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Abstract— The moderate resolution imaging spectroradiometer
(MODIS) snow algorithm has been used to generate global
fractional snow cover (FSC) at a pixel size of 500 m using a linear
regression relationship (called “FRA6T”) between FSC and the
normalized difference snow index (NDSI). However, the linear
relationship is problematic because of the considerable NDSI
variation in nonsnow conditions. In this letter, we propose a
universal ratio snow index (URSI), which is the ratio of the
visible reflectance and the sum of the near infrared and shortwave
infrared reflectances. It is called “universal” because it has weak
sensitivity under snow-free ground conditions and, therefore,
can improve the stability of the linear snow index methodology.
A comparison between NDSI and URSI with regard to estimate
FSC using the linear snow index methodology is carried out for
the Tibetan Plateau. The scatter plots of MODIS NDSI/URSI
and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) FSC
indicate that a linear relationship can be assumed for both NDSI
and URSI for barren land conditions and is more appropriate
for URSI than it is for NDSI in forested areas. Validation
efforts show that the linear relationship using URSI (designated
“FracURSI”) achieves fewer errors in FSC estimation compared
with the developed NDSI method (“FracNDSI”), particularly
for forested areas and for moderate FSC values. Averaged over
all comparisons, the root-mean-square error (RMSE) of FSC
estimates for FRA6T is 0.13, and for FracNDSI is 0.12, whereas
FracURSI RMSE is 0.11.

Index Terms— Fractional snow cover (FSC), moderate resolu-
tion imaging spectroradiometer (MODIS), normalized difference
snow index (NDSI), universal ratio snow index (URSI).

I. INTRODUCTION

SNOW cover plays an important and active role in the water
cycle, surface radiation budget and climate change. Spring

and early summer snowmelt occupies a significant proportion
of the sources of midlatitude mountain runoff [1]. Snow’s high
albedo and low heat conductivity, along with its highly variable
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spatial extent, strongly influence the surface radiation budget.
The retreat and advance of glaciers and perennial snow cover
are sensitive to climate change.

The accurate estimation of the spatial distribution of snow
cover can be pursued through optical remote sensing [2]–[8].
Snow-covered area from satellite imagery is generally esti-
mated pixel by pixel through the determination of snow’s pres-
ence/absence or, more precisely, the retrieval of snow’s area
fraction, i.e., fractional snow cover (FSC). The discrimination
between snow/ice and other surface features is straightforward
because of snow’s unique spectral characteristics.

The reflectance of clean snow is very high at the visible
wavelengths, falls drastically at the near-infrared wavelengths,
and becomes very low at the shortwave infrared wavelengths.
The normalized difference snow index (NDSI) proposed by
Dozier [2] enlarges the snow’s signal by taking the difference
of visible and shortwave infrared reflectances divided by their
sum. It is defined as follows:

NDSI = RVIS − RSWIR

RVIS + RSWIR
. (1)

For decades, the criteria of using NDSI higher than a
given threshold (generally 0.4) along with the screening of
clouds and water bodies have been a fundamental approach
in binary snow cover mapping [2], [7], [9]. NDSI is useful
in FSC estimation as well [10]. Salomonson and Appel [11]
established a linear statistical relationship (called “FRA6T”
in the cited article) between Landsat-7 Enhanced Thematic
Mapper Plus (ETM+) FSC and Terra Moderate Resolution
Imaging Spectroradiometer (MODIS) NDSI using training
data from Alaska, Siberia, and Labrador. FRA6T is presented
as follows:

FRA6T = 1.45 × NDSI − 0.01. (2)

We prefer the two-point form of the FRA6T (3) because
it directly gives the NDSI thresholds determining snow-free
and pure snow pixels, which are approximately 0 and 0.7,
respectively

FRA6T = NDSI − 0.0069

0.6950 − 0.0069
. (3)

The heterogeneity of land cover type can cause systematic
errors in the snow-covered area estimation using the NDSI
methodology. A main limitation of NDSI exists in forested
areas, where the vegetation signal lowers NDSI for snow-
covered pixels. Klein et al. [7] developed the snow-mapping
(SNOMAP) method by using the NDSI versus the normalized
difference vegetation index (NDVI) threshold field to clas-
sify snow-covered forest pixels. Even with this improvement,
both the binary and FSC estimates of the MODIS standard
snow cover product MOD10A1, using SNOMAP and FRA6T,
respectively, have overestimates for land surfaces with a high
vegetation fraction [12].
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TABLE I

LANDSAT-7 ETM+ AND MODIS BANDS REQUIRED BY NDSI AND URSI

There are other FSC estimation methods with more com-
plexity than the snow spectral index method, including the
multiple endmember spectral mixture analysis (MESMA) [5],
[6], [13], SCAmod [14], and the artificial neural network
(ANN) method [15]. MESMA is computationally expensive
in the retrieval, and ANN requires complex design and
training to establish its FSC algorithm. With representative
model parameters, SCAmod can be feasible for forested areas.
To take advantage of the simplicity of the snow spectral index
methodology, it is necessary to reduce the uncertainties due to
the heterogeneity of land cover type.

In this letter, we first propose a universal ratio snow index
(URSI) as follows:

URSI = RVIS

RNIR + RSWIR
. (4)

It is called “universal” because of its weak sensitivity to
land cover type due to the incorporation of the near-infrared
band. The specific bands of Landsat-7 ETM+ and MODIS are
listed in Table I.

The purpose of this letter is to examine the rationality of
the linear regression between Landsat-7 ETM+ FSC and Terra
MODIS NDSI/URSI, with the land cover type factor taken
into consideration. Moreover, we evaluate the performance and
stability of FRA6T, the average FSC versus NDSI relationship,
and the FSC versus URSI relationship derived from the linear
regressions.

II. DATA

A. Satellite Data

The Landsat-7 ETM+ 30-m resolution surface reflectance
is used to derive the FSC reference data, while the cor-
responding 500-m resolution surface reflectance from Terra
MODIS (MOD09GA) is used to generate NDSI and URSI.
Although there are available acquisitions from Landsat-5 The-
matic Mapper (TM) and Landsat-8 Operational Land Imager
(OLI), we employ Landsat-7 ETM+ instead of them to
prevent the discrepancy in the viewing geometry condition.
It is because Landsat-7 and Terra have simultaneous nadir
overpasses, whereas Landsat-5 and Landsat-8 observations at
midlatitudes are often at off-nadir views of Terra MODIS.

Nine Landsat-7 ETM+ scenes of the Tibetan Plateau with
variation in solar zenith angle and land cover type are selected
for the comparison between URSI and NDSI goodness-of-fit of
the linear regressions with FSC and for the development of the
FSC estimation algorithm. Six scenes are used for validation.
These scenes are cloud-free or have very few clouds. The
locations of these scenes are shown in Fig. 1, while the
imaging conditions are listed in Table II.

B. Auxiliary Data
The terrain condition of the study area is represented

by the 1 arc-second digital elevation model (DEM) from
SRTM30 [16]. The spatial distribution of land cover type

Fig. 1. Land cover of the study area and the locations of the Landsat-7 ETM+
image areas.

TABLE II

LANDSAT-7 ETM+ IMAGES USED IN THIS LETTER

is obtained from the GlobeLand30 data set [17]. Note that
consider the areas with seasonal snow cover, the major forest
type is coniferous forest on the Tibetan Plateau.

III. METHODOLOGY

A. Topographical Correction

The topographic effect is a nonnegligible limitation factor
for snow cover mapping because midlatitude seasonal snow
cover occurs extensively in mountainous areas. The relatively
low sun height in winter can yield extensive terrain shadows,
which can greatly weaken snow’s signal. Moreover, shaded
snow-free surfaces often have similar NDSI values to those of
snow, and therefore, this issue creates a challenge for snow
cover mapping using NDSI in rugged regions.

The topographic effect in the surface reflectance data of
Landsat-7 ETM+ and Terra MODIS is eliminated using the
C-correction method proposed by Teillet et al. [18]. The
easily applicable C-correction is a semiempirical method.
By incorporating the C factor, this correction method can
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reduce overcorrection in low illumination areas caused by the
simple cosine correction.

B. Generation of the Reference Data
As MESMA enables accurate and physically reasonable

FSC retrieval, it has been used for Landsat data to generate
reference FSC [5], [19]. Using the snow cover maps derived
from 13 GaoFen-2 images at a spatial resolution of 3.2 m as a
reference, Hao et al. [19] declared that the Landsat-8 OLI
FSC based on MESMA can result in the overall accuracy
of 0.946 and root-mean-square error (RMSE) of 0.094.

In this letter, the Landsat-7 ETM+ atmospherically
and topographically corrected reflectance data from bands
1 through 5 and band 7 are used to derive the 30-m FSC based
on the MESMA scheme proposed by Shi [13]. Snow, vege-
tation, and soil/rock endmembers are automatically extracted
from concurrent images based on single-band reflectance and
several spectral indices, including NDSI and NDVI. Typical
endmembers are selected to make a parsimonious but represen-
tative endmember library of snow and nonsnow features [20].

The area fraction of snow (i.e., FSC) is calculated from

Rλ =
N∑

i=1

Fi Ri,λ + ελ (5)

where Rλ is the reflectance of a mixed pixel at wavelength
λ, Ri,λ is the reflectance of i th endmember of which the area
fraction is Fi , and ελ is the residual error for the fit of the N
endmembers.

The least-square method and the two-endmember (snow and
nonsnow features) model are used to solve for FSC. The pixel-
by-pixel FSC value is determined by an optimal solution that
satisfies the spectral constraints and has the minimum RMSE.

It should be noted that radiometric saturation at the visible
and near-infrared bands of Landsat-7 ETM+ often occurs for
highly reflective surfaces, which are likely to be clean snow
in the selected images. There seems no more preferable way
to address this problem than to consider the saturated pixels
as pure snow cover.

Finally, the reference FSC data are generated through the
aggregation of Landsat-7 30-m FSC to match corresponding
MODIS 500-m pixels except for the pixels identified as cloud
or water bodies.

C. Linear Regression
Two different “models”/linear regressions were examined;

namely, “model MA” expressed as FRA= a1 + b1*NDSI
minimizing FRA deviations and “model MB” where NDSI
= a2+b2*FRA minimizes NDSI deviations.

We use the “model MB” and the FSC range from 1%
to 99% to perform the linear regressions between FSC and
NDSI/URSI. FSC values of 0 are not used because some
totally snow-free surfaces may have different characteris-
tics from those surfaces neighboring or underneath snow
cover. FSC values of 100% are excluded, as a large number of
pixels clustered at 100% FSC with a variety of NDSI values
tend to lower the performance of the linear regression.

A new criterion considering an FSC range of 10%–95%
is additionally employed for “model MB” [11], which is
referred to as “model New Criterion (NC)” in this letter.
In fact, the relationship between FSC and NDSI for low FSC
values differs from that for moderate and high FSC values
in vegetated areas, which is discussed later in Section IV.
Therefore, it is reasonable to examine the linear regressions
using “model NC.”

Fig. 2. Three Landsat-7 ETM+ images along with the scatter plots of
Landsat-7 FSC versus the corresponding MODIS NDSI/URSI. The black solid
line in the scatter plots indicates the linear regression using “model MB,” the
dashed line is the regression using “model NC”, and the dashed-dotted line
is the FRA6T relationship.

Three goodness-of-fit metrics, including mean absolute error
(MAE), RMSE, and R-square (R2), are employed to evaluate
the linear regression relationships and the FSC estimation
performance using the averaged relationships and the FRA6T
approach.

IV. RESULTS

A. Comparison of the Linear Regressions
The linear regressions between FSC and NDSI and those

between FSC and URSI are performed for the Landsat-7
ETM+ images listed in Table II. Fig. 2 illustrates three of
these images for simplicity, which have numerous mixed pixels
dominated by the land cover types of forest, grass-land, and
barren ground, respectively.

In Landsat-7 ETM+ scene 148/037, acquired on 21 March
2002, URSI shows a major advantage over NDSI based on
the linear relationship with FSC. Apparently, the relationship
between FSC and NDSI for low FSC values differs greatly
from that for moderate to high FSC values in forests. Similar
evidence can be found in [10, Fig. 4(b)] and [11, Fig. 2(f)–(h)],
as these two articles used Siberia as a study area. Therefore,
the assumption of a linear relationship between FSC and NDSI
can result in notable FSC errors.

In Landsat-7 ETM+ scene 136/037, acquired on 6 January
2001 and scene 145/038, acquired on 29 March 2002, URSI
seems to perform similar to NDSI. The linear regressions using
“model MB” with an FSC range of [1%, 99%] (“model MB”)
are similar to those using FSC values within [10%, 95%]
(“model NC”), particularly for the use of URSI.

The “model MB” is more preferable for FSC versus URSI
because low FSC values seem to have negligible impacts on
URSI. The “model NC” may be suitable for FSC versus NDSI
because the “model NC” results are more stable than those of
the “model MB” throughout all of the scenes. Hence, we give
the linear regression relationships and goodness-of-fit results
in Table III only for NDSI with the “model NC” and for URSI
with the “model MB.”
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TABLE III

COMPARISONS OF NDSI AND URSI FOR FSC ESTIMATION
USING LINEAR REGRESSION RELATIONSHIPS

In Table III, we present the linear regression relationships
in the two-point form instead of the slope-intercept form. The
two-point form clearly represents the NDSI/URSI thresholds
of the snow-free ground and pure snow, between which the
linear interpolation determines the FSC estimate.

The comparisons from these nine Landsat-7 ETM+ scenes
indicate that the goodness-of-fit of the linear regression using
URSI is comparable to that using NDSI for grassland and
barren land on the Tibetan Plateau. In these unforested areas,
the R2 results of the linear regressions between URSI and FSC
are better than the results using NDSI, while their MAE and
RMSE values are very close. In areas with numerous mixed
snow and forest pixels, URSI shows the best goodness-of-fit
results and an obvious advantage over NDSI.

Throughout these scenes, the linear regressions using URSI
remain relatively stable compared with those using NDSI.
The snow-free thresholds determined by the FSC versus URSI
models vary from 0.20 to 0.38, while the corresponding results
from the FSC versus NDSI models have a wider range (from
−0.28 to 0.25). For the thresholds of pure snow, the FSC
versus URSI models show a higher variation than that of
the FSC versus NDSI models and thus may cause slight
inaccuracies for high FSC values.

Table III also provides the averaged results of the FSC
versus NDSI models and the FSC versus URSI models.
Hereafter, the resulting linear relationships are referred to as
“FracNDSI” and “FracURSI”

FracNDSI = 1.17 × NDSI + 0.07 (6)
FracURSI = 1.48 × URSI − 0.41. (7)

B. Validation
To examine the performance of FRA6T, FracNDSI, and

FracURSI, we acquire six Landsat-7 ETM+ scenes and

TABLE IV

VALIDATION RESULTS OF THE FSC ESTIMATION
USING FRA6T, FRACNDSI, AND FRACURSI

Fig. 3. Variability in MAE and RMSE according to the FSC estimates over
various land surfaces using FRA6T, FracNDSI, and FracURSI.

corresponding MODIS observations and then compare FSC
estimates from the MODIS images using these three
approaches with the reference data from Landsat-7 ETM+.
The results are listed in Table IV.

As expected, FRA6T results in the worst FSC estimation
for all of the scenes mainly because the training data of
FRA6T from Alaska, Siberia, and Labrador poorly repre-
sent the ground conditions of the Tibetan Plateau. Notably,
the MAE, RMSE, and R2 values for FracNDSI and FracURSI
are very close. Considering the effect of land cover type,
we analyze the variation in MAE and RMSE of the three
FSC estimation methods in Fig. 3. For forested ground and
grassland, FracURSI has more plausible results than those
of FracNDSI at a moderate FSC level, while they have very
similar performance for other FSC values. However, FracURSI
has errors a bit higher than those of FracNDSI for low FSC
of barren ground. This is likely because, in the URSI, there
is less of a difference between snow and barren land than
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there is in the NDSI; hence, FracURSI results in some areas
erroneously classified as snow. Low FSC estimates are found
to be uncertain for the MODIS Snow Covered Area and Grain
Size (MODSCAG) product and FRA6T as well. Therefore,
MODSCAG reports FSC for the range from 0.15 to 1.0 [5],
while MOD10A1 and MYD10A1 in Collection six reverse
snow detections with NDSI < 0.10 (i.e., FSC < 0.135) to
nonsnow [3]. For the use of URSI to estimate FSC, the FSC
threshold of 0.15 is also recommended to alleviate spurious
snow detections, especially in barren areas.

C. Limitation

As spectral reflectance is inherently nonnegative, NDSI falls
within the range of [−1, +1], whereas the theoretical range
of URSI is from 0 to ∞. Pure snow’s URSI is roughly in
the range of 0.8 to 1.2, while water’s URSI is generally much
higher. This indicates that URSI can be useful for separating
water bodies from snow cover. In addition, URSI is less
sensitive to noise than the straightforward ratio snow index (the
reflectance ratio between the visible band and the shortwave
infrared band) due to an additional near-infrared band used in
the denominator.

V. CONCLUSION

The well-known MODIS snow cover product (the
MOD10 suite) employs a linear snow index methodology to
derive snow-covered areas. The linear relationship between
NDSI and FSC assumed by this product is problematic to some
extent considering the variation in land cover condition and
has considerable errors in snow-covered forests where in fact
NDSI behaves quite nonlinearly with FSC. The explanation
of this nonlinearity is that the reflectance difference between
snow and vegetation at the visible wavelengths differs greatly
from that at the shortwave infrared. The drastic disparity
breaks the approximate linearity between the single-band
reflectance and FSC.

Here, we define a URSIas the visible band reflectance
divided by the sum of the near-infrared and shortwave infrared
reflectances. We incorporate the near infrared band because
the reflectance difference between snow and vegetation differs
slightly between the near-infrared and the shortwave infrared
wavelengths. Moreover, the resulting URSI also has a tighter
range for a variety of snow-free ground conditions than that
of NDSI. This feature of URSI makes it “universal” due to its
weak sensitivity to land cover types; therefore, it can improve
the stability of the linear snow index methodology and its
reasonability for continental-scale applications.

We compare NDSI and URSI in terms of the goodness-of-
fit of linear regressions with FSC. The reference (approximate
ground truth) data used in the comparisons is Landsat-7
ETM+ 30-m FSC derived from the MESMA of atmospher-
ically and topographically corrected reflectance data. The
corresponding NDSI and URSI are calculated using Terra
MODIS 500-m observations. The results of the testing areas
based on the Landsat-7 scenes indicate that URSI has better
linear regression relationships than NDSI with FSC in forests
and that the relationships are more stable as well.

Independent validations have been conducted for the aver-
aged relationships between FSC and NDSI/URSI. Results
show that the URSI method has fewer errors than the NDSI
method for moderate FSC values in vegetated areas including

forests and grassland, but slightly more errors for low FSC
values under barren ground conditions. It is mainly because
the URSI method sometimes has overestimation results for
sandy and saline-alkali soil surfaces. A practical approach to
reduce snow commission errors is to reclassify the “snow”
pixels with FSC < 0.15 as snow-free.
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