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Abstract— Fractional vegetation cover (FVC) is an important
land surface parameter for many environmental and climate-
related modeling and agricultural applications. Incorporating
vegetation growth information into FVC estimation process could
effectively improve FVC estimation accuracy. Methods utilizing
vegetation growth information from field measurement and
coarse resolution FVC product have been developed recently
to estimate site-scale and finer spatial resolution FVC, and
achieved satisfactory performances. However, the computational
efficiency of these methods is not satisfactory and they are
only feasible for analyzing historical data containing a complete
vegetation growth cycle. This letter developed a time-efficient
FVC estimation method at Landsat scale based on temporally
rich data from coarse spatial resolution Global LAnd Surface
Satellite (GLASS) FVC, which facilitates development of a time-
efficient dynamic vegetation growth model, and radiative transfer
models linking Landsat 7 reflectance to FVC, and all combined
in a probabilistic dynamic Bayesian network (DBN) framework.
In addition, the proposed method is also suitable for real-time
FVC estimation and has the potential to be applied on a larger
scale. Validation results indicate that the performance of the
proposed method is satisfactory (R% = 0.889, RMSE = 0.0917)
and comparable to previously developed inefficient but well-
established FVC estimation method incorporating the vegetation
growth model represented by modified Verhulst logistic equation
(R? = 0.884, RMSE = 0.0913).

Index Terms— Dynamic vegetation characteristics, fractional
vegetation cover (FVC), Global LAnd Surface Satellite (GLASS)
FVC product.

I. INTRODUCTION

RACTIONAL vegetation cover (FVC) is defined as the
fraction of green vegetation of the total statistical area
in the nadir view [1], [2]. It is an important parameter for
studying atmosphere, pedosphere, hydrosphere, biosphere and
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their interactions in the earth system [3], [4]. Remote sensing
technology provides an effective means to estimate FVC at
regional and global scales [5]. FVC generated from remotely
sensed data could be used to characterize vegetation changes
caused by environmental factors and climatic conditions over
large regions. However, the accuracy of current FVC estima-
tion methods for a single remote sensing image is possibly
influenced by cloud and aerosol contamination.

Vegetation growth characteristics are often described by
features or indices of aboveground vegetation parts, such as
vegetation cover, plant height, biomass and species abundance
distribution. The vegetation growth information is important
for depicting the vegetation growth process and contains par-
ticular information for FVC estimation. Dynamic vegetation
growth models which represent vegetation growth character-
istics have been developed in many studies, including many
mechanical or semimechanical dynamic vegetation growth
models [6]. Furthermore, FVC estimating methods incorporat-
ing dynamic vegetation growth models have been developed
recently to make the models more robust against the influence
of atmospheric condition on remote sensing data and improve
FVC estimation accuracy. Initially, the FVC estimation method
for MODIS pixels incorporating dynamic vegetation growth
model built using field FVC measurements and radiative
transfer model was developed, and significantly improved FVC
estimation accuracy compared to the commonly used lookup
table (LUT) method [7]. However, collecting sufficient field
measurements to build dynamic vegetation growth models
for each pixel of remote sensing data on a large scale was
impossible. To solve the problem of limited field data, the
method was improved to estimate finer resolution FVC in
which several finer resolution pixels sharing the same dynamic
vegetation growth model built on the corresponding time series
coarse resolution FVC product in a homogeneous area [§].
Besides, the method was further improved for FVC estima-
tion in heterogeneous areas, which employed a decomposing
approach to build independent dynamic vegetation growth
model for each finer resolution pixel [9].

These methods took advantage of vegetation growth charac-
teristics on FVC estimation process, and the FVC estimation
errors caused by cloud contamination were reduced, and
significantly improved the finer resolution FVC estimation
accuracy. However, the computational costs of these meth-
ods are too high because of the time-consuming iteration
process for fitting dynamic vegetation growth models using
the Verhulst logistic equation. In addition, these methods are
only feasible when the observations (remotely sensed data and
coarse resolution FVC product) of the whole vegetation growth
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Fig. 1. Geographic location of the study area. The yellow-cross markers on
the false color composite imagery show the location of the field survey sites.

cycle are available beforehand to build the dynamic vegetation
growth model. Real-time and rapid FVC estimation on a
large scale could not be accomplished using these methods.
Therefore, there is an urgent need to develop a time-efficient
finer resolution FVC estimation method employing dynamic
vegetation growth information to achieve high-quality FVC
estimates on large scale.

This letter aims to propose a time-efficient finer resolution
FVC estimating method incorporating dynamic vegetation
growth information from time series coarse resolution FVC
product. The method should be able to estimate real-time FVC
when remote sensing observations are updated. In addition,
the building of dynamic vegetation growth models should have
fast calculating speed by reducing iteration times. In this letter,
dynamic vegetation growth models were built for each Landsat
7 ETM+ pixel using time series of the Global Land Surface
Satellite (GLASS) FVC product. Then, a radiative transfer
model was used to establish a relationship between spectral
reflectance and FVC. Next, the above two components were
combined in a dynamic Bayesian network (DBN) probabilistic
framework to achieve the optimal FVC estimation at the finer-
scale Landsat resolution. Finally, validation of the proposed
method was conducted by the direct comparison between the
estimated FVC and the field measured FVC.

II. STUDY AREA AND DATA

A. Study Area

The study area is in part of the Yingke oasis region, which is
located in the Heihe River Basin in Northwest China. This area
belongs to an arid region where annual average precipitation
and temperature is 140 mm and 7-10 °C, respectively. The
main land cover type of the study area is farmland planted with
maize. The geographic location of the selected study area is
shown in Fig. 1 based on a Landsat 7 ETM+ image acquired
on June 24. Thirteen sample sites were selected and the size
of each one was 10 m x 10 m. These sites are covered with
maize. Ground surveys covering the whole growing season
of maize were conducted from May 24, 2012 to August 28,
2012. Nine photographs were taken at each sampling site,
with one at the center and the others along with the two
diagonals of each site. The FVC of the sample sites was
calculated by averaging FVC values from the nine digital
photographs. The FVC values from the photographs were
determined using an automatic shadow-resistant segmentation
algorithm, which could achieve similar performance as visual
interpretation [10].

B. GLASS FVC Product

The GLASS FVC product, generated from eight days
MODIS reflectance data (MODO09A1) at a spatial resolution
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of 500 m using machine learning methods, was adopted as
the time series coarse-resolution FVC product in this let-
ter [11], [12]. To keep consistency with Landsat 7 ETM+
reflectance data, GLASS FVC data were reprojected to the
Universal Transverse Mercator (UTM) projection using the
MODIS Reprojection Tools (MRT). Then, the time series
GLASS FVC data were filtered using Savitzky—Golay algo-
rithm [13] to reduce the noise disturbance. There are two
parameters to set in Savitzky—Golay algorithm, the half-width
of the smoothing window (m) and the degree of the smoothing
polynomial (d). The combination of (m, d) was set to (4, 6),
which was proven to provide the best-fitting effect in most
cases.

C. Landsat 7 ETM+ Reflectance Data

The Landsat 7 ETM+ reflectance data (Path 133, Row 033)
corresponding to the field survey data were obtained from the
U.S. Geological Survey’s (USGS) earth explorer. Eight images
from day of year (DOY) 160-272 in the year 2012, covering
the whole growth period of maize, were used in this letter. The
Landsat Ecosystem Disturbance Adaptive Processing System
software was used to conduct the radiometric calibration and
atmospheric correction of these data. Since the failure of
scan line corrector (SLC) causing off data gaps, the Geo-
statistical Neighborhood Similar Pixel Interpolator (GNSPI)
algorithm was applied to fill the gaps of the data with predicted
reflectance values [14].

III. METHODS

Fig. 2 shows the flowchart of the proposed FVC estimation
method. The coarse resolution GLASS FVC data from MODIS
are used to constrain the dynamic vegetation growth models
with temporal dependencies for each Landsat 7 ETM+ pixel.
Then, the radiative transfer model is used to establish the
relationship between spectral reflectance and FVC. Finally,
FVC is modeled at the finer-scale Landsat resolution based on
the above two components in a DBN probabilistic framework.

A. Dynamic Vegetation Growth Model

Many dynamic vegetation growth models including
mechanical, semimechanical and statistical models have
been developed to characterize the vegetation growth
characteristics [15], [16]. Compared to the mechanical or semi-
mechanical models, the statistical dynamic vegetation growth
model usually has simpler mathematical representation and
less input parameters. Therefore, a statistical dynamic vegeta-
tion growth model is selected in this letter. The GLASS FVC
data, which could represent vegetation growth and dynamics
under climatic conditions and phenology, are temporally rich
with high data quality. Thus, time series GLASS FVC data are
employed to construct the dynamic vegetation growth model
and build temporal dependencies.

1) Time-Efficient Dynamic Vegetation Growth Model: A
time-efficient dynamic vegetation growth model incorporated
in the FVC estimation process to describe vegetation growth
for each ETM+ pixel is constructed as follows:

FVC{ = Pl‘ X FVthl (1)

where FVC; represents FVC at current time, FVC;_; is FVC
at the previous time. P; is the operator term and calculated by

AT - dk() o

P=1
! Jrk(t)+e dt
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Fig. 2. Flowchart of the proposed method based on the radiative transfer
model and the vegetation dynamic model.

where AT is the time step and k(¢) is the preprocessed and
resampled GLASS FVC at time T using a decomposition
method [9]. It is used as trend line to constrain the dynamic
vegetation growth model. ¢ is set to 1073 to prevent a null
denominator. (dk(t)/dt) is calculated from GLASS FVC at
time ¢ and 7—1. In (1), the model assumes that FVC at current
state is transitioned from previous FVC state and the change
extent could be determined by the operator term P;. The
model takes advantage of the variation tendency of GLASS
FVC dynamics, which is assumed to agree with the realities
of ground vegetation growth. Observed FVC data covering
the whole vegetation growth cycle is not required to build
this dynamic vegetation growth model. The state transition
process represented by the dynamic vegetation growth model
is embedded in the DBN FVC estimation framework. When
new observations are joined, they could be used for FVC
estimation at the updated moment.

2) Modified Verhulst Logistic Equation: To compare the
time efficiency among the dynamic vegetation growth models,
the modified Verhulst logistic equation is also employed to
combine with the radiative transfer model for FVC estima-
tion. The generalized form of the modified Verhulst logistic
equation is shown as follows:

d

T l4explaxt2+bxt+c) )
where ¢ is DOY, the independent variables, a, b, ¢, and d are
model parameters. The Universal Global Optimization (UGO)
algorithm was used to determine the initial guess and the
Levenberg—Marquardt (LM) algorithm was selected to solve
the curve-fitting problem to fit the four coefficients. The
iterative procedure stops when the minimum of the sum of
the squares is achieved. The fitting process is a very time
consuming iterative procedure.

FVC

B. PROSAIL Model and LUT

The PROSPECT model coupled with SAIL model
(PROSAIL) model [17] was selected to establish the relation-
ship between the reflectance of remote sensing data and FVC
in this letter. Equation (4) describes how the simulated canopy
reflectance is generated from the simulation of PROSAIL
model

p = PROSAIL(LAL ALA, N, Cab, C, Car, Co,
Corown, Hot, SZA, VZA,RAZ, p,) ()

where N is leaf structure parameter, C,p is leaf chlorophyll
a + b concentration, C,, is dry matter content, C,, is water
content, Cy is carotenoid content, Cprown 1S brown pigment
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TABLE I
INPUT PARAMETERS IN THE PROSAIL MODEL

Model Parameter Units Range (or Value)  Step
Cap ug/em’ 20-60 10
Cn glem? 0.01 -
Car ,ug/cm2 0 -
PROSPECT Cy cm 0.02 -
Corown - 0 -
Cant ,ug/cmz 0 -
N - 1.5 -
FVC - 0.01-0.99 0.01
ALA o 15-60 5
SAIL SZA o 25-45 5
Hot - 0.25 -
refl ref2 refs refT1 reft
FVC FVG FVG VG FVCr
Fig. 3. Diagram of DBN in time series.

content [17], LAI is leaf area index, ALA is average leaf
angle inclination, Hot is hot-spot parameter, and pg is soil
reflectance. LAI was converted from FVC (Table I) using the
following [18]:

G(0, LIDF
Po(0) = exp <_(C<T0))) « LAI (5)
FVC = 1 — Po(0°) (6)

where Po(f) and G(8, LIDF) is the gap fraction (¢ = 0°
for nadir view) and projection function, respectively. LIDF is
the leaf inclination distribution function. The input parameters
of PROSAIL were set mainly based on the Leaf Optical
Properties Experiment 93 (LOPEX’93) database. Then the
LUTs, totally including 123 750 combinations of FVC and the
corresponding simulated reflectance, are generated. The 2-D
conditional probability distributions (CPDs), which describe
the frequency distribution of red and near-infrared response
(NIR) reflectance captured by Landsat ETM+ sensor corre-
sponding to a certain FVC value (in its step of range shown
in Table I), are calculated through a statistical analysis of LUTSs
and saved in conditional probability tables (CPTs).

C. DBN Probabilistic Framework

Fig. 3 shows a diagram of the DBN probabilistic framework
in this letter. The arcs connecting the FVC nodes (FVCy,
FVC,, ..., FVCr_1, FVCr) represent state transition rela-
tionship in the time series and the arcs pointing from FVC
nodes to Ref nodes (Refy, Refs, ..., Refr_1, Refr) donate the
dependence relationship. This DBN used for FVC estimation
integrates the remote sensing data, dynamic vegetation growth
model, and radiative transfer model to obtain optimal FVC
estimation. Equation (7) shows the basic structure of the DBN
for FVC estimation [8], [9]
where Refr donates the Landsat 7 ETM+ reflectance data
at time T, FVCr represents the true value of FVC at time T.
P(FVCr|Refr) is the posterior probability distribution of FVC
at time 7, P(FVCr_;|Refr_1) is the posterior probability
distribution of FVC at time T— 1. P(refr|FVCr) is the
likelihood probability from remote sensing observations com-
bining LUTs and CPTs generated from PROSAIL model.
P(FVC7|FVCr_1) is the state transition probability from the
dynamic vegetation growth model. Denominator of the part
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Fig. 4. FVC maps from DOY 160 to DOY 272 in the year 2012 generated
using the proposed method.

to the right of the equal sign is the normalization term.
Equation (7) is calculated as the following steps. First, the veg-
etation dynamic growth model predicted FVC of each Landsat
7 ETM+ pixel at time T is updated (Section III-A). Then,
P(FVC7|FVCr_1) is calculated using the normal cumulative
function (where u is set to model predicted FVC and o is
set to model error). Next, P(refr7|FVCr) is determined by
probability of Landsat 7 ETM+ reflectance located in dis-
crete intervals (which is obtained assuming Landsat 7 ETM+
reflectance obeys Gaussian distribution) multiplying by CPDs.
Finally, the posterior probability distribution P(ref7|FVCr) is
calculated and then the optimal FVC value is estimated from
P(refr |[FVCr) using the minimum mean square error (MMSE)
estimation method.

IV. RESULTS

FVC maps from DOY 160 to DOY 272 in the year
2012 derived from Landsat 7 ETM+ data and GLASS FVC
product using the proposed method are shown in Fig. 4.
Before DOY 160 or after DOY 272, vegetation is sparse
in the study area because the meteorological conditions are
not suitable for plant growth during these periods. Therefore,
relatively complete vegetation growing season of the study
area (generally from late-April to late-August) was covered in
the maps. The spatial distribution and temporal FVC changes
were consistent with the actual land cover types in these
maps. After a rapid growing period since DOY 160, the FVC
values reached a maximum at around DOY 192-208. Then,
the FVC values gradually decreased until around DOY 272,
which indicated the planted crops reached its mature state.

Fig. 5 shows the scatter plots of the estimated FVC from the
estimating process incorporating different kinds of dynamic
vegetation growth models (the time-efficient model proposed
in this letter and the modified Verhulst logistic equation) and
ground measured FVC. The FVC estimation accuracy using a
time-efficient dynamic vegetation growth model is satisfactory
(R*? = 0.889, RMSE = 0.0917) and comparable to that
from the previously developed inefficient but well-established
method incorporating the dynamic vegetation growth model
represented by the modified Verhulst logistic equation [8]
(R?> = 0.884, RMSE = 0.0913).

To access the degree of conformity between the FVC
estimates and vegetation growth characteristics, temporal tra-
jectories of the estimated FVC in this letter, GLASS FVC and
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Fig. 5. Validation of the FVC estimation method incorporating (a) Time

efficient dynamic vegetation growth model proposed in this letter. (b) Modified
Verhulst logistic equation.
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Fig. 6. Comparison between estimated FVC in this letter, GLASS FVC and
field measured FVC in time series.

TABLE II
MODEL COMPUTATIONAL COSTS

Dynamic vegetation Time used for fit-  Time used Total tim
growth model ting parameters for DBN ota N
The proposed method - 86.55s 86.55s
The modified Verhulst 77533.67s 84.91s 77618.58s

logistic equation

field measured FVC at two randomly selected sample sites in
the year 2012 are shown in Fig. 6. It is obvious that the esti-
mated FVC using the proposed method fell closer to the field
measured FVC. Most of the field measured data distributes
around the temporal trajectories of the estimated FVC. The
estimated FVC was consistent with actual vegetation cover
change and tend to reflect better of the rapid growing stage of
crops in the study area.

Table II shows the average computational cost of FVC
estimation method incorporating the time-efficient dynamic
vegetation growth model. This comparison experiment is
conducted using images with size of 200 x 200 pixels.
All calculations are carried out using the Matlab software
(The Mathwork, Inc., Natick, MA, USA) on a single PC
installed with a Windows 7 64-bit operating system, with
Intel i7-4790 CPU, 12 GB of main memory. Each process is
conducted ten times and the average elapsed time is calculated.
To compare time cost, the modified Verhulst logistic equation
is substituted for the dynamic vegetation growth model in
the FVC estimation method and its average computational
cost is also shown in Table II. Much more time is spent
on fitting model parameters of the modified Verhulst logistic
equation. Relatively, the time-efficient dynamic vegetation

P(tef7|FVCr) Ypye, , P(EVCT|FVCr_1) P(EVCr_[Refr_)

P(FVCr|Refr) =

EFVCT P(I‘efr |FVCT)P(FVCT |R€fT71)

)
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growth model proposed in this letter saved time for parameter
fitting. Therefore, it is much faster and suitable for application
of the proposed method on larger scales. It has great potential
to be applied for real-time FVC estimation on large scale.

V. DISCUSSION

This letter proposed a Landsat scale FVC estimation method
incorporating dynamic vegetation growth information which is
time-efficient and suitable for near real-time FVC estimation.
Most of the commonly used FVC estimation methods, such
as empirical methods [19], pixel unmixing methods [20],
and machine learning methods [3], only take advantage of
remote sensing data at a single time slice. Compared to these
methods, the proposed method utilizes multitemporal remote
sensing observations to constrain the model with temporal
dependencies and weaken influences caused by atmosphere
and aerosol.

Besides, the dynamic vegetation growth model constructed
in this letter is computationally efficient compared to the
commonly used statistical dynamic vegetation growth models,
such as the Richards plant growth model [21], and logistic
growth models [22], which often need iterative or regression
process to fit model parameters and cost much computing
time. Compared to mechanical or semimechanical dynamic
vegetation growth models which are often complicated and
require a series of model driving parameters, the proposed
dynamic vegetation growth model is much easier to imple-
ment. The computational time has a linear relationship to
the number of pixels because the dynamic vegetation growth
model is built for each pixel without utilizing the information
of other pixels. The proposed method is also suitable for
real-time FVC estimation because it does not require FVC
observations covering the whole vegetation growth cycle to
build the dynamic vegetation growth model. New observations
could be added to the FVC estimation process of the proposed
method as soon as they are available. Therefore, the proposed
method has the potential to provide high quality and high
spatial resolution FVC product at large scales. However, this
letter also has some limitations. Only 13 sample sites were
available and the relatively low number of samples may
potentially lead to low representative level of vegetation and
random error. In addition, the study area is mainly covered
with planted maize and the surface around the sample site
is deemed homogeneous and spatially continuous. Therefore,
FVC of the 10 m x 10 m sample is considered to be the
same with the corresponding 30 m resolution pixel and used
for validation. In further study, more samples with the same
size of Landsat pixels should be collected for validation to
avoid potential problems brought by low number and small
samples.

VI. CONCLUSION

This letter proposed a method which improves the capability
of FVC estimation at Landsat scale based on coarse spatial
resolution (500 m) GLASS FVC data. The method facilitated
development of a time-efficient dynamic vegetation growth
model and radiative transfer models linking Landsat 7 ETM+
reflectance to FVC, and all combined in a probabilistic DBN
framework. The proposed method has high computational
efficiency and is feasible for real-time FVC estimation. The
method could also be applied to other similar or higher
spatial resolution data such as CBERS, GF-1 and Sentinael-2.
Future work should focus on assessing the performance of the
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proposed method on generating reliable high spatial resolution
FVC products at large scales.
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