al. (2018) proposed an N-Dimensional Cost Function (NDCF) 
method to derive the synergistic retrieval of AOD at multiple time points from Himawari- 
8/AHI image data. This method used a flexible number of observations, took the bidirec
tional reflectance effect into consideration, and retrieved AOD with a half-hourly temporal 
resolution.

The studies above have greatly improved the temporal resolution of estimations by 
using geostationary satellite data. However, these methods mainly focus on estimating 
AOD. Currently, there are few studies on retrieving multiple parameters with intra-day 
changes from geostationary satellite data. This paper develops a new method to 
simultaneously estimate AOD, LAI, ISR, PAR, FAPAR, and surface albedo values with 
a higher temporal resolution up to 5 minutes from GOES-R TOA reflectance data. The 
superior temporal resolution enables the study of the intra-day changes of several 
parameters.

The structure of this paper is as follows: Section 2 introduces the method for surface 
and atmospheric parameter retrieval. The data used in this study (including GOES-R TOA 
reflectance data, satellite products for comparisons and ground measurements) are also 
introduced in this section. Section 3 shows the retrieval results, which are evaluated with 
ground measurements and existing products over the five selected sites. Section 4 
provides conclusions and discussion.
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2. Methodology and data

In the study, we developed a consistent retrieval method to simultaneously estimate 
multiple parameters from GOES-R TOA reflectance data. A soil-canopy-atmosphere radia
tive transfer coupled model is used to simulate TOA reflectance under a clear sky. The 
GOES-R TOA reflectance with cloud are screened out by the Savitzky-Golay filtering 
algorithm. The GLASS LAI and MERRA-2 AOD products are utilized to provide prior LAI 
and AOD values. A cost function, defined as the sum of the squares of the distances 
between the simulated TOA reflectance and the GOES-R TOA reflectance with the highest 
quality plus the squares of the distances between the control variables and the corre
sponding prior values, is constructed. Next, a global optimization method is applied to 
search the optimal estimates of LAI and AOD that minimizes the cost function. Then, the 
optimal estimates are input into the soil-canopy-atmosphere radiative transfer coupled 
model to calculate ISR, PAR, FAPAR, shortwave albedo, and visible albedo values. Figure 1 
shows a flowchart for the consistent retrieval of multiple parameters from GOES-R TOA 
reflectance data.

2.1. The soil-canopy-atmosphere radiative transfer coupled model

The soil-canopy-atmosphere radiative transfer coupled model developed by Shi et al. 
(2016) was used to simulate TOA reflectance. It coupled a two-layer canopy reflectance 
model (ACRM) with the Second Simulation of the Satellite Signal in the Solar Spectrum 
(6 S) model on the basis of the four-stream theory (Verhoef 1985). The ACRM coupled 
PROSPECT with a soil model. PROSPECT is a leaf optical properties model, which can 
simulate transmittance and reflectance of various plant leaves (Jacquemoud and Baret 
1990). The soil model, developed by Walthall et al. (1985), can simulate bidirectional 
reflectance of soil surfaces. The ACRM can simulate canopy reflectance in the wavelength 
range from 400 to 2400 nm for arbitrary observation geometry (Kuusk 2001).

The 6 S model is suitable for the simulation of the atmospheric radiative transfer 
process in the solar spectral range of 0.25 to 4 μm under clear-sky conditions (Vermote 
et al. 2006). In order to speed up the simulation, a look-up table (LUT) is generated. Path 
reflectance, atmospheric transmittance, and spherical albedo for the selected bands of 
GOES-R ABI were calculated under various atmospheric conditions and different geome
tries within a certain range: solar zenith angle and view zenith angle for 0° to 70° at 5° 
intervals; relative azimuth angle for 0° to 180° at 30° intervals; elevation for 0 to 3 km at 
0.5 km intervals; five predefined aerosol types of the 6 S model; and AOD of 550 nm for 0.0 
to 1.0 at a 0.05 interval.

Taking the multiple scattering among soil, canopy, and atmosphere media into con
sideration, the TOA reflectance, rTOA, can be expressed by the following general formula 
(Verhoef 1985; Verhoef and Bach 2003; Shi et al. 2016): 

rTOA ¼ ρso þ τssrsoτoo þ
τssrsd þ τsdrddð Þτdo þ τsd þ τssrsdρddð Þrdoτoo

1 � rddρdd
(1) 

where rso is the bi-directional reflectance at top of the canopy (TOC), rsd is the directional- 
hemispherical reflectance at TOC, rdo is the hemispherical-directional reflectance at TOC, 
and rdd is the bi-hemispherical reflectance at TOC, ρso is the atmospheric bi-directional 
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reflectance at TOA, and ρdd is the atmospheric bi-hemispherical reflectance at bottom of 
atmosphere, τsd is the diffuse atmospheric transmittance for solar incidence, τdo is the 
directional atmospheric transmittance for diffuse incidence, τss and τoo are the direct 
atmospheric transmittances in the direction of solar incidence and the observation 
direction, respectively.

Figure 1. Flowchart for the consistent retrieval of multi-parameters from GOES-R TOA reflectance data.
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Table 1 lists all of the input parameters of the coupled model. A global sensitivity 
analysis for the selected GOES-R bands indicates that LAI, AOD, leaf water content (c1), 
chlorophyll AB content (c2), leaf specific weight (SLW), and weight of the first Price 
function (s1) are the most sensitive parameters of the coupled model. These parameters 
were identified as control variables and marked by an asterisk in Table 1. In this study, the 
foliage clumping parameter (CI) was set to averages of the clumping index values from 
the global clumping index product generated by Jiao et al. (2014), Jiao et al. (2016, 2018) 
and Dong et al. (2018), and other parameters of the coupled model were set to default 
values.

2.2. Retrieval process of parameters

In this paper, a cost function is constructed to retrieve the optimal values of the control 
variables from cloud-free GOES-R TOA reflectance data. The form of the cost function can 
be expressed as 

J Xð Þ ¼
1
2

H Xð Þ � Yoð Þ
TO� 1 H Xð Þ � Yoð Þ þ

1
2

X � Xp
� �TC� 1 X � Xp

� �
(2) 

where X ¼ ½AOD; LAI; SLW;c1;c2;s1�
T is the vector of the control variables, vector Xp 

represents the prior values corresponding to the control variables, vector Yo represents 
the GOES-R TOA reflectance including four bands, and H Xð Þ is the vector of TOA reflec
tance simulated by the coupled model for the corresponding bands. Matrix O represents 

Table 1. Parameters for the coupled soil-canopy-atmosphere radiative transfer model.
Parameter name Symbol Range Unit

Aerosol optical depth at 550 nm* AOD 0.0 to 1.0 –
Leaf area index* LAI 0 to 10.0 m2 m−2

Leaf specific weight* SLW 40.0 to 200.0 g m−2

Leaf water content* c1 80.0 to 180.0 % of SLW
Chlorophyll AB content* c2 0.2 to 0.7 % of SLW
Leaf dry matter content c3 98.0 % of SLW
Anthocyanin c4 0.038 % of SLW
Leaf structure parameter ls 1.624 –
Weight of the first Price function* s1 0.05 to 0.4 –
Weight of the second Price function s2 0.0 –
Weight of the third Price function s3 0.0 –
Weight of the fourth Price function s4 0.0 –
Hot-spot parameter hs 0.1 –
Foliage clumping parameter CI 0.4 to 1.2 –
Displacement parameter szz 1.2 –
Elliptical leaf angle distribution eln 2.0 –
Modal leaf angle thm 75.0 °
Refraction index factor nratio 0.9 –

Table 2. The selected four bands of the GOES-R ABI sensor.
ABI 
channel

Band  
type

Wavelength range 
(µm)

Spatial resolution at nadir 
(km)

1 Blue 0.45 to 0.49 1.0
2 Red 0.59 to 0.69 0.5
3 NIR 0.85 to 0.88 1.0
5 SWIR 1.58 to 1.64 1.0
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the error covariance of GOES-R TOA reflectance and matrix C represents the error 
covariance of the prior information. In this study, the diagonal error covariance matrices 
were used. The uncertainty of the GOES-R TOA reflectance for each band is obtained by 
0.05 times the TOA reflectance of the corresponding bands. The uncertainty of AOD is 
calculated by 0.2 × AOD + 0.05 (Kaufman et al. 1997). The uncertainty of LAI is set to the 
standard deviations of the GLASS LAI product from 2000 to 2017.

The SCE-UA method was chosen to find the optimal values of the control variables by 
minimizing the cost function. The SCE-UA method is a robust global optimization method. 
It has a lower dependence on the initial values of parameters compared to other 
optimization methods (Duan, Gupta, and Sorooshian 1993).

After the optimal values of the control variables were obtained, they were input into 
the coupled model to calculate ISR, PAR, FAPAR, visible and shortwave albedo values. ISR 
is the sum of the incident solar radiation on the Earth’s surface in the range of 300 to 
3000 nm and can be expressed as 

ISR ¼ ò
3000

300
ESun λð Þ þ ESky λð Þ
� �

dλ (3) 

where ESun and ESky are direct and sky irradiance at the Earth’s surface, respectively.
PAR is the incident shortwave radiation in the 400 to 700 nm range and can be 

expressed as 

PAR ¼ ò
700

400
ESun λð Þ þ ESky λð Þ
� �

dλ (4) 

APAR is defined as the solar radiation in the range of 400 to 700 nm that is absorbed by 
the vegetation, which can be written as 

APAR ¼ ò
700

400
ESun λð Þα�s þ ESky λð Þα�d
� �

dλ (5) 

where α�s and α�d are canopy absorptance for direct and hemispherical diffuse incident 
flux, respectively. A detailed calculation formula for these two parameters can be found in 
(Verhoef and Bach 2007).

FAPAR is the proportion of PAR that is absorbed by vegetation. It can be calculated by 
Equation (6): 

FAPAR ¼
APAR
PAR

(6) 

Surface albedo is the ratio of upward to downward solar radiation at the Earth’s surface. 
Broadband albedo with a range of 300 to 3000 nm is called shortwave albedo, while 
visible albedo occurs within a range of 400 to 700 nm. The shortwave and visible albedo, 
denoted by Asw and Avis, respectively, can be calculated as follows: 

Asw ¼
ò

3000
300 ESun λð Þrsd þ ESky λð Þrdd
� �

dλ

ò
3000
300 ESun λð Þ þ ESky λð Þ
� �

dλ
(7) 

and 
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Avis ¼
ò

700
400 ESun λð Þrsd þ ESky λð Þrdd
� �

dλ

ò
700
400 ESun λð Þ þ ESky λð Þ
� �

dλ
(8) 

A detailed calculation of each parameter can be found in (Verhoef and Bach 2003) and (Shi 
et al. 2016).

2.3. Evaluation metrics for retrieved parameters

The performance of the retrieved parameters was evaluated based on three indicators, 
including the root mean square error (RMSE), Bias, and coefficient of determination (R2). 
These indicators have been widely used in assessing the performances of remote sensing 
parameter products. The RMSE, Bias, and R2 can be calculated as follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

vi � gið Þ
2

v
u
u
t (9) 

Bias ¼
1
N

XN

i¼1

vi � gið Þ (10) 

R2 ¼ 1 �
PN

i¼1 vi � gið Þ
2

PN
i¼1 vi � �vð Þ

2 (11) 

where vi is the i-th retrieved value for the parameter being evaluated, gi is the corre
sponding ground measurement, �v is the mean of vi, and N is the total number of ground 
measurements.

2.4. Data

2.4.1. GOES-R data
GOES-R is the designated GOES-East after substituting GOES-13 on 18 December 2017. 
The ABI sensor aboard the GOES-R has a total of 16 bands and acquires observations with 
high spatial and temporal resolutions. The spatial resolution of these data is 0.5 km for the 
red band (band 2), 1 km for the blue (band 1), near-infrared (NIR) (band 3), and SWIR 
(band 5) bands, and 2 km for the other 12 bands. The temporal resolution of these data is 
5 minutes for the Continental United States (CONUS) and 15 minutes for Full Disk. This 
study selects the Blue, Red, NIR, and SWIR bands for retrieval of multiple parameters. 
Detailed information about the four bands is given in Table 2.

Since the 6 S model can only simulate TOA reflectance under clear-sky conditions, 
a quality control technique developed by Xiao et al. (2011) was applied to select the 
GOES-R TOA reflectance data with high quality. The GOES-R TOA reflectance data are used 
to calculate time-series Normalized Different Vegetation Index (NDVI), and a Savitzky- 
Golay filter is used to calculate upper envelopes of the time-series NDVI. If the NDVI value 
at the i-th point, ðNDVIÞi, satisfies the following condition, the corresponding TOA 
reflectance data are considered to be not contaminated by clouds. 
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ðNDVIÞi � ðENDVIÞi

�
�

�
�< 0:1� ðENDVIÞi (12) 

where ðENDVIÞi is the NDVI value of the upper envelope corresponding to ðNDVIÞi, and |∙| is 
the absolute operator. In addition, the NDVI should be higher than the 2-band Enhanced 
Vegetation Index (EVI2) (Jiang et al. 2008) and the TOA reflectance in the NIR band should 
be less than 0.2. If a TOA reflectance value satisfies the above conditions, it is considered 
to be cloud-free in this study.

Figure 2 shows the time-series NDVI calculated from GOES-R TOA reflectance and the 
upper envelopes of the time-series NDVI at the Bondville site in 2018. The blue points are 
identified as cloud-free observations. Only the cloud-free TOA reflectance data were used 
in this study.

2.4.2. GLASS LAI and MERRA-2 AOD products
The GLASS LAI and MERRA-2 AOD products were used to provide prior LAI and AOD 
values, respectively. The GLASS LAI product provides two datasets: GLASS AVHRR and 
GLASS MODIS. The GLASS AVHRR LAI product was produced from AVHRR data. It has 
a temporal resolution of 8 days and a spatial resolution of 0.05°, and spans from 1981 to 
2018. The GLASS MODIS LAI product was generated by MODIS data. It is provided at 
a temporal resolution of 8 days and a spatial resolution of 1 km, and spans from 2000 to 
2018 (Xiao et al. 2014, 2016). In this study, the averages of the GLASS MODIS LAI product 
from 2000 to 2017 were used as the prior LAI values.

The MERRA-2 AOD product has a temporal resolution of 1 hour and a spatial resolution 
of 0.625° × 0.5° (longitude-by-latitude) from 1980 to present (Collow et al. 2017). The 
MERRA-2 AOD values at the time closest to satellite observations were used as the prior 
AOD values.

2.4.3. Satellite products for comparisons
In this study, the retrieved parameters were compared with the corresponding MODIS, 
GEOV2, and GOES-R products. The MODIS and GEOV2 LAI/FAPAR products were used for 
comparison with the retrieved LAI and FAPAR values. The MODIS LAI/FAPAR products 

Figure 2. Time-series NDVI to identify clear-sky GOES-R TOA reflectance data at the Bondville site, 
2018.

INTERNATIONAL JOURNAL OF REMOTE SENSING 7939



(MOD15A2 H) have a temporal resolution of 8 days and a spatial resolution of 500 m. The 
GEOV2 LAI/FAPAR products were generated from daily VEGETATION data by using 
a neural network algorithm. The temporal and spatial resolutions of the GEOV2 LAI/ 
FAPAR products are 10 days and 1/112° (about 1 km at the Equator), respectively, from 
1999 to present. The MODIS visible and shortwave albedo products (MCD43A3) were 
compared with the retrieved visible and shortwave albedo values. MCD43A3 is available 
since 2000. It has a spatial resolution of 500 m and a daily temporal resolution (Schaaf and 
Wang 2015). The GOES-R AOD product was compared with the retrieved AOD values. It 
has a temporal resolution of 5 minutes and a spatial resolution of 2 km for the CONUS 
during the daytime (Valenti 2018). The GOES-R AOD product divides the data quality into 
four levels known as 0-good, 1-medium, 2-low, and 3-not produced. In this study, only the 
GOES-R AOD values with a good and medium quality were used for comparison with the 
retrieved AOD values.

2.4.4. Ground measurements
There are seven widely used sites from surface radiation budget network (SURFRAD) for 
validation (Augustine, DeLuisi, and Long 2000). These sites are Bondville, Goodwin Creek, 
Penn State, Sioux Falls, Table Mountain, Fort Peck, and Desert Rock. Because there are no 
high-quality GOES-R AOD data at the Fort Peck site and the Desert Rock site is a desert 
site, only the ground measurements over the other five SURFRAD sites were used to verify 
the estimated parameters in this study. Table 3 lists detailed information on the five 
SURFRAD sites. The Bondville site is located in southwest of Champaign, Illinois. It is an 
agricultural site for farming soybeans and corn alternately. The Goodwin Creek site, 
located in west of Oxford, Mississippi, is covered with pastural grass. The Penn State 
site, located in a wide valley between Tussey and Bald Eagle Ridges, is an agricultural site 
for research affiliate to Pennsylvania State University (Augustine, DeLuisi, and Long 2000). 
The Sioux Falls site is located in South Dakota with grass as the characteristic vegetation 
type. The Table Mountain site, located in Colorado, is mainly covered with sparse grass 
and desert shrubs with small cacti.

At these SURFRAD sites, there are ground-measured AOD, PAR, ISR, and shortwave 
albedo with a temporal resolution of 1 minute. The ground-measured AOD values are 
provided at the following central wavelength with a bandwidth of 10 nm: 415 nm, 
500 nm, 615 nm, 673 nm, 870 nm, and 940 nm. In this study, the ground-measured 
AOD values at 500 nm and the Ångström exponent parameter were used to calculate the 
AOD values at 550 nm. The ground-measured shortwave albedo is the ratio of upward to 
downward shortwave radiation. Generally, clouds may affect downward shortwave radia
tion for a few seconds of time (Long and Ackerman 2000). In order to reduce the 
systematic error and the possible mismatch of time, the average of the ground- 

Table 3. Detailed information on the selected sites.
Site name Latitude (°) Longitude (°) Elevation (m) Land cover

Bondville 40.0519 − 88.3731 230 Cropland
Goodwin Creek 34.2547 − 89.8729 98 Pasture
Penn State 40.7201 − 77.9309 376 Cropland
Sioux Falls 43.7340 − 96.6233 473 Grassland
Table Mountain 40.1250 − 105.2368 1689 Grassland
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measured shortwave albedo values over a time window of 6 minutes was used to validate 
the retrieved the shortwave albedo values. For the same reason, the retrieved AOD values 
were validated by the average of the ground-measured AOD values over a time window 
of 6 minutes.

3. Results

The method developed in this study was tested at the five sites with different vegetation 
types. For each site, the GOES-R TOA reflectance data in 2018 were used to simultaneously 
retrieve AOD, LAI, ISR, PAR, FAPAR, and surface albedo. The retrieved results were 
compared with the MODIS LAI, FAPAR, and surface albedo products, the GEOV2 LAI and 
FAPAR products, the GEOES-R AOD product and the ground measurements. For each site, 
time series of the retrieved LAI, FAPAR, ISR, PAR, shortwave albedo, visible albedo, and 
AOD values were demonstrated. At the same time, time series of the retrieved results on 
three separate days were also shown to better evaluate intra-day variations of the 
retrieved parameters. The specific days selected for evaluation were based on the avail
ability of the MODIS, GEOV2, and GEOES-R products and the ground measurements.

Figure 3 demonstrates time-series of the retrieved LAI, FAPAR, ISR, PAR, albedo, 
and AOD values at the Bondville site. The retrieved parameter values on days 205, 
217, and 221 are also shown in Figure 3 to analyse intra-day variations of these 
parameters at this site. Figure 3(a) illustrates the retrieved, GEOV2, and MODIS LAI 
values. The LAI retrievals are in good agreement with the MODIS LAI values in terms 
of amplitude before day 180, but the LAI retrievals are higher than the MODIS LAI 
values for days 190 to 250. The MODIS LAI value reached 6.7 on day 185, which was 
much larger than the retrieved and GEOV2 LAI values. The GEOV2 LAI values are 
systematically higher than the retrieved and MODIS LAI values for the whole year. On 
days 205, 217, and 221, the retrieved LAI values hardly changed within a single day, 
which is in line with the actual situation. Figure 3(b) demonstrates that the FAPAR 
retrievals are consistent with the MODIS and GEOV2 FAPAR values during the grow
ing season. The GEOV2 FAPAR values are larger than the retrieved and MODIS FAPAR 
values outside of the time of growing season. The retrieved FAPAR profiles on days 
205, 217, and 221 show a concave shape. This is primarily due to changes in the 
solar zenith angle, which significantly affects the incident amount of PAR and the 
optical transmission path (Dong et al. 2016). The retrieved FAPAR profiles reach their 
minimum values near the local solar noon for the sake of the shortest path length 
from the canopy to the soil (Pinter 1993). Figure 3(c) shows that the ISR retrievals 
achieved excellent agreement with the ground-measured ISR values, both in terms of 
magnitude and the pattern of daily changes. Figure 3(d) shows the retrieved PAR 
values in 2018 and the retrieved PAR profiles on days 205, 217, and 221. Similar to 
the retrieved ISR values, the retrieved PAR values have similar seasonal and intra-day 
patterns to the ground-measured PAR values, but they are a bit larger than the 
ground-measured PAR values at this site. Figure 3(e) demonstrates a comparison of 
the retrieved shortwave albedo values with the MODIS and ground-measured short
wave albedo values. During the non-growing season, the retrieved values and the 
MODIS shortwave albedo values are lower than the ground-measured shortwave 
albedo values. However, the shortwave albedo retrievals are slightly larger than the 
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ground-measured shortwave albedo values during the crop growing season. Figure 3 
(f) shows the retrieved values and the MODIS albedo values in the visible bands. 
Before day 150 and after day 250, the retrieved visible albedo values are in a good 
agreement with the MODIS visible albedo values. However, the retrieved visible 
albedo values are a bit larger than the MODIS visible albedo values during the 
growing season. Compared with the retrieved visible albedo values, the retrieved 
shortwave albedo values show a large number of obvious intra-day changes at this 
site. The retrieved shortwave albedo values slowly decrease from morning to noon, 

Figure 3. Time series for (a) LAI, (b) FAPAR, (c) ISR, (d) PAR, (e) shortwave albedo, (f) visible albedo, and 
(g) AOD at the Bondville site in 2018.
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and gradually increase from noon to night within a single day, which is in good 
agreement with the diurnal variation characteristics of the ground-measured short
wave albedo values for the selected 3 days. Figure 3(g) illustrates that the retrieved 
values and the GOES-R AOD values fit well with the ground-measured AOD values. 
On days 205 and 217, the retrieved AOD values are closer to the ground-measured 
AOD values than the GOES-R AOD values. On day 221, the retrieved AOD values are 
a bit lower than the ground-measured AOD values, while the GOES-R AOD values are 
higher than the ground-measured AOD values at this site.

Figure 4 illustrates the scatter density plots of the retrieved AOD, ISR, PAR, and 
shortwave albedo values versus the ground measurements for the corresponding para
meters at the Bondville site. For comparison, the scatter density plots of the GOES-R 
AOD values and the MODIS shortwave albedo values versus the corresponding ground 
measurements are also shown in Figure 4. Figure 4(a,b) shows the scatter density plots 
of the retrieved values and the GOES-R AOD values versus the ground-measured AOD 
values, respectively. A good agreement between the retrieved AOD values and the 
ground-measured AOD values was observed at this site. The GOES-R AOD values over
estimated the ground-measured AOD values when the AOD values were high, and 
underestimated the ground-measured AOD values when the AOD values were low. It 
is clear from these scatter density plots that the retrieved AOD values achieve better 
performance (RMSE = 0.073 and Bias = −0.007) against the ground-measured AOD 
values than the GOES-R AOD values (RMSE = 0.124 and Bias = 0.027) at this site. 
Figure 4(c,d) are the scatter density plots of the retrieved ISR and PAR values against 
the corresponding ground-measured ISR and PAR values, respectively. The retrieved ISR 
values agree well with the ground-measured ISR values, while the retrieved PAR values 
were slightly higher than the ground-measured PAR values. There are some scatters 

Figure 4. Scatter density plots of (a) the retrieved AOD values, (b) the GEOES-R AOD values, (c) the 
retrieved ISR values, (d) the retrieved PAR values, (e) the retrieved shortwave albedo values, and (f) the 
MODIS shortwave albedo values versus the ground measurements of the corresponding parameters at 
the Bondville site in 2018.
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isolated further away from the 1:1 line. The retrieved ISR and PAR values at these 
scatters are obviously larger than the corresponding ground measurements. This may 
be caused by a mismatch of time. Figure 4(e,f) are the scatter density plots of the 
retrieved values and the MODIS shortwave albedo values versus the ground-measured 
shortwave albedo values. The scatters for the retrieved values and the MODIS shortwave 
albedo values are basically clustered in a small, circular area near the 1:1 line. The high 
shortwave albedo values in Figure 4(f) may be resulted by snow (Wang et al. 2014). By 
comparison, the retrieved shortwave albedo values provided the better performance 
(RMSE = 0.032 and Bias = 0.007) than the MODIS shortwave albedo values (RMSE = 0.091 
and Bias = −0.017).

Figure 5 illustrates the retrieved results at the Goodwin Creek site in 2018, and the 
retrieved LAI, FAPAR, ISR, PAR, albedo, and AOD values on days 202, 206, and 223 to 
analyse any intra-day variations in these parameters. For comparison, the GEOV2 LAI and 
FAPAR values, the MODIS LAI, FAPAR, and surface albedo values, the GEOES-R AOD values, 
and the ground measurements for the corresponding parameters at this site are also 
shown in Figure 5. Figure 5(a) shows that the retrieved LAI profile has a similar seasonality 
pattern with the MODIS and GEOV2 LAI profiles. The retrieved LAI profile is in good 
agreement with the upper envelope of the time-series MODIS LAI values for the 
whole year. The GEOV2 LAI values are larger than the retrieved and MODIS LAI values 
during the most vigorous growth stage, and achieved good agreement with the retrieved 
and MODIS LAI values during the non-growing season. Figure 5(b) illustrates that the 
FAPAR retrievals fit well with the MODIS and GEOV2 FAPAR in terms of overall change 
trend and amplitude. The FAPAR retrievals show obvious intra-day variation character
istics on days 202, 206, and 223. The amount of intra-day variation is around 0.2 in 1 day as 
the solar zenith angle and atmospheric conditions change. The minimum of the retrieved 
FAPAR values in a day occurs approximately at the local solar noon. Figure 5(c,d) show the 
profiles of the retrieved ISR and PAR values, respectively. For comparison, the ground- 
measured ISR and PAR values are also shown in Figure 5(c,d). The retrieved ISR values have 
a similar magnitude and pattern with the ground-measured ISR values both in terms of 
seasonal and intra-day changes. The retrieved PAR values are a bit larger than the ground- 
measured PAR values, although the retrieved PAR values have a similar trend with the 
ground-measured PAR values within the day. The profiles of the retrieved, MODIS, and 
ground-measured shortwave albedo values are shown in Figure 5(e). Before day 150 and 
within the period of days 240 to 307, the retrieved shortwave albedo values are slightly 
larger than the ground-measured shortwave albedo values. During the growth stage, the 
shortwave albedo retrievals achieve excellent agreement with the ground-measured 
shortwave albedo. The MODIS shortwave albedo values are systematically lower than 
the ground-measured shortwave albedo values, particularly outside of the time of growth 
stage at this site. Figure 5(f) shows the visible albedo values of the retrieved results and 
MODIS. As shown in Figure 5(e), the MODIS visible albedo values are systematically lower 
than the retrieved visible albedo values for the whole year. Figure 5(g) shows the retrieved 
AOD values, as well as the GOES-R and ground-measured AOD values for the whole year 
of 2018. The retrieved AOD values generally agree with the ground-measured AOD values, 
but the GOES-R AOD shows several high values before day 100. The time series of the AOD 
values on day 206 demonstrate that the retrieved AOD values are a bit higher than the 
ground-measured AOD values and are obviously lower than the GOES-R AOD values.
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Figure 6 shows scatter density plots of the retrieved AOD, ISR, PAR, and shortwave 
albedo values, as well as the GOES-R AOD values and the MODIS shortwave albedo values, 
versus the ground measurements of the corresponding parameters at the Goodwin Creek 
site in 2018. Figure 6(a) illustrates that the AOD retrievals are systematically larger than 
the ground-measured AOD values, manifested as the majority of the scatters concen
trated above the 1:1 line. Although the GOES-R AOD values overestimated the ground- 
measured AOD values when the AOD values were high (shown in Figure 6(b)), the GOES-R 
AOD values outperformed the retrieved AOD values at this site. Figure 6(c,d) are the 

Figure 5. Time series for (a) LAI, (b) FAPAR, (c) ISR, (d) PAR, (e) shortwave albedo, (f) visible albedo, and 
(g) AOD at the Goodwin Creek site in 2018.
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scatter density plots of the retrieved ISR and PAR values against the ground-measured ISR 
and PAR values, respectively. The retrieved ISR values agree well with the ground- 
measured ISR values, whereas the retrieved PAR values are a bit higher than the ground- 
measured PAR values. Figure 6(e,f) are the scatter density plots of the retrieved and MODIS 
shortwave albedo values against the ground-measured shortwave albedo values. At this 
site, the retrieved results perform better (RMSE = 0.039 and Bias = 0.031) against the 
ground-measured shortwave albedo values compared to the MODIS shortwave albedo 
values (RMSE = 0.054 and Bias = −0.045).

Figure 7 illustrates the retrieved LAI, FAPAR, ISR, PAR, albedo, and AOD values at 
the Penn State site in 2018, as well as the retrieved parameter values on days 227, 
236, and 240, to analyse the intra-day variations of these parameters. Figure 7(a) 
illustrates that the retrieved, GEOV2, and MODIS LAI values achieve good agreement 
during the non-growing season. The profile of the LAI retrievals agrees with the 
envelope of the time-series MODIS LAI values during the growth stage, but the 
GEOV2 LAI values are significantly larger than these. Figure 7(b) demonstrates that 
the retrieved, GEOV2, and MODIS FAPAR values have similar seasonal patterns. The 
retrieved FAPAR values are almost located between the profiles of the MODIS and 
GEOV2 FAPAR values during the growth stage. The retrieved FAPAR values show 
obvious intra-day variation characteristics on days 227, 236, and 240, with the 
amount of intra-day variation greater than 0.4. Figure 7(c) demonstrates that the 
ISR retrievals are in agreement with the ground-measured ISR values for seasonal and 
intra-day changes. The retrieved PAR values shown in Figure 7(d) are a bit larger than 
the ground-measured PAR values, but have a similar intra-day change pattern with 
the ground-measured PAR values on days 227, 236, and 240. Figure 7(e) illustrates 
that the retrieved shortwave albedo values perform better than the MODIS 

Figure 6. Scatter density plots of (a) the retrieved AOD values, (b) the GEOES-R AOD values, (c) the 
retrieved ISR values, (d) the retrieved PAR values, (e) the retrieved shortwave albedo values, and (f) the 
MODIS shortwave albedo values versus the ground measurements of the corresponding parameters at 
the Goodwin Creek site in 2018.
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shortwave albedo values compared with the ground-measured shortwave albedo 
values. The retrieved shortwave albedo values fit well with the ground-measured 
shortwave albedo values, whereas the MODIS shortwave albedo values are obviously 
smaller than the ground-measured shortwave albedo values. Figure 7(f) illustrates the 
retrieved values and the MODIS visible albedo values. The retrieved visible albedo 
values are systematically higher than the MODIS visible albedo values for this site. 
Figure 7(g) demonstrates a comparison of the retrieved time-series AOD values with 
the GOES-R and ground-measured AOD values. The retrieved AOD values fit well with 

Figure 7. Time series for (a) LAI, (b) FAPAR, (c) ISR, (d) PAR, (e) shortwave albedo, (f) visible albedo, and 
(g) AOD at the Penn State site in 2018.
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the ground-measured AOD values. On day 236, the GOES-R AOD values are a bit 
lower than the retrieved and ground-measured AOD values.

Figure 8(a,b) illustrates the scatter density plots of the retrieved and GOES-R AOD 
values against the ground-measured AOD values. The vast majority of the retrieved AOD 
values demonstrate a slight overestimation of the ground-measured AOD values with the 
Bias of 0.047. The regression (y = 1.223x − 0.028) shown in Figure 8(b) indicates a systema
tic low Bias in the GOES-R AOD values with low AOD values and an opposite Bias with high 
AOD values. The RMSE of the retrieved AOD values (0.072) is slightly lower than that of the 
GOES-R AOD values (0.076) at this site. Figure 8(c,d) are scattered density plots of the 
retrieved ISR and PAR values against the ground measurements, respectively. The 
retrieved ISR values and the ground-measured ISR values achieve excellent agreement, 
but the retrieved PAR values were a bit overestimated evaluated with the ground- 
measured PAR values. Figure 8(e) and (f) are scatter density plots of the retrieved and 
MODIS shortwave albedo values versus the ground-measured shortwave albedo values. 
The retrieved shortwave albedo values perform better (RMSE = 0.029 and Bias = 0.024) 
against the ground-measured shortwave albedo values than the MODIS shortwave 
albedo values (RMSE = 0.111 and Bias = −0.051) at this site.

Figure 9 demonstrates the retrieved LAI, FAPAR, ISR, PAR, albedo, and AOD values at 
the Sioux Falls site in 2018. The retrieved results on days 234, 248, and 250 are also shown 
in Figure 9 in order to analyse intra-day variations of the retrievals. Figure 9(a) shows 
a comparison of the retrieved, GEOV2, and MODIS LAI values. Compared with the MODIS 
LAI values, the retrieved LAI values show consistent seasonal patterns and amplitudes. 
The GEOV2 LAI values are markedly higher than the retrieved and MODIS LAI values 
during the crop growth stage (up to 2.5 LAI units). Figure 9(b) shows the retrieved, GEOV2, 
and MODIS FAPAR values. The MODIS FAPAR values are higher than the retrieved values 

Figure 8. Scatter density plots of (a) the retrieved AOD values, (b) the GEOES-R AOD values, (c) the 
retrieved ISR values, (d) the retrieved PAR values, (e) the retrieved shortwave albedo values, and (f) the 
MODIS shortwave albedo values versus the ground measurements of the corresponding parameters at 
the Penn State site in 2018.
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and the GEOV2 FAPAR values outside of the time of vegetation growth stage, but the 
GEOV2 FAPAR values are obviously larger than the retrieved and MODIS FAPAR values 
during the vigorous growth stage. Obvious intra-day variations in the retrieved FAPAR 
profiles on days 234, 248, and 250 can be observed. The retrieved ISR and PAR values 
shown in Figure 9(c,d) demonstrate excellent agreement with the ground-measured ISR 
and PAR values at this site. Figure 9(e) demonstrates the retrieved shortwave albedo 
values, along with the MODIS and ground-measured shortwave albedo values. The 
retrievals fit well with the ground-measured shortwave albedo values before day 220, 

Figure 9. Time series for (a) LAI, (b) FAPAR, (c) ISR, (d) PAR, (e) shortwave albedo, (f) visible albedo, and 
(g) AOD at the Sioux Falls site in 2018.
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but are a bit larger than the ground-measured shortwave albedo values after day 220. The 
MODIS visible albedo values and corresponding parameter retrievals are shown in Figure 
9(f). Most of the retrieved visible albedo values perform well with the MODIS visible 
albedo values. Figure 9(g) illustrates that the retrieved AOD values fit well with the 
ground-measured AOD values, but the GOES-R AOD values are larger than the retrieved 
and ground-measured AOD values at this site.

Figure 10(a,b) illustrate scatter density plots of the retrieved and GOES-R AOD 
values versus the ground-measured AOD values, respectively. Compared with the 
GOES-R AOD values, the majority of the retrieved AOD values concentrated more 
closely at the 1:1 line versus the ground-measured AOD values. The retrieved AOD 
values provide a better performance (RMSE = 1.0459 and Bias = −0.5695) against the 
ground-measured AOD values than the GOES-R AOD values (RMSE = 1.0971 and 
Bias = −0.3904). Figure 10(c,d) are scatter density plots of the retrieved ISR and PAR 
values versus the ground-measured ISR and PAR values. The retrieved ISR and PAR 
values achieved fine performance with the ground-measured ISR and PAR values at 
this site. Figure 10(e,f) are scatter density plots of the retrieved and MODIS shortwave 
albedo values against the ground-measured shortwave albedo values. The retrieved 
and MODIS shortwave albedo values are both mainly concentrated around 0.2, with 
their RMSEs against the ground measurements equal to 0.304 and 0.109, respectively. 
It is clear that the retrieved shortwave albedo values have a better performance than 
the shortwave albedo values at this site.

Figure 11 illustrates the time-series of the LAI, FAPAR, ISR, PAR, albedo, and AOD 
values at the Table Mountain site in 2018. The retrieved parameter values on days 211, 
212, and 223 are also shown in Figure 11 to analyse the intra-day variations of the 
retrieved parameters at this site. Figure 11(a) demonstrates the retrieved, GEOV2, and 
MODIS LAI values. The retrieved LAI values have a similar seasonal pattern to the 
MODIS and GEOV2 LAI values. Before day 150, the MODIS LAI values are larger than 

Figure 10. Scatter density plots of (a) the retrieved AOD values, (b) the GEOES-R AOD values, (c) the 
retrieved ISR values, (d) the retrieved PAR values, (e) the retrieved.
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the retrieved values and the GEOV2 LAI values (up to 0.8 LAI units). Between day 150 
and 200, the GEOV2 and MODIS LAI values are lower than the retrieved LAI values. The 
lower GEOV2 and MODIS LAI values may be caused by the cloud-contaminated 
satellite observations. The retrieved, GEOV2, and MODIS FAPAR values are shown in 
Figure 11(b). The retrieved FAPAR values are smaller than the GEOV2 and MODIS 
FAPAR values outside of the time of vegetation growth stage. Between day 150 and 
200, the retrieved FAPAR values are lower than the MODIS FAPAR values but higher 
than the GEOV2 FAPAR values. Obvious intra-day variations of the retrieved FAPAR 

Figure 11. Time series for (a) LAI, (b) FAPAR, (c) ISR, (d) PAR, (e) shortwave albedo, (f) visible albedo, 
and (g) AOD at the Table Mountain site in 2018.
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values on days 211, 212, and 223 are observed. The amount of intra-day variation is 
more than 0.2. Figure 11(c) shows that the retrieved ISR values achieve outstanding 
agreement with the ground-measured ISR values. The retrieved PAR values shown in 
Figure 11(d) are slightly overestimated after day 170 but underestimated before 
that day compared with the ground-measured PAR values at this site. The retrieved 
values and the MODIS shortwave albedo values shown in Figure 11(e) demonstrated 
excellent agreement with the ground-measured shortwave albedo values. Moreover, 
the retrieved visible albedo values shown in Figure 11(f) are also consistent with the 
MODIS visible albedo values at this site. Figure 11(g) demonstrates that the retrieved 
AOD values are closer to the ground-measured AOD values than the GOES-R AOD 
values. The GOES-R AOD values are smaller than the ground-measured AOD values at 
this site.

Figure 12(a,b) illustrates the scatter density plots of the retrieved values and the GOES- 
R AOD values against the ground-measured AOD values, respectively. Compared with the 
GOES-R AOD values, the retrieved AOD values concentrated more closely at the 1:1 line 
versus the ground-measured AOD values. The GOES-R AOD values are in good agreement 
with the ground-measured AOD values for low AOD values, but overestimate the ground- 
measured AOD values when the AOD values were higher than 0.2. Figure 12(c,d) are 
scatter density plots of the retrieved ISR and PAR values against the ground-measured ISR 
and PAR values, respectively. The retrieved ISR and PAR values fit well with the ground 
measurements of the corresponding parameters at this site. Figure 12(e,f) are scatter 
density plots for the retrieved and MODIS shortwave albedo values versus the ground- 
measured shortwave albedo values, respectively. It is clear that both the retrieved and 
MODIS shortwave albedo values achieve excellent agreement with the ground-measured 
shortwave albedo values at this site.

Figure 12. Scatter density plots of (a) the retrieved AOD values, (b) the GEOES-R AOD values, (c) the 
retrieved ISR values, (d) the retrieved PAR values, (e) the retrieved shortwave albedo values, and (f) the 
MODIS shortwave albedo values versus the ground measurements of the corresponding parameters at 
the Table Mountain site in 2018.
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To better evaluate the accuracy of the retrieved AOD, ISR, PAR, and shortwave 
albedo values, R2, RMSE, and the Bias for each selected site are calculated and shown 
in Table 4. For comparison, the statistics of the GOES-R AOD values and the MODIS 
shortwave albedo values versus the ground measurements of the corresponding 
parameters are also shown in Table 4. The retrieved AOD values achieved a better 
performance (RMSE = 0.071) against the ground-measured AOD values compared to 
the GOES-R AOD values (RMSE = 0.094) for all the selected sites. The RMSE of the 
retrieved shortwave albedo values is 0.032, whereas the MODIS shortwave albedo 
values are 0.091, which illustrates that the retrieved shortwave albedo values are in 
better agreement with the ground-measured shortwave albedo values than the 
MODIS shortwave albedo values for the selected sites. The retrieved ISR and PAR 
values have good consistency with the ground-measured ISR and PAR values for all 
the selected sites. The R2 of the retrieved ISR and PAR values are 0.929 and 0.921, 
respectively.

However, a positive Bias for all the selected sites indicates that the retrieved ISR, PAR, 
and shortwave albedo values systematically overestimated the ground-measured ISR, 
PAR, and shortwave albedo values, respectively. The systematic deviations may be caused 
by the climatic conditions, instrument calibration errors, the altitude, and the time 
inconsistency between measurements and retrievals (Zhang et al. 2014; Shi et al. 2017). 
The height of the towers selected at the SURFRAD sites is 10 m and the footprints are 
estimated to be about 126 m (Wang et al. 2014), which differs from the retrievals on 
a spatial scale. This may somehow lead to slight errors despite the fact that the sites are 
spatially representative during the growing season.

Table 4. Statistics of the retrieved AOD, ISR, PAR, and shortwave albedo values, the GOES-R AOD 
values, and the MODIS shortwave albedo values versus the ground measurements of the correspond
ing parameters for all five selected sites.

Site name Bondville Goodwin Creek Penn State Sioux Falls Table Mountain All sites

Retrieved AOD R2 0.471 0.689 0.626 0.733 0.616 0.567
RMSE 0.073 0.085 0.072 0.050 0.058 0.071
Bias −0.007 0.064 0.047 0.000 0.041 0.034
N 2748 4481 2737 2193 3415 15,574

GOES-R 
AOD

R2 0.744 0.703 0.648 0.912 0.724 0.808
RMSE 0.124 0.077 0.076 0.098 0.091 0.094
Bias 0.027 −0.005 −0.001 0.029 0.023 0.015
N 3482 5555 1637 3451 6034 20,159

Retrieved ISR R2 0.925 0.940 0.943 0.933 0.895 0.929
RMSE 49.938 50.372 46.966 53.166 54.887 50.943
Bias 18.704 20.461 18.361 35.611 5.703 19.112
N 3881 5723 3687 2760 3647 19,698

Retrieved PAR R2 0.945 0.948 0.938 0.939 0.871 0.921
RMSE 33.101 26.982 29.825 19.002 27.309 27.975
Bias 28.803 20.006 23.140 9.577 7.808 18.607
N 3881 5726 3688 2761 3647 19,706

Retrieved 
shortwave 
albedo

R2 0.178 0.327 0.219 0.276 0.461 0.338
RMSE 0.032 0.039 0.029 0.034 0.019 0.032
Bias 0.007 0.031 0.024 0.028 0.015 0.022
N 3881 5723 3687 2760 3647 19,698

MODIS 
shortwave 
albedo

R2 0.650 0.021 0.461 0.545 0.442 0.512
RMSE 0.091 0.054 0.111 0.109 0.085 0.091
Bias −0.017 −0.045 −0.051 0.009 −0.011 −0.023
N 345 356 270 329 313 1613
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4. Conclusions and discussion

Current remote sensing products are mainly generated from polar-orbiting satellite data, 
which are not sufficient for studying intra-day variations of parameters, such as surface 
albedo, FAPAR, and ISR. Moreover, these parameter products are generally produced by 
parameter-specific algorithms, which leads to physical inconsistency among different 
parameters.

In this study, a new method for multi-parameter consistent estimation from geosta
tionary satellite data is proposed. It was applied to simultaneously retrieve AOD, LAI, ISR, 
PAR, FAPAR, and surface albedo from GOES-R TOA reflectance data. The spatial and 
temporal resolutions of the retrieved parameters are 1 km and up to 5 minutes, respec
tively. Validations of the retrieved parameter values versus ground measurements were 
conducted across five sites with different vegetation types. The results illustrate that the 
retrieved AOD, PAR, ISR, and surface albedo values have consistent intra-day variations 
with the ground measurements, and the retrieved parameter values performed well 
versus the ground measurements for all the selected sites.

However, there are still some problems in this study. The first issue is that there are no 
ground-measured LAI, FAPAR, and visible albedo at the selected SURFRAD sites. This 
study evaluates them by making a comparison with existing satellite products. The 
validation of these parameters will be focused on future work if field measurements 
become available. The second issue is that the 6 S radiative transfer model can be only 
used under clear-sky conditions; thus, the cloudy observations are not used in this study. 
The radiative transfer models that can take cloudy conditions into account such as 
MODTRAN or libRadtran will be tested. In addition, this paper only uses GOES-R TOA 
reflectance. Estimating parameters from TOA reflectance data acquired by other geosta
tionary satellite such as Himawari-8 and FY-4A will also be tested in the future.
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