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A B S T R A C T

Timely and accurate delineation of the cropland extent over large area is crucial for operational agriculture
monitoring and is also beneficial to address food security issues. Existing global datasets associated with
cropland are limited by insufficient spatial resolution to properly represent areas with small parcel size dis-
tributions, and their less-than-ideal accuracies hamper application at regional and local scales. Diverse very high
spatial resolution (VHSR) satellite systems are now available, offering sub-meter to five-meter resolution (e.g.
Gaofen-1, Gaofen-2, and ZiYuan-3), and hence enabling explicit extraction of cropland areas from heterogeneous
and fragmented landscapes. This study presented a generalized methodology for operational cropland mapping
at very high resolution using a deep convolutional neural network to automatically learn the robust and dis-
criminative features. Specifically, we slightly modified the pyramid scene parsing network (PSPNet) and com-
bined deep long-range features with shadow local features to provide predictions with high level of detail. We
demonstrated the modified PSPNet (MPSPNet) over four province-wide study areas (Heilongjiang, Hebei,
Zhejiang and Guangdong) with diverse agrosystems across China from north to south using multi-source very
high spatial resolution satellite images (mainly Gaofen-1 supplemented with Gaofen-2 and ZiYuan-3), with the
overall accuracies ranging from 89.99% to 92.31%. Moreover, we compared MPSPNet with other CNN models
and investigated the its behavior by visualizing the learned features on different layers, indicating that com-
bining low and high level features for final classification was an efficient and accurate strategy for cropland
mapping because the former capture edge information related to object boundaries and the latter could learn
long-range spatial dependencies that helped recognize croplands. The temporal transfer and spatial transfer
assessments from the respects of qualitative and quantitative corroborated the robust generalizability of the
proposed method. And the contrast to the traditional object-based classification method also demonstrated the
advantages and strong generalization capabilities of MPSPNet in extracting cropland using VHSR remote sensed
images. We compared our results with the current cropland maps generated from FROM-GLC10, which further
verified the effectiveness of the proposed approach for large-scale cropland mapping at very high resolution.

1. Introduction

Timely and accurate information regarding cropland extent and
distribution is of world-wide interest for various applications, such as

cropland dynamic monitoring, grain productivity investigation and
evaluation, food security (Justice and Becker-Reshef, 2007; Thenkabail
and Wu, 2012; See et al., 2015). Remotely sensed observations now
provide extremely comprehensive sets of geographical images covering
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almost every part of the earth's surface (Lefsky et al., 2002), and have
long been important tools to identify and acquire cropland spatial
distributions at local, regional and global scales (Waldner et al., 2015;
Xiong et al., 2017; Phalke and Özdoğan, 2018; Massey et al., 2018; Yu
et al., 2013; Fritz et al., 2015). Existing global cropland datasets have
middle (10 m – 30 m) (e.g. Gong et al., 2013; Chen et al., 2014; Chen
et al., 2015; Gong et al., 2019) or coarse resolution (250 m – 10 km)
(e.g. Loveland et al., 2000; Friedl et al., 2002; Bartholomé and Belward,
2005; Ramankutty et al., 2008; Biradar et al., 2009; Thenkabail et al.,
2009; Friedl et al., 2010; Pittman et al., 2010; Bontemps et al., 2011;
Waldner et al., 2016), and commonly have the drawback that spatial
resolution is not fine enough to accurately map areas with small parcel
size distributions, such as commonly occur in agricultural landscapes
around the world (Ozdogan and Woodcock, 2006; Griffiths et al.,
2013). Besides, their comparatively poor overall accuracy (approxi-
mately 66–80%) limits their operational applications (Herold et al.,
2008; Lu et al., 2016), particularly at regional and local scales.

Recent development of remotely sensing technologies providing
very high spatial resolution (VHSR) images (e.g. Gaofen-1 (GF1),
Gaofen-2 (GF2), and ZiYuan-3 (ZY3)), make it possible for cropland
mapping with high level of thematic detail to resolve small farmland
parcels. However, the rich information in VHSR images brings high
intraclass differences and low interclass diversities (Bruzzone and
Carlin, 2006), which makes mapping cropland over large areas some-
what challenging. Furthermore, cropland is a complicated and varying
land cover class, and hence cropland spectral, texture, and shape
characteristics in VHSR imagery vary over space and time, resulting in a
considerable internal variability. Consequently, optimal cropland ex-
traction models obtained from annotated images generally scale poorly
with insufficient performance on new images from different sensors,
geo-locations, or imaging conditions, which hampers their large-scale
application. Therefore, it is imperative to develop a generalized and
valid cropland mapping method scalable over large VHSR image spatial
extents.

Many classification methods have been adopted for cropland map-
ping, including maximum likelihood (Abou EL-Magd and Tanton,
2003), nearest neighbors (Samaniego and Schulz, 2009), decision tree
(De Fries et al., 1998; Pittman et al., 2010), random forest (Duro et al.,
2012), neural networks (Liu et al., 2005), support vector machines
(Mathur and Foody, 2008), etc. These have been applied either pixel or
object based (Duro et al., 2012; Long et al., 2013). However, most
current methods can extract only low or middle level features from the
original data, which is not robust enough for cropland classification due
to considerable intra-class variance in the large spatial cover. Most
features were designed based on domain-specific knowledge and hence
do not scale well over space and time (Kaiser et al., 2017), resulting in
repeated manual annotation to construct training samples as geo-
graphic locations or imaging conditions changes. This is extremely
labor-intensive, time-consuming, and inefficient for large-scale crop-
land mapping. Thus, there is urgent demand for class-specific high-level
feature representation with spatio-temporal transferability to monitor
croplands at VHSR over large areas.

Deep convolutional neural networks (CNNs) (LeCun et al., 2015)
have recently gained much attention in the machine learning field due
to their ability to automatically learn representative and discriminative
features in a hierarchical manner from the training set. Consequently,
CNNs have been introduced to geoscience and remote sensing (RS)
communities for RS big data analysis (Zhang et al., 2016; Zhu et al.,
2017) with promising potential for high resolution remote sensing
imagery, including such as object detection (Cheng et al., 2016; Ševo
and Avramović, 2016), road network extraction (Wang et al., 2015),
and land cover/use classification (Zhang et al., 2018). CNNs comprise a
stack of convolution or pooling layers which can cover wide contexts

and extract deep abstract features from the original remote sensing
imagery, providing strong description and generalization to tackle
large-scale problems (Zhu et al., 2017). Besides, many studied have
investigated CNN transferability of deep features for big data challenges
in remote sensing (Marmanis et al., 2016; Jean et al., 2016). For ex-
ample, Lyu et al. (2018) applied deep information learning to Landsat
data for long-term annual mapping of urban areas, effectively and ef-
ficiently detecting urban change in massive remote sensing data sets
with limited training data, demonstrating strong generalization and
transferability of deep features.

Therefore, this paper takes these CNN advantages and proposes a
generalized deep CNN approach to address the difficulty of mapping
croplands over very large areas using VHSR images. Specifically, the
CNN is based on the pyramid scene parsing network (PSPNet) (Zhao
et al., 2017), an end-to-end pixel wise deep CNN architecture for scene
parsing. However, downsampling operation in deep CNN is required to
capture the long-range spatial dependencies that help recognize the
classes but lose location information. Although the generated low-re-
solution high-level feature maps will be subsequently upsampled to the
input resolution (Long et al., 2015; Chen et al., 2018), the boundary
information of the objects cannot be determined precisely because the
upsampling reconstruct the presence and rough position of the objects
rather than their shapes. These issues can be addressed in two flavors:
(i) methods that use multi-resolution segmentation (MRS) as the post-
processing step to delineate object boundaries (Sun et al., 2018); (ii)
methods that combine low-level local features with high-level features
to produce fine predictions (Maggiori et al., 2017). For the first ap-
proach, the segmentation is time-consuming and difficult, which is not
conducive to operational applications in large-scale practice. Thus, we
developed an modified PSPNet (MPSPNet) which improves on the ori-
ginal PSPNet by integrating low-level and high-level information to
produce fine-grained classification with precise boundaries, providing a
viable approach to learn long range context knowledge with high-level
information, and capture small scale spatial variations with low-level
feature representation regarding edge detectors. We evaluated the
proposed method performance and accuracy on four study areas with
large spatial extent and various complex agricultural landscapes in
China.

The remainder of this paper is organized as follows. Section 2 pre-
sents the materials and process employed, and Section 3 describes the
network architecture and implementation details for the proposed
method. Section 4 and 5 present experimental results and discussion,
and Section 6 summarizes and concludes the paper.

2. Materials and process

2.1. Study areas

We chose four study areas across China from north to south, span-
ning diverse terrain landscapes, climatic regions and agriculture sys-
tems with different crops and crop phonological characteristics, cov-
ering almost one tenth of China in total (more than 940,000 km2). The
general characteristics for each study area were as follows.

• Study area 1: Heilongjiang Province is situated in the north-eastern
part of China, covering a total area of 473,000 km2 (Table 1). It is
China's largest commodity grain base with flat and wide terrain,
conducive to large-scale crop plantings. The area has cold temperate
and temperate continental monsoon climate with full sunshine,
abundant rainfall, and fertile land, making it suitable for various
crops, including spring wheat, spring maize, rice, and soybean.
Spring wheat is sown in mid-April and harvested in mid-August;
whereas spring maize, rice, and soybean are sown from the end of
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April to early May and harvested in early October.
• Study area 2: Hebei Province is situated in the North China Plain,

the most important agricultural production base in China and it
covers 188,800 km2 (Table 1). The landscape is complex, including
plains, plateaus, mountains, hills, basins. It has temperate con-
tinental monsoon climate with approximately 484.5 mm annual
precipitation concentrated in summer. The typical crop calendar
starts from early October to middle or late June of the next year for
winter crops such as winter wheat, and from April to October for
spring and summer crops including maize, rice, soybean, and cotton.

• Study area 3: Zhejiang province is located on the southeast coast of
China with covering 101,800 km2 (Table 1). Its territory is mostly
hilly and mountainous with consequentially fragmented agricultural
landscape with humid, sub-tropical monsoon climate. Main crop
types include winter wheat, rice, soybean, maize, and cotton. Winter
crops are planted from October and harvested in May, whereas
summer crops are sown from the end of March and harvested in
October at the latest.

• Study area 4: Guangdong province is situated in the southernmost
part of mainland China with covering 179,700 km2 (Table 1). Ter-
rain is largely mountainous, with only approximately 23.7% flat-
lands. The climatic zone is subtropical with annual rainfall of ap-
proximately 1777-mm concentrated from April to September. Major
crops include early and late rice, peanut, and sugarcane. Early rice is
sown from early February with harvest starting in mid-August. Late
rice is sown in early July and harvested in November, peanut ca-
lendar is from mid-March to late July, and sugarcane from mid-May
to late November.

2.2. Remote sensing data collection and pre-processing

We collected available high quality VHSR satellite images (GF1,
GF2, and ZY3) with slight cloud coverage (less than 10%) to cover the
whole study areas from the Land Satellite Remote Sensing Application
Center (LASAC), Ministry of Natural Resources of the People's Republic
of China. The data source was mostly GF1 images, supplemented by
GF2 and ZY3 images. GF1, GF2 and ZY3 satellites were launched by
China National Space Administration on 26 April 2013, 19 August
2014, and 9 January 2012, respectively. GF-1 provides two panchro-
matic and multispectral (PMS) and four wide field of view (WFV)
multispectral cameras. We chose PMS images for mapping cropland due
to their high spatial resolution and rich spectral information. GF-2 in-
cludes two PMS cameras, providing supplementary data whereas GF1
images do not overlap. ZY3 includes three line array panchromatic
cameras (TLC) and a multi-spectral (MS) camera, where the TLC cam-
eras include a nadir (NAD) and two oblique cameras viewing forward
(FWD) and backward (BWD) with fixed ± 22° inclinations. We selected
MS and NAD images to define accurate cropland footprints. Table 2
shows detailed specifications for the GF1, GF2 and ZY3 satellites.

For pre-processing, the selected remote sensed images were first
orthorectificated and projected onto Albers conical equal area projec-
tion. MS images were registered to corresponding PAN images using

polynomial warping with automatically generated tie points, providing
registration error < 1 pixel. We normalized the images by re-quanti-
fying band responses to 8 bits to compensate for systematic biases be-
tween the various sensors. Images were then processed as composites
with red, green, and blue bands at very high resolution through fusing
MS images and the corresponding PAN (NAD) images based on the
Gram Schmidt transformation (Chavez et al., 1991). Finally, the com-
posites were resampled to uniform 2 m spatial resolution.

Table 3 summarizes the GF1, GF2, and ZY3 composites employed.
We used almost 1000 remote sensing composites from 2016 to generate
training samples and more than 2000 target composites (mainly from
2017) for cropland mapping. Considering the burden of annotating

Table 1
Characteristics of the four study areas: coverage, climate and main crops.

Study area Coverage (km2) Climate Main crops

Heilongjiang 473,000 Temperate continental monsoon and cold temperate Spring wheat, spring maize, rice and soybean
Hebei 188,800 Temperate continental monsoon Winter wheat and summer crops such as maize, rice, soybean as well as cotton
Zhejiang 101,800 Subtropical monsoon Winter wheat and summer crops such as rice, soybean, maize along with cotton
Guangdong 179,700 Subtropical monsoon Early rice, late rice, peanut and sugarcane

Table 2
Specifications for GF1, GF2 and ZY3 satellites.

GF1 GF2 ZY3

Launch time 26th April 2013 19th August
2014

9th January
2012

Orbit altitude (km) 645 631 506
Orbit type Sun-

synchronous
Sun-
synchronous

Sun-synchronous

Global observation
cycle

41 days 69 days 59 days

Repeat observation
cycle

PMS: 4 days
WFV: 2 days

5 days 5 days

Swath width (km) PMS: 60
WFV: 800

45 PAN-FWD: 52
PAN-BWD: 52
PAN-NAD: 51
MS: 51

Spatial resolution (m) PMS-PAN: 2
PMS-MS: 8
WFV: 16

PAN: 1
MS: 4

PAN-FWD: 3.5
PAN-BWD: 3.5
PAN-NAD: 2.1
MS: 5.8

Wavelength (nm) PAN: 450–900
Blue: 450–520
Green: 520–590
Red: 630–690
Infrared:
770–890

PAN: 450–900
Blue: 450–520
Green: 520–590
Red: 630–690
Infrared:
770–890

PAN: 500–800
Blue: 450–520
Green: 520–590
Red: 630–690
Infrared:
770–890

(PMS = panchromatic and multispectral, WFV = wide field of view,
PAN = panchromatic bands, MS = multispectral bands, FWD = forward,
BWD = backward, and NAD = nadir).

Table 3
The number of scenes of the GF1, GF2 and ZY3 composites used in this study.
Adopted composites of training data are from 2016 while those of target data
are mostly from 2017.

Study area Training data Target data

GF1 GF2 ZY3 Total GF1 GF2 ZY3 Total

Heilongjiang 292 73 25 390 365 132 277 774
Hebei 235 0 0 235 735 0 0 735
Zhejiang 125 24 0 149 123 157 0 280
Guangdong 137 57 22 216 227 101 45 373
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label masks, we determined typical zones for each study area, com-
prising approximately 1/3 the entire region, to form the training set, as
shown in Fig. 1, distributing the selected area locations across the study
areas to ensure good representation for agricultural zones with different
landscape characteristics. Fig. 2 indicates the temporal distribution of
the data. Training data from each study area included all seasons to
ensure representativeness, and acquisition time of the target data also
covered almost the whole of 2017. Notably the available target

composites from 2017 for Hebei, Zhejiang, and Guangdong provinces
did not cover the entire area, hence, we incorporated composites of
2016 (distinct from those used in the training set) as complementary
data.

2.3. Cropland layer dataset

A large number of training samples were required to construct deep

Fig. 1. Digital Elevation Model (DEM) Maps for four study areas overlaid with county boundaries. Also displayed are the selected areas for establishing cropland
layer datasets and subsequently collecting training samples (Green lines). The select of these areas was based on the criteria to ensure representation across
agricultural zones with different landscape characteristics. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 2. Temporal distributions of adopted VHSR composites for Heilongjiang (hlj), Hebei (hb), Zhejiang (zj) and Guangdong (gd) study areas.
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learning algorithms for extracting cropland cover from VHSR images.
Cropland layer datasets for the four regions were established through
visual inspection of composites with 2 m resolution from 2016. Fig. 3
demonstrates the typical examples of the cropland and non-cropland.
GF1, GF2, and ZY3 composites were employed from Heilongjiang and
Guangdong provinces to construct cropland datasets, whereas GF1 and
GF2 composites were employed for Zhejiang, and GF1 composites for
Hebei provinces, as shown in Table 3. We identified cropland objects by
manually delineating field boundaries from the VHRS images, produ-
cing 539,459; 437,397; 594,608; and 256,088 cropland parcels with
digitized cropland boundaries for Heilongjiang, Hebei, Zhejiang, and
Guangdong provinces, respectively, to provide the data foundation for
collecting training samples. We used in situ identification data collected
by the National Bureau of Statistics of China to compare with the de-
rived cropland datasets, and accuracy for each study area exceeded
95%.

3. Methodology

In a large-scale setting, the traditional classification approaches for
cropland extraction require repeated manual annotation, model
training and cropland classification every time the geo-locations, the
sensor characteristics or the imaging conditions change, which are
time-consuming and inefficient. In the proposed framework, we
exploited CNNs with strong generalization ability to extract cropland
from VHSR satellite imagery without the above-mentioned repeated
operations. It includes the following steps.

1. Collect training samples for all seasons from cropland datasets
(Section 3.2);

2. Train the model for cropland classification through feeding the
training samples into the proposed MPSPNet to learn representative
and discriminative feature representations; and

Fig. 3. Representative exemplars of cropland and non-cropland.
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3. Classify target images to generate complete cropland layers using
the trained model.

3.1. Proposed MPSPNet architecture

The proposed MPSPNet is an adaption of PSPNet architecture, in-
tegrating some extra shallow level information with edge features into
the high-level features to preserve fine local details. Fig. 4 shows the
proposed network for pixel-based classification of VHSR remote sensing
images, incorporating three core structures: ResNet (He et al., 2015)
with dilated convolution (Yu and Koltun, 2016), spatial pyramid
average pooling module, and fusion of low-level and high-level

information. ResNet with dilated convolution strategy is applied to
extract deep and abstract feature maps for the input image, where eight
residual blocks are employed and the dilation factors of the 3 × 3 di-
lated convolutions in the last residual block is set to 2. A spatial pyr-
amid average pooling module is subsequently followed to harvest
multiscale feature representations, aggregating local and global context
information into the final deep feature maps. Finally, fusion of low-level
and high-level information is exploited to improve object localization
accuracy for precise pixel-based classification. To avoid low-level fea-
tures overwhelming final feature importance, we chose high-level fea-
ture map resolution to be 16-fold larger than low level feature maps,
i.e., 512 vs 16.

Fig. 4. The proposed MPSPNet architecture, which
added an extra skip connection with low-level fea-
tures (iii) to the original PSPNet. (i) extracts deep
and abstract feature maps for an input image using a
ResNet with the dilated convolution; (ii) is a spatial
pyramid pooling module to capture multiscale fea-
ture representations, and aggregate local and global
context information into high-level feature maps;
(iii) obtains low-level features, which are combined
with the high-level features for final precise pixel-
wise classification. (a) is the Conceptual illustration
of MPSPNet. (b) is the detailed design of MPSPNet.
Feature maps with a three-dimensional structure per
layer: dimensions are written in brackets, where the
first number indicates the amount of feature maps
channels, second and third represent spatial dimen-
sions.
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3.2. Collection of the training samples

We generated the training sample set using the cropland dataset and
corresponding remote images from 2016. The training dataset should
contain as many samples as possible from as many seasons as possible
to represent different cropland status types, such as bare land resulting
from previous harvest or soil preparation, low vegetation cover during
early crop growth, high vegetation cover during flourishing crop
growth, etc. We then cropped all samples into 256 × 256 pixel images
with 25% overlap. Thus, we produced 969,922; 397,146; 203,152; and
345,718 sample blocks for Heilongjiang, Hebei, Zhejiang, and
Guangdong study areas, respectively.

3.3. Model training

A validation set is essential to prevent overfitting when training the

network architecture. Therefore, we randomly took 20% of the training
sample blocks as the validation set. As shown in Fig. 5, the class dis-
tributions in training and validation set are similar for each study area.
We used the Adam (Kingma and Ba, 2015) algorithm as for gradient
descent optimization with batch size = 2, initial learning rate
ɑ = 0.0001, and total number of epochs = 10 to fully learn generic
feature representations through backpropagation. Learning rate de-
creased iteratively based on a declining factor gamma = 0.1 after every
three epochs. We also set weight decay as 0.00001 for avoiding over-
fitting and momentum as 0.9 to regularize learning. We determined
above-mentioned hyper parameters by referring to Kingma and Ba
(2015). To accelerate training, we initialized network weights from a
pre-trained model on ImageNet, which learned low level image fea-
tures, such as edges and corners in early network layers. Weights cor-
responding to the best validation loss were used for cropland mapping
of 2017. It should be noted that different models were trained for each

Fig. 5. Class distributions in training and validation set for (a) Heilongjiang, (b) Hebei, (c) Zhejiang and (d) Guangdong. The x-axis (cropland ratio) represents the
proportion of cropland in each sample block with a spatial dimension of 256 × 256 pixels while y-axis (percentage) represents the proportion of the sample blocks
with certain cropland ratio in training or validation set. Validation and training set have similar class distributions for each study area.
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Fig. 6. Cropland mapping results for (I) Heilongjiang, (II) Hebei, (III) Zhejiang and (IV) Guangdong study areas in 2017: (a) cropland maps overlaid with validation
areas. (b) 4× 4 km typical subsets marked in each study area as S1 and S2, depicting examples of mapping results.
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study area, since each study area presents different cropland char-
acteristics. Fig. 14 provided an example of the loss evolution during
training process for Guangdong.

3.4. Accuracy assessment

To evaluate the proposed method, we selected several typical zones
with various landscape characteristics to generate validation samples in
every study area, taken from an in-situ data survey by the National
Bureau of Statistics of China. These in situ data sets were obtained
through field survey in 2017 by different site managers as vector files,
incorporating investigated object geometric shapes. In total, validation
dataset contained 4056 cropland patches and 7675 non-cropland pat-
ches (comprising built-up, forest, meadow, water, and bare land) for
each study area. We adopted the Kappa coefficient; and overall (OA),
producer and user accuracy evaluation metrics to access classification
performance.

4. Results

4.1. Cropland mapping results

Fig. 6 shows the final cropland maps for the four study areas, with
several typical subsets for different landscapes in study areas from plain
areas and mountain zones shown in Fig. 6(b) to show more details,
displaying the original images and results. The proposed algorithm
generally achieved good visual results in both northern areas with large
average field size, and southern areas with fragmented and hetero-
geneous landscapes. More importantly, these areas could be effectively
characterized regardless of whether or not plants were growing in the
cropland areas. Large cropland areas were distinguished from others,
such as built-up, rivers, roads and forests for plain areas (s1 in Hei-
longjiang and Hebei provinces), and boundaries for fragmented crop-
land with regular distribution can be precisely located for Zhejiang
province. Moreover the irregularly distributed cropland areas were
extracted and forest with similar spectral features to cropland was well
discriminated (Guangdong, s1). In mountain areas, small villages and
large forest areas could be filtered out (area s2 in Heilongjiang, Zhe-
jiang, and Guangdong provinces). For Hebei, cropland without plants
(fallow) was effectively detected, whereas bare land on the hill was
suppressed. The proposed MPSPNet successfully identified croplands
with various texture and spectral characteristics, whereas traditional
methods tended to require dividing the croplands into different types
that were subsequently merged into one category. Thus, the proposed
approach would be suitable to map VHSR cropland areas over large
areas effectively and automatically.

4.2. Statistical accuracy assessment

Table 4 summarizes quantitative accuracy assessment for the pro-
posed approach. The MPSPNet performed well for all four provinces.
Heilongjiang and Hebei (Northern China) achieved better performance
due to larger average field size. Heilongjiang Province achieved highest
accuracy (OA = 92.31%), but all the other provinces also had good
performances (89.99% to 91.00%). Kappa exceeded 0.7 for all study
areas, reaching 0.844 for Heilongjiang, indicating high cropland iden-
tification accuracy for the proposed MPSPNet. The proposed method
accuracy was worst for the Zhejiang study area (OA = 89.99%,
Kappa = 0.700), but still sufficient for fragmented landscape area.

We divided validation zones into mountainous, plain, and plain and
mountain mixed areas according to terrain and the quantitative as-
sessment results of each validation zone are further analyzed with main
evaluation metrics shown in Fig. 7. Fig. 7(a) is choropleth maps of
accuracies for each validation zone, and Fig. 7(b) is boxplots of main
evaluation metrics for different landscape types. The detailed ac-
curacies of each validation zone are provided in Table A1 in the ap-
pendix. Overall, similar to the above outcomes, Heilongjiang and Hebei
provinces achieved have higher accuracy than Guangdong and Zhejiang
provinces, and additionally accuracy for plains areas was higher than
for mountain areas for all study areas.

More concretely, Average OA and kappa for plain areas were
slightly higher than for mountainous areas and mixed areas in
Heilongjiang Province. Average omission error was least for mixed
areas, followed by plain and mountainous areas successively. And
average commission error for plain area is lower than that for the other
two types of areas. For all zones in plain areas, 65% of them have an
overall accuracy of higher than 90% while the ratio is 30% in mountain
areas and 66.7% in mixed areas. Kappa values in plain areas were
maintained around 0.760 ± 0.11, with higher variability across all
zones in mountain and mixed areas (0.680 and 0.630 minimum and
0.821 and 0.842 maximum, respectively). Producer accuracies in mixed
areas showed little fluctuation, ranging 88.79% to 94.82%, whereas
large differences occur for other terrain types, ranging 76.52% to
96.54% in plain areas, and 76.17% to 95.87% in mountain areas. User
accuracies of all validation zones in plain areas exceed 90% except
Daoli (86.51%) and Yanshou (87.78%). User accuracies in mixed areas
exceeded 90% (90.46% to 95.32%) and were slightly lower for moun-
tain areas (82.67% to 94.40%).

Cropland map of Hebei Province exhibited satisfactory performance
similar to Heilongjiang Province, with mean evaluation metrics for
plain areas higher than for the other two area types. Mean overall ac-
curacy, kappa, and producer accuracy for mountain areas were ex-
tremely close to those for mixed areas, whereas average user accuracy
was 8.38% lower. In plain areas, 64% of validation zones had overall
accuracy exceeding 90% (maximum = 96.96%). And kappa exhibited
relatively high variability (0.622–0.935), with more than 70% of vali-
dation zones producer accuracy and almost 90% user accuracy ex-
ceeding 90%. Overall accuracies for the two validation zones in
mountain areas were 88.97% and 91.16%, respectively, but user ac-
curacies were low, revealing commission errors. Overall accuracies for
mixed areas ranged from 85.52% to 94.55% with 40% of zones ex-
ceeding 90%. Producer and user accuracies were well balanced (73.4%
to 92.2% and 72.41% to 88.27%, respectively).

Despite fragmented landscape and small parcel size distribution,
Zhejiang and Guangdong results achieved 89.99% and 90.56% overall
accuracies, respectively. Overall average accuracies in plain areas for
Zhejiang and Guangdong were 88.02% ( ± 4%) and 90.62% ( ± 6%),
respectively. Approximately 50% of Guangdong validation zones

Table 4
Accuracy indices of the classifications: Overall Accuracy (OA), kappa,
Producers' accuracy (PA) and Users' Accuracy (UA). The overall accuracies
range from 89.99% to 92.31% and the kappa exceeded 0.7 for the four study
areas. (HLJ) Heilongjiang, (HB) Hebei, (ZJ) Zhejiang and (GD) Guangdong.

OA (%) Kappa Cropland Non-cropland

PA (%) UA (%) PA (%) UA (%)

HLJ 92.31 0.844 92.70 93.56 91.83 90.75
HB 91.00 0.820 90.63 91.15 91.36 90.86
ZJ 89.99 0.700 79.74 73.25 92.60 94.73
GD 90.56 0.744 77.35 84.12 95.04 92.52

D. Zhang, et al. Remote Sensing of Environment 247 (2020) 111912

9



Fig. 7. Statistical accuracy assessment results for (I) Heilongjiang, (II) Hebei, (III) Zhejiang and (IV) Guangdong in 2017. The group (a) is choropleth maps of main
evaluation metrics for each validation zone. The group (b) is boxplots of main evaluation metrics in different terrain landscape, where the mark “×” presents the
location of mean value. Plain areas (P), Mountain zones (M), Plain and mountain mixed zones (PM).
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Fig. 7. (continued)
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exhibited overall accuracy exceeding 90%, whereas only two out of
seven (Zhenhai and Jiangbei) in Zhejiang achieved this (91.12% and
93.8%, respectively). All plain validation zones in Guangdong exhibited
kappa between 0.700 and 0.900 except Xuwen (0.675), whereas
Zhejiang plain zones exhibited kappa between 0.646 and 0.794.
Average producer accuracy for Guangdong was 83.05% ( ± 16%) with
Longhu and Xiashan exhibiting highest and lowest producer accuracy
(97.29% and 67.07%), respectively. Average produce accuracy for plain
areas in Zhejiang was 81.14% ( ± 13%) with Jiangbei and Zhenhai
zones exhibiting highest and lowest accuracy (91.64% and 68.33%),
respectively. In contrast to producer accuracies, user accuracies for
plain areas were relatively smaller for Guangdong and Zhejiang: mean
user accuracies were 87.22% ( ± 10%) and 80.69% ( ± 6%), respec-
tively. In mountain areas, Guangdong showed better performance than
Zhejiang, with mean kappa 0.691(0.616–0.797) and 0.640
(0.605–0.700), respectively. For mixed terrain zones, approximately
60% of validation zones in Zhejiang and Guangdong had overall ac-
curacy exceeding 90%. In conclusion, the proposed method exhibited
strong ability to describe cropland location and extent with high ac-
curacy.

5. Discussion

5.1. Feature representations for croplands

We examined shallow and deep feature representations to better

understand how the proposed MPSPNet model extracted cropland,
using Heilongjiang S1 (see Fig. 6) as an example. Two of the 16 learned
low level features and six of 512 high-level features were selected to
depict two-scale characteristics. Fig. 8 shows the high-level feature map
of #H122, confirming this filter was responsive to cropland cover,
whereas #H5 obstructs the representation of this class. Features #H61
and #H340 tend to highlight different types of cropland land cover,
with #H61 corresponding to bright white cropland land whereas
#H340 corresponds to dark purple areas. The proposed network not
only extracted deep high level features distinguish between cropland
and non-cropland, but also separated forest (#H7) and buildings
(#H423). Thus, even though the model was not explicitly set to seg-
regate such features, it learned these features to promote cropland
identification. This aspect will be beneficial for transfer learning to
detect other target objections, such as building, etc. In contrast to the
high-level abstract features, low-level features trend to extract local
detailed boundary information. For example #L4 (Fig. 8) identifies dark
objects and #L6 responds more to bright objects. Thus, deep high-level
features can present spatial contextual information which help infer
classes whereas shallow low-level features learned edge information to
characterize object boundaries. Combining these aspects contributes to
improved classifications.

To further explore high- and low-level feature roles in end-to-end
pixel wise classification, we took a horizontal transect from S1 of
Heilongjiang. Fig. 9(b1) shows it is almost impossible to discriminate
between cropland and non-cropland using only spectral features,

Fig. 8. Learned high-level and low-level feature maps: (a) original image, (b) classification result, (c1)-(c6) 6 of 512 deep high-level feature maps, (d1) and (d2) 2 of
16 low-level feature maps.
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whereas Fig. 9(b2) shows classification results from the proposed ap-
proach have strong agreement with visual results, indicating excellent
performance. Similar to Fig. 8, #H122 shows active response to crop-
land whereas #H5 shows an opposite response. However, these high

level features lose spatial precision after the convolution stack, and only
poorly locate object boundaries. On the other hand, while low level
features (e.g. #L4 and #L6) were relatively insensitive to abstract se-
mantic information, they show good response to boundary information.

Fig. 9. Horizontal transects for S1 from Heilongjiang. Dashed lines indicate the boundary between cropland and non- cropland through visual interpretation. (a)
original image, (b1) pixel values for R, G, B bands, (b2) classification results (1 = cropland, 2 = non-cropland), (c1)-(c6) pixel values of high-level features, and (d1)-
(d2) low-level features. Note that data from low-level and high-level features were all normalized into the same range for visualizing.
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Thus, combining high- and low-level features was an effective way to
realize cropland type recognition and precise localization.

5.2. Assessment of spatio-temporal transferability

One fundamental issue for large area cropland mapping remains the
model transferability. Spatio-temporal transferability is the model
temporal and spatial generalization capability for classifying unseen
data, which means applying a trained classification model derived from
certain locations or time periods to other places or periods efficiently

(Phalke and Özdoğan, 2018). To validate temporal transferability of the
proposed method, we applied a classification model gained from
training areas in 2016 to map cropland extent of the identical areas
(same as training areas) in 2017 and investigated the extraction of
cropland over the four study areas, especially when spectral char-
acteristic variation or land cover type change occurs. The spatial
transferability was tested over different areas (independent from
training areas) with similar cropland landscape to the training areas in
2017.

We evaluated temporal transfer from the qualitative and

Fig. 10. 2 × 2 km zoom-in regions in (I) Heilongjiang, (II) Hebei, (III) Zhejiang and (IV) Guangdong, displaying examples of classification performance concerning
temporal transfer: (a) the original image in 2016, (b) the ground reference in 2016, (c) the original image in 2017, (d) the cropland mapping result in 2017. The red
circles denote the land cover type changes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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quantitative perspectives, respectively. As presented by Fig. 10, whe-
ther significant variations of spectral information exist or not between
training images and target images, the cropland can be accurately
identified. In particular, cropland can also be correctly distinguished
where the land cover categories change (red circles in Fig. 10).
Fig. 11(a) illustrates the boxplots of four important accuracy evaluation
indicators over the validation zones (in Fig. 7) within the training areas
(in Fig. 1) for every study area in a quantitative accuracy evaluation
manner. Synoptic view, for Heilongjiang and Hebei, the average kappa

exceeded 0.73, ranging 0.630 to 0.840 and 0.714 to 0.831, respectively.
Satisfactory performances were also obtained in Zhejiang and Guang-
dong with relatively fragmented landscape, whose kappa values were
maintained around 0.683 ± 0.1 and 0.707 ± 0.1, respectively. The
trained model can be applied effectively in other periods because the
proposed MPSPNet is able to yield the hierarchical and deep abstract
semantic features on the basis of the training data from all seasons (as
shown in Fig. 2) and the cropland can be stably described by such
features without being affected by changes in spectral, texture, size and

Fig. 11. The quantitative evaluation regarding temporal and spatial transferability with boxplots of four evaluation metrics over the validation zones for (I)
Heilongjiang, (II) Hebei, (III) Zhejiang and (IV) Guangdong, where the mark “×” denotes the location of mean value. (a) is the result of temporal transfer and (b)
represents the result of spatial transfer. Note that the validation zones in terms of temporal transfer are the ones (in Fig. 7) within the training areas (in Fig. 1) while
the validation zones with regard to spatial transfer are outside the training areas.

Fig. 12. Three study areas with different terrain landscapes. Each study area was split into a training, a validation, and a test set in a grid-wise random manner. (a)
Panyu, plain area. (b) Fogang, Mountainous area. (c) Zengcheng, Plain and mountain mixed area. T1, T2 and T3 mean the different image acquisition times: February
20, May 16 and December 7 of the year 2016, respectively.
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Fig. 13. Cropland mapping results for (I) Plain area, (II) Mountainous area and (III) Plain and mountain mixed area: (a) The original image, (b) Ground reference, (c)
result of OBIA-RFP, (d) result of OBIA-RFM, (e) result of OBIA-RFPM, (f) result of MPSPNetP, (g) result of MPSPNetM, (h) result of MPSPNetPM, and (i) result of
MPSPNetW. Specifically, OBIA-RFP or MPSPNetP represents the model trained on the training set from plain area, OBIA-RFM or MPSPNetM represents the model from
mountainous area, OBIA-RFPM or MPSPNetPM represents the model from mixed area, and MPSPNetW represents the model used for Guangdong in Section 4.
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shape characteristics. Admittedly, these qualitative and quantitative
assessments demonstrated the robust temporal transferability of the
proposed method in cropland mapping applications.

Similarly, qualitative and quantitative aspects were both chosen as
evaluation measurement to investigate the spatial transferability. The
typical subsets in Fig. 6(b) (such as s2 in Heilongjiang, s1 in Hebei and
Zhejiang as well as s1 and s2 in Guangdong) revealed the proposed
method performed well in delineating spatial distributions of various
croplands. For quantitative assessment, Fig. 11(b) exhibits the boxplots
of primary evaluation indicators over the validation zones (in Fig. 7)
outside the training areas (in Fig. 1). Generally, the four study areas
implemented relatively high accuracies and their average kappa values

Table 5
Accuracy comparison of different classification models under different terrain landscapes.

Terrain types Evaluation Metrics OBIA-RFP OBIA-RFM OBIA-RFPM MPSPNetP MPSPNetM MPSPNetPM MPSPNetW

P OA(%) 72.15 52.19 64.77 90.48 79.90 80.83 85.27
kappa 0.433 −0.045 0.308 0.807 0.584 0.603 0.695
PA(%) 67.24 14.55 74.88 90.30 69.74 70.19 74.92
UA(%) 68.33 37.48 57.33 88.14 81.48 83.29 89.56

M OA(%) 83.70 79.32 67.42 89.47 95.42 91.79 94.51
kappa −0.009 0.279 0.135 0.246 0.672 0.369 0.679
PA(%) 7.44 66.17 61.70 23.73 68.16 29.79 70.85
UA(%) 8.52 26.35 16.76 40.31 72.31 64.24 71.01

PM OA(%) 88.21 89.15 84.64 89.11 93.49 95.11 92.57
kappa 0.358 0.479 0.432 0.528 0.693 0.747 0.673
PA(%) 41.54 61.01 77.05 74.44 83.76 80.64 88.95
UA(%) 43.23 48.42 38.28 48.55 64.50 74.53 59.65

Plain areas (P), Mountain zones (M), Plain and mountain mixed zones (PM). The bold font highlights the greatest classification accuracy per row.

Fig. 14. Loss curves of the different CNN models during the training process. ResNet model provides faster convergence at the early stage than GoogLeNet model.

Table 6
Accuracy assessment amongst MPSPNet-Resnet, PSPNet-Resnet, MPSPNet-
GoogLeNet and PSPNet- GoogLeNet for Guangdong.

Model OA(%) Kappa PA UA

MPSPNet-Resnet 90.56 0.744 77.35 84.12
MPSPNet- GoogLeNet 90.49 0.746 75.59 86.34
PSPNet-Resnet 89.01 0.717 76.70 84.01
PSPNet- GoogLeNet 88.78 0.712 74.67 84.94

The bold font highlights the greatest classification accuracy per column.
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exceeded 0.700 except Zhejiang (0.699). As aforementioned, the pro-
posed method could learn stable feature representations of cropland,
thereby a trained model has the strong transferability in space and it
can be utilized in other places with similar cropland landscape to the
training areas. Both qualitative and quantitative assessments confirmed
the strong generalization ability of the proposed method in spatial
transfer. Notably, we merely discuss the spatial transferability of the
proposed method within a limited large-scale area (at the provincial or
regional level) with similar cropland landscape in this paper. Spatial
transfer at national or global scales will remain to be explored in future
study.

5.3. Comparison with traditional object-based classification method

To evaluate the classification performance of the proposed MPSPNet
method, it was comprehensively compared with the traditional object-
based classification method. We selected the representative Object-
based image analysis with Random forest (OBIA-RF) method, where
spectral features (mean and standard deviation), texture (grey-level co-
occurrence matrix) and geometry (e.g. shape index, perimeter-area
ratio) were fed into a parameterized RF for classification. Considering
the complexity and difficulty of object-based classification for large-
scale cropland extraction, we replaced the whole province with selected

Fig. 15. Comparison between our results and FROM-GLC10: (a) true colour image from Yinzhou in Zhejiang overlaid with FROM-GLC10 and our result from bottom
to top; (b) close view for the marked patches from (a).

Table 7
Average accuracies of our results and FROM-GLC10 under different topographical landscape characteristics for each study area. (HLJ) Heilongjiang, (HB) Hebei, (ZJ)
Zhejiang and (GD) Guangdong.

Our result FROM-GLC10

OA (%) Kappa PA (%) UA (%) OA (%) Kappa PA (%) UA (%)

HLJ Plain 91.15 0.76 90.95 94.03 81.96 0.54 86.45 82.68
Mountain 89.06 0.75 87.75 89.14 71.17 0.39 85.68 48.98
Mixed 90.23 0.75 92.24 92.82 79.05 0.54 90.37 77.86

HB Plain 91.22 0.79 91.88 94.76 85.57 0.63 83.73 97.02
Mountain 90.07 0.72 86.48 72.31 80.09 0.42 63.33 54.94
Mixed 89.53 0.71 85.27 80.69 80.92 0.52 63.60 87.69

ZJ Plain 88.02 0.72 81.14 80.69 79.83 0.55 62.90 81.70
Mountain 90.50 0.64 79.03 62.31 85.16 0.40 62.98 40.26
Mixed 89.82 0.70 79.43 74.79 82.09 0.52 60.27 69.79

GD Plain 90.62 0.76 83.05 87.22 71.79 0.39 53.63 82.23
Mountain 90.30 0.69 72.7 80.34 75.62 0.37 44.13 68.65
Mixed 90.65 0.73 78.19 81.68 68.80 0.33 41.48 83.79
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three county-level study areas (Fig. 12) with different terrain types in
Guangdong Province to conduct the experiment. We utilized the grid as
the basic unit to segment every study area into 16 or 12 sub-regions and
randomly split them into a training, a validation and a test set (Fig. 12).
The training set was used to train the model. The validation set was
used for determining the optimal model parameters. And the test set
were exploited for final accuracy evaluation. In addition to the model
trained on the training set from the same study area, the models derived
from the other two study areas were leveraged for cropland extraction
to compare the transferability and generalization ability of different
methods. For convenience, we define the obtained model from its own

study area as inner-area model and the one trained from the other study
areas as inter-area model. Simultaneously, the MPSPNet model used for
the whole Guangdong province in Section 4 is also compared with the
above models.

we compared the performance of MPSPNet and OBIA-RF methods
from the respects of qualitative and quantitative (as displayed in Fig. 13
and Table 5). It should be noted that taking plain area as an example,
OBIA-RFP and MPSPNetP are inner-area model for its test set whereas
OBIA-RFM, MPSPNetM, OBIA-RFPM and MPSPNetPM are inter-area
model. In general, Regardless of MPSPNet or OBIA-RF, the inner-area
model had more accurate classification performance than the other two

Fig. 16. Comparison of the accuracies between our result (y-axis) and FROM-GLC10 (x-axis) under different topographical landscapes in the four study areas. (a)
Heilongjiang, (b) Hebei, (c) Zhejiang and (d) Guangdong.
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inter-area model. And MPSPNet is significantly superior to OBIA-RF,
corroborating the advantages of CNN in extracting cropland using
VHSR remote sensed images. According to the results of inter-area
model, the more undesirable visual effects and misclassifications were
observed for OBIA_RF approach in contrast to MPSPNet. In particular,
the inter-area model of MPSPNet achieved a higher accuracy compared
with inner-area model of OBIA-RF. This shows that MPSPNet possesses
the strong spatio-temporal transferability and generalization cap-
abilities for data variation. Amongst all MPSPNet models, the model
used for the whole province obtained the closest performance to inner-
area model and realized better classification results than inter-area
models, which indicated that MPSPNet can generalize various char-
acteristics of cropland through large amount of training samples and
demonstrated the applicability of the proposed MPSPNet to large-scale
cropland classification based on VHSR images.

5.4. Effects of CNN models

Taking Guangdong as an example, we tested the effects of the dif-
ferent CNN models. In addition to original PSPNet, GoogLeNet with
eight inception modules (Szegedy et al., 2015) was introduced to re-
place Resnet, thereby four CNN models including MPSPNet-Resnet
(proposed in the study), PSPNet-Resnet, MPSPNet-GoogLeNet and
PSPNet-GoogLeNet were compared. It should be noted that we applied
the hyper parameters setting as mentioned in Section 3.3 to training the
four CNN models.

The loss curves during the training process and accuracy assessment
of the different CNN models were presented in Fig. 14 and Table 6.
Clearly, the accuracies of Resnet was not substantially superior to the
GoogLeNet. Nevertheless, the ResNet can ease the optimization by
converging faster at the early stage. Regardless of Resnet or GoogLeNet,
the results of the MPSPNet is better than the original PSPNet, which
demonstrates it is an effective strategy to combine low-level local fea-
tures with high-level features to generate fine classification.

5.5. Comparison with current cropland products

We compared our results with current cropland maps generated
from FROM-GLC10, i.e., 10 m resolution global land cover maps with
ten classes, for 2017 from Sentinel-2 data (Gong et al., 2019). Fig. 15
shows visual differences between the two products for Yinzhou of
Zhejiang as an example. As shown in Fig. 15(a), the FROM-GLC10 and
our result are superimposed on the satellite imagery from bottom to
top, respectively. The proposed approach produced broadly similar
distribution patterns of cropland with FROM-GLC10, but significantly
more accurate cropland characteristics with finer spatial details. In
particular the proposed approach not only extracted more details
within plain zones, but also detected scattered small cropland parcels in
mountain areas, due to higher resolution input images. For example,
Fig. 15(b) p2 shows the proposed approach distinguished cropland from
others for plain areas, whereas some forest lands were misclassified as
cropland by FROM-GLC10. Similarly, Fig. 15(b) p1 shows that frag-
mented small cropland areas omitted by FROM-GLC10 can be suc-
cessfully extracted by the proposed approach in mountain areas.

Table 7 compares average accuracy for the proposed approach with
FROM-GLC10 for all validation zones in every study area. The proposed
approach consistently exhibited higher average accuracy in plain,
mountain and mixed zones. Heilongjiang and Hebei exhibited con-
siderable OA, kappa, and PA improvements for mountain zones, im-
plying much less omission error. Areas with fragmented landscapes,
such as Zhejiang and Guangdong, exhibited significantly improved ac-
curacies for all terrain landscape zones. Fig. 16 demonstrates the

scatterplots of the four accuracy metrics under different landscapes for
four study areas, by marking our results in the vertical axis and FROM-
GLC10 in the horizontal axis, respectively. Most points situate above
the 1:1 diagonal line, denoting that significant advantage from the
proposed approach, i.e., higher accuracy than FROM-GLC10 in a ma-
jority of the validation zones. Given that FROM-GLC10 is existing large-
scale cropland product with the finest spatial resolution, we could not
confirm the proposed approach was definitely superior to FROM-GLC10
because they were derived from very different data sources and hence
inconsistency could be due to different spatial resolutions. However,
the results verified the proposed approach effectiveness to auto-
matically extract large-scale croplands with high precision at 2 m
spatial resolution for operational application.

5.6. Future research

The proposed method achieved good performance and efficiency for
large-scale cropland classification based on VHSR remote sensed
images. However, accuracy imbalances occurred between mountain
and plain zone. It may be insufficient to extract cropland for the whole
area without considering terrain landscapes. Therefore, future study
will separate mountain and plain areas for individual model training
and cropland mapping. Additionally, this study used the mean of visual
interpretation to annotate samples and hence ensure training data ac-
curacy, but this would be ineffective in large-scale settings. This issue
might be addressed by using existing land cover information to extract
the training samples in future research.

6. Conclusion

This study developed a novel approach based deep CNNs to auto-
matically identify cropland at very high resolution over large areas for
operational agriculture monitoring. We selected four provinces in-
corporating diverse agricultural systems (Heilongjiang, Hebei,
Zhejiang, and Guangdong Provinces) as study areas with images ac-
quired by Gaofen-1 (GF1), Gaofen-2 (GF2) and ZiYuan-3 (ZY3) sa-
tellites. A manually labeled training dataset was extracted for each
study area based on observations from 2016 to train the network, and
applied to cropland identification for similar images from 2017.
Cropland mapping results for the four study areas achieved the overall
accuracies ranging from 89.99% to 92.31% and confirmed un-
supervised learned features based on deep learning exhibited strong
generalization ability, hence croplands with various shapes, sizes along
with texture and spectral characteristics could be successfully identified
on VHSR images. We investigated how the proposed MPSPNet model
learns and understands input images on different layers through fea-
tures visualization, and in particular confirmed the proposed strategy to
combine low-level and high-level features provided an efficient and
accurate approach for cropland mapping, capturing edge information
related to object boundaries and long range spatial dependencies to
identify classification classes, respectively. The temporal transfer and
spatial transfer assessments demonstrated the practical potential and
applicability of the proposed approach for large-scale cropland map-
ping. The contrast to the traditional object-based classification method
and other CNN models corroborated the advantages of MPSPNet. We
further compared the proposed approach with current cropland maps
produced from FROM-GLC10, confirming higher accuracy for different
terrains (plain, mountain and mixed zones) from the proposed approach
in each study area. Thus, the proposed MPSPNet provided an effective
and promising approach for operational agriculture monitoring over
large areas at very high resolution.
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Table A1
Accuracies of our results for each validation zone. Plain areas (P), Mountain zones (M), Plain and mountain mixed zones (PM).

Study area Terrain type Validation zone OA (%) Kappa Cropland_PA (%) Cropland_UA (%)

Heilongjiang P Bayan 92.46 0.742 96.26 94.58
P Daoli 88.26 0.740 96.17 86.51
P Fuyuan 92.51 0.677 96.54 94.83
P Hulan 93.17 0.766 96.08 95.62
P Kedong 92.02 0.784 95.92 93.55
P Longfeng 89.00 0.757 76.52 93.04
P Mulan 92.10 0.822 94.69 93.51
P Qinggang 91.80 0.773 92.14 97.25
P Qingan 92.09 0.747 94.45 95.74
P Ranghulu 88.47 0.754 76.83 93.53
P Shuangcheng 93.57 0.771 96.36 95.91
P Sifangtai 90.19 0.769 90.70 95.28
P Songbei 87.57 0.746 83.68 95.85
P Suibin 89.14 0.735 90.28 94.56
P Tailai 87.72 0.756 82.17 94.00
P Xingan 87.98 0.751 86.56 93.44
P Yanshou 98.15 0.869 88.00 87.78
P Yian 92.18 0.704 94.78 95.96
P Yilan 92.59 0.788 95.91 94.53
P Zhaodong 91.99 0.745 94.95 95.09
Average_P 91.15 0.760 90.95 94.03
M Cuiluan 84.67 0.687 91.24 82.67
M Dongan 87.97 0.747 83.78 85.19
M Dongning 89.59 0.772 86.22 84.33
M Hengshan 86.88 0.726 89.63 88.67
M Lishu 87.84 0.680 93.11 90.60
M Mashan 93.18 0.790 76.17 91.73
M Mulimg 91.83 0.821 86.98 89.85
M Tieli 92.56 0.793 95.87 94.40
M Wumahe 89.09 0.748 91.99 92.04
M Yangming 87.01 0.741 82.53 91.91
Average_M 89.06 0.751 87.75 89.14
PM Beian 92.14 0.842 94.82 90.46
PM Dongshan 92.13 0.840 88.79 93.32
PM Huanan 86.65 0.658 89.52 92.35
PM Jidong 89.07 0.630 94.01 92.66
PM Longjiang 91.23 0.790 94.73 92.81
PM Luobei 90.16 0.740 91.58 95.32
Average_PM 90.23 0.750 92.24 92.82

Hebei P Anci 87.65 0.745 87.61 91.45
P Anping 92.58 0.840 94.38 93.98
P Anxin 91.67 0.803 92.51 95.56
P Baixiang 94.67 0.894 92.65 96.67
P Botou 92.12 0.828 95.08 92.75
P Changli 86.97 0.733 86.70 90.88
P Daming 94.59 0.851 94.85 98.10
P Dingxing 92.70 0.827 91.64 98.14
P Dingzhou 94.77 0.823 95.75 97.89
P Fengnan 84.21 0.647 81.63 96.04
P Gucheng 83.63 0.622 90.47 85.69
P Huanghua 88.94 0.766 87.86 94.56
P Li 96.96 0.935 96.17 99.01
P Linxi 94.55 0.824 95.28 98.02
P Linzhang 93.52 0.834 93.57 97.73
P Longyao 95.16 0.823 96.62 97.60
P Luancheng 88.24 0.756 89.23 91.02
P Mancheng 89.23 0.780 87.99 93.45
P Mengcun 94.40 0.831 96.10 96.81
P Qianan 86.98 0.739 88.94 86.38
P Qinghe 93.69 0.830 92.97 98.84
P Quzhou 90.70 0.703 90.39 98.44
P Ren 88.65 0.755 95.11 87.40
P Sanhe 88.89 0.777 93.45 83.01
P Wuqiao 91.83 0.755 91.42 98.51
P Xinhe 92.74 0.847 90.89 97.47
P Xinji 95.63 0.854 95.90 98.79
P Xiong 90.14 0.774 89.15 96.69
P Yanshan 93.70 0.842 93.87 97.53
P Yuanshi 88.86 0.731 92.24 92.01
P Yutian 92.54 0.816 93.21 96.44
P Zhengding 88.06 0.723 85.84 97.61
P Zhuozhou 91.19 0.818 92.46 92.56
Average_P 91.22 0.792 91.88 94.76
M Weichang 91.16 0.715 86.82 69.05

(continued on next page)
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Table A1 (continued)

Study area Terrain type Validation zone OA (%) Kappa Cropland_PA (%) Cropland_UA (%)

M Wei 88.97 0.729 86.13 75.57
Average_M 90.07 0.722 86.48 72.31
PM Ci 85.52 0.626 92.20 88.27
PM Pingshan 92.02 0.714 73.40 79.14
PM Wuan 86.68 0.728 89.73 87.15
PM Xingtai 88.89 0.735 86.92 76.50
PM Zhuolu 94.55 0.747 84.10 72.41
Average_PM 89.53 0.710 85.27 80.69

Zhejiang P Haining 84.33 0.682 83.14 80.93
P Jiangbei 91.12 0.794 91.64 80.59
P Jiaojiang 87.85 0.737 80.70 85.93
P Jiashan 84.51 0.673 85.34 74.89
P Luqiao 89.52 0.738 82.74 79.44
P Nanxun 85.03 0.646 76.11 74.55
P Zhenhai 93.80 0.736 68.33 88.50
Average_P 88.02 0.715 81.14 80.69
M Jinyun 88.20 0.635 87.01 59.30
M Kaihua 94.34 0.700 79.22 67.84
M Tonglu 91.62 0.633 78.16 60.21
M Wuyi 88.65 0.627 75.59 64.54
M Yunhe 89.71 0.605 75.19 59.64
Average_M 90.50 0.640 79.03 62.31
PM Beilun 91.05 0.726 80.12 76.32
PM Dinghai 93.83 0.757 81.58 77.25
PM Huangyan 91.84 0.722 82.53 72.40
PM Kecheng 85.89 0.607 68.29 71.70
PM Leqing 87.78 0.695 90.56 67.99
PM Linhai 91.60 0.711 78.28 74.14
PM Putuo 96.53 0.760 78.93 76.93
PM Qujiang 81.96 0.622 90.65 65.68
PM Sanmen 89.81 0.698 71.83 81.30
PM Shangyu 90.79 0.708 71.21 82.49
PM Wenling 90.15 0.716 78.63 77.22
PM Xiangshan 91.52 0.778 86.61 80.56
PM Xiaoshan 92.88 0.779 91.22 74.90
PM Yinzhou 91.97 0.745 81.99 77.15
PM Yiwu 87.84 0.624 68.65 71.50
PM Yongkang 90.06 0.703 76.10 77.02
PM Yuhang 84.64 0.615 66.46 78.56
PM Yuhuan 86.62 0.643 86.18 63.18
Average_PM 89.82 0.700 79.43 74.79

Guangdong P Jiangcheng 90.90 0.815 87.26 91.70
P Longhu 93.93 0.878 97.29 91.41
P Maonan 89.47 0.761 81.00 86.88
P Nanhai 95.87 0.775 74.16 86.22
P Nansha 86.75 0.718 91.88 74.37
P Panyu 89.88 0.757 85.51 80.43
P Xiashan 93.75 0.736 67.07 90.73
P Xuwen 84.43 0.675 80.21 96.01
Average_P 90.62 0.764 83.05 87.22
M Deqing 89.31 0.641 64.61 77.69
M Fengkai 89.86 0.633 80.22 60.95
M Lianshan 90.97 0.616 57.92 78.43
M Lianzhou 90.83 0.650 57.94 88.68
M Qujiang 90.17 0.797 86.75 89.34
M Xinfeng 90.56 0.714 70.34 85.72
M Zhenjiang 90.37 0.788 91.11 81.57
Average_M 90.30 0.691 72.70 80.34
PM Boluo 88.02 0.686 73.51 80.04
PM Chaoyang 90.41 0.807 95.20 84.12
PM Chengqu 95.74 0.740 74.26 78.60
PM Dinghu 95.00 0.764 81.33 77.25
PM Enping 89.42 0.719 70.94 88.76
PM Gaoming 92.20 0.718 74.34 78.65
PM Haifeng 86.89 0.608 59.30 81.92
PM Heshan 92.57 0.746 85.00 73.93
PM Huicheng 93.67 0.765 76.16 84.73
PM Jiaoling 89.10 0.778 85.45 89.51
PM Jiexi 90.15 0.730 79.97 78.92
PM Luoding 88.14 0.739 84.15 81.86
PM Nanxiong 81.57 0.624 87.90 80.33
PM Qingxin 96.02 0.743 75.57 77.34
PM Yangdong 91.34 0.743 73.89 86.61
PM Yangxi 91.46 0.763 86.52 77.73
PM Zengcheng 89.33 0.687 65.76 88.22
Average_PM 90.65 0.727 78.19 81.68

D. Zhang, et al. Remote Sensing of Environment 247 (2020) 111912

22



Funding

This work was supported by the National High Resolution Earth
Observation System (The Civil Part) Technology Projects of China under
Grant No. 11-Y20A16-9001-17/18 and the National Key Research and
Development Program of China under Grant No. 2018YFC1504603.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

Abou EL-Magd, I., Tanton, T., 2003. Improvements in land use mapping for irrigated
agriculture from satellite sensor data using a multi-stage maximum likelihood clas-
sification. Int. J. Remote Sens. 24 (21), 4197–4206.

Bartholomé, E., Belward, A.S., 2005. GLC2000: a new approach to global land cover
mapping from earth observation data. Int. J. Remote Sens. 26, 1959–1977.

Biradar, C.M., Thenkabail, P.S., Noojipady, P., Li, Y., Dheeravath, V., Turral, H., et al.,
2009. A global map of rainfed cropland areas (GMRCA) at the end of last millennium
using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 11 (2), 114–129.

Bontemps, S., Defourny, P., Bogaert, E.V., Arino, O., Kalogirou, V., Perez, J.R., 2011.
GLOBCOVER 2009—Products Description and Validation Report. ESA, Paris, France.

Bruzzone, L., Carlin, L., 2006. A multilevel context-based system for classification of very
high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 44 (9), 2587–2600.

Chavez, P., Sides, S.C., Anderson, J.A., 1991. Comparison of three different methods to
merge multiresolution and multispectral data-Landsat TM and SPOT panchromatic.
Photogramm. Eng. Remote. Sens. 57, 295–303.

Chen, J., Ban, Y., China, Li S., 2014. Open access to earth land-cover map. Nature 514
(7523), 434.

Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., et al., 2015. Global land cover
mapping at 30 m resolution: a POK-based operational approach. ISPRS J.
Photogramm. Remote Sens. 103, 7–27.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: Proceedings of the
European Conference on Computer Vision (ECCV) 801–818.

Cheng, G., Zhou, P., Han, J., 2016. Learning rotation-invariant convolutional neural
networks for object detection in VHR optical remote sensing images. IEEE Trans.
Geosci. Remote Sens. 54 (12), 7405–7415.

De Fries, R.S., Hansen, M., Townshend, J.R.G., Sohlberg, R., 1998. Global land cover
classifications at 8 km spatial resolution: the use of training data derived from
Landsat imagery in decision tree classifiers. Int. J. Remote Sens. 19, 3141–3168.

Duro, D.C., Franklin, S.E., Dubé, M.G., 2012. A comparison of pixel-based and object-based
image analysis with selected machine learning algorithms for the classification of agri-
cultural landscapes using spot-5 HGR imagery. Remote Sens. Environ. 118, 259–272.

Friedl, M.A., McIver, D.K., Hodges, J.C., Zhang, X.Y., Muchoney, D., Strahler, A.H., et al.,
2002. Global land cover mapping from MODIS: algorithms and early results. Remote
Sens. Environ. 83 (1–2), 287–302.

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang,
X., 2010. MODIS collection 5 global land cover: algorithm refinements and char-
acterization of new datasets. Remote Sens. Environ. 114, 168–182.

Fritz, S., See, L., McCallum, I., You, L., Bun, A., Moltchanova, E., et al., 2015. Mapping
global cropland and field size. Glob. Chang. Biol. 21, 1980–1992.

Gong, P., Wang, J., Yu, L., Zhao, Y., Liang, L., Niu, Z., et al., 2013. Finer resolution
observation and monitoring of global land cover: first mapping results with Landsat
TM and ETM+ data. Int. J. Remote Sens. 34 (7), 2607–2654.

Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., et al., 2019. Stable classification
with limited sample: transferring a 30-m resolution sample set collected in 2015 to
mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373.

Griffiths, P., van der Linden, S., Kuemmerle, T., Hostert, P., 2013. A pixel-based Landsat
compositing algorithm for large area land cover mapping. IEEE J. Select. Top. Appl.
Earth Observ. Rem. Sens. 6 (5), 2088–2101.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

Herold, M., Mayaux, P., Woodcock, C.E., Baccini, A., Schmullius, C., 2008. Some chal-
lenges in global land cover mapping: an assessment of agreement and accuracy in
existing 1 km datasets. Remote Sens. Environ. 112, 2538–2556.

Jean, N., Burke, M., Xie, M., Davis, W.M., Lobell, D.B., Ermon, S., 2016. Combining sa-
tellite imagery and machine learning to predict poverty. Science 353, 790–794.

Justice, C.O., Becker-Reshef, I., 2007. Report from the Workshop on Developing a
Strategy for Global Agricultural Monitoring in the Framework of Group on Earth
Observations (Geo). UN FAO (July).

Kaiser, P., Wegner, J.D., Lucchi, A., Jaggi, M., Hofmann, T., Schindler, K., 2017. Learning aerial
image segmentation from online maps. IEEE Trans. Geosci. Remote Sens. 55, 6054–6068.

Kingma, D.P., Ba, J., 2015. Adam: a method for stochastic optimization. In: International
Conference on Learning Representations.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. LiDAR remote sensing for

ecosystem studies. Biosci. 52 (1), 19–30.
Liu, J., Shao, G., Zhu, H., Liu, S., 2005. A neural network approach for enhancing information

extraction from multispectral image data. Can. J. Remote. Sens. 31, 432–438.
Long, J.A., Lawrence, R.L., Greenwood, M.C., Marshall, L., Miller, P.R., 2013. Object-

oriented crop classification using multitemporal ETM+ slc-off imagery and random
forest. GISci. Remote Sens. 50 (4), 418–436.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3431–3440.

Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L.W.M.J., Merchant,
J.W., 2000. Development of a global land cover characteristics database and IGBP
DISCover from 1km AVHRR data. Int. J. Remote Sens. 21 (6–7), 1303–1330.

Lu, M., Wu, W.B., Zhang, L., Liao, A.P., Peng, S., Tang, H.J., 2016. A comparative analysis
of five global cropland datasets in China. Sci. China Earth Sci. 59, 2307–2317.

Lyu, H., Lu, H., Mou, L., Li, W., Wright, J., Li, X., et al., 2018. Long-term annual mapping
of four cities on different continents by applying a deep information learning method
to Landsat data. Remote Sens. 10, 471.

Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2017. Convolutional neural networks
for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens.
55 (2), 645–657.

Marmanis, D., Datcu, M., Esch, T., Stilla, U., 2016. Deep learning earth observation classifi-
cation using ImageNet Pretrained networks. IEEE Geosci. Remote Sens. Lett. 13, 105–109.

Massey, R., Sankey, T.T., Yadav, K., Congalton, R.G., Tilton, J.C., 2018. Integrating cloud-
based workflows in continental-scale cropland extent classification. Remote Sens.
Environ. 219, 162–179.

Mathur, A., Foody, G.M., 2008. Crop classification by support vector machine with in-
telligently selected training data for an operational application. Int. J. Remote Sens.
29 (8), 2227–2240.

Ozdogan, M., Woodcock, C.E., 2006. Resolution dependent errors in remote sensing of
cultivated areas. Remote Sens. Environ. 103 (2), 203–217.

Phalke, A.R., Özdoğan, M., 2018. Large area cropland extent mapping with Landsat data
and a generalized classifier. Remote Sens. Environ. 219, 180–195.

Pittman, K., Hansen, M.C., Becker-Reshef, I., Potapov, P.V., Justice, C.O., 2010. Estimating
global cropland extent with multi-year MODIS data. Remote Sens. 2, 1844–1863.

Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A., 2008. Farming the planet: 1.
Geographic distribution of global agricultural lands in the year 2000. Glob.
Biogeochem. Cycles 22 (1).

Samaniego, L., Schulz, K., 2009. Supervised classification of agricultural land cover using
a modified k-nn technique (mnn) and landsat remote sensing imagery. Remote Sens.
1 (4), 875–895.

See, L., Fritz, S., You, L., Ramankutty, N., Herrero, M., Justice, C., et al., 2015. Improved
global cropland data as an essential ingredient for food security. Glob. Food Sec. 4, 37–45.

Ševo, I., Avramović, A., 2016. Convolutional neural network based automatic object
detection on aerial images. IEEE Geosci. Remote Sens. Lett. 13 (5), 740–744.

Sun, Y., Zhang, X., Xin, Q., Huang, J., 2018. Developing a multi-filter convolutional
neural network for semantic segmentation using high-resolution aerial imagery and
LiDAR data. ISPRS J. Photogramm. Remote Sens. 143, 3–14.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., Rabinovich, A., 2015. Going deeper with convolutions. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9.

Thenkabail, P.S., Wu, Z., 2012. An automated cropland classification algorithm (ACCA)
for Tajikistan by combining Landsat, MODIS, and secondary data. Remote Sens. 4
(10), 2890–2918.

Thenkabail, P.S., Biradar, C.M., Noojipady, P., Dheeravath, V., Li, Y., Velpuri, M.,
Gumma, M., Gangalakunta, O.R.P., Turral, H., Cai, X., et al., 2009. Global irrigated
area map (GIAM), derived from remote sensing, for the end of the last millennium.
Int. J. Remote Sens. 30, 3679–3733.

Waldner, F., Canto, G.S., Defourny, P., 2015. Automated annual cropland mapping using
knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 110, 1–13.

Waldner, F., Fritz, S., Di Gregorio, A., Plotnikov, D., Bartalev, S., Kussul, N., et al., 2016. A
unified cropland layer at 250 m for global agriculture monitoring. Datamation 1 (1), 3.

Wang, J., Song, J., Chen, M., Yang, Z., 2015. Road network extraction: a neural-dynamic
framework based on deep learning and a finite state machine. Int. J. Remote Sens. 36
(12), 3144–3169.

Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G.,
et al., 2017. Automated cropland mapping of continental Africa using Google earth
engine cloud computing. ISPRS J. Photogramm. Remote Sens. 126, 225–244.

Yu, F., Koltun, V., 2016. Multi-scale context aggregation by dilated convolutions. Int.
Conf. Learn. Represent. 1–13.

Yu, L., Wang, J., Clinton, N., Xin, Q., Zhong, L., Chen, Y., Gong, P., 2013. FROM-GC: 30 m
global cropland extent derived through multisource data integration. Int. J. Digital
Earth 6, 521–533.

Zhang, L., Zhang, L., Du, B., 2016. Deep learning for remote sensing data: a technical
tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 4, 22–40.

Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., Atkinson, P.M., 2018. An
object-based convolutional neural networks (OCNN) for urban land use classification.
Remote Sens. Environ. 216, 57–70.

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2881–2890.

Zhu, X.X., Tuia, D., Mou, L., Xia, G., Zhang, L., Xu, F., Fraundorfer, F., 2017. Deep
learning in remote sensing: a comprehensive review and list of resources. IEEE
Geosci. Remote Sens. Mag. 5 (4), 8–36.

D. Zhang, et al. Remote Sensing of Environment 247 (2020) 111912

23

http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0005
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0005
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0005
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0010
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0010
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0015
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0015
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0015
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0020
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0020
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0025
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0025
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0030
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0030
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0030
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0035
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0035
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0040
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0040
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0040
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0045
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0045
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0045
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0050
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0050
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0050
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0055
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0055
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0055
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0060
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0060
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0060
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0065
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0065
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0065
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0070
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0070
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0070
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0075
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0075
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0080
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0080
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0080
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0085
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0085
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0085
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0090
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0090
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0090
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0095
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0095
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0100
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0100
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0100
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0105
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0105
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0110
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0110
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0110
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0115
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0115
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0120
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0120
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0125
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0130
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0130
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0135
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0135
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0140
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0140
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0140
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0145
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0145
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0145
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0150
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0150
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0150
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0155
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0155
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0160
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0160
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0160
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0165
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0165
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0165
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0170
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0170
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0175
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0175
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0175
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0180
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0180
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0180
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0185
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0185
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0190
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0190
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0195
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0195
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0200
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0200
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0200
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0205
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0205
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0205
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0210
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0210
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0215
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0215
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0220
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0220
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0220
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0225
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0225
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0225
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0230
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0230
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0230
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0235
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0235
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0235
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0235
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0240
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0240
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0245
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0245
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0250
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0250
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0250
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0255
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0255
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0255
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0260
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0260
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0265
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0265
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0265
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0270
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0270
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0275
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0275
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0275
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0280
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0280
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0280
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0285
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0285
http://refhub.elsevier.com/S0034-4257(20)30282-0/rf0285

	A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution
	Introduction
	Materials and process
	Study areas
	Remote sensing data collection and pre-processing
	Cropland layer dataset

	Methodology
	Proposed MPSPNet architecture
	Collection of the training samples
	Model training
	Accuracy assessment

	Results
	Cropland mapping results
	Statistical accuracy assessment

	Discussion
	Feature representations for croplands
	Assessment of spatio-temporal transferability
	Comparison with traditional object-based classification method
	Effects of CNN models
	Comparison with current cropland products
	Future research

	Conclusion
	Funding
	Declaration of Competing Interest
	References




