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A B S T R A C T   

Spring frost is one of the major weather-related threats to winter wheat. The damage to winter wheat caused by 
spring frost is aggravated by the increase in extreme weather events and the advance of spring phenology driven 
by a warming climate. Until recently, studies of frost damage were primarily based on controlled field experi-
ments and crop model simulations, which cannot accurately represent the real frost damage suffered by winter 
wheat in the natural environment. In this study, a remote sensing-based spring frost damage index (SFDI) was 
proposed to rapidly and effectively quantify the impact of spring frost on winter wheat at the provincial scale. 
Compared with the existing methods, the SFDI is easy to implement with widely available remotely sensed 
vegetation index (VI) time-series data. It can be used to assess spring frost damage to winter wheat in near real- 
time to allow a rapid response. Although the SFDI was developed for winter wheat and spring frost, it has the 
potential to be extended to other agricultural hazards and crop types through careful adjustments to the design. 
We assessed the performance of SFDI using a spring frost event that occurred from April 3–7, 2018, in North 
China as a case study. The results showed that the severely damaged areas were mainly located at the junction of 
Hebei, Henan, and Shandong provinces, especially in western Shandong Province. The result showed good 
agreement with the proxy data retrieved from the national archives of regional newspaper reports about the 
event. The validity of the new index (SFDI) was also verified against the reduction in county-level crop pro-
duction. Additionally, we used multivariate linear regression (MLR) and geographically weighted regression 
(GWR) to identify the key factors affecting the spatial variation in SFDI. The results indicated that the growth 
status of winter wheat before spring frost and the amount of precipitation during the frost event were the two 
major factors affecting the severity of frost damage to winter wheat, followed by the accumulated frost degree- 
days and soil moisture. This suggests that proper management of the crop growth rate after winter wheat 
greening and adequate soil moisture (from irrigation and precipitation) before and during the spring frost period 
could greatly alleviate the damage of spring frost to winter wheat.   

1. Introduction 

North China, which has a large cultivated area of winter wheat, ac-
counts for two-thirds of the wheat production in the country, playing a 
dominant role in ensuring China’s food security (Jin, 1996). In recent 
years, winter wheat in this region has experienced increasingly extreme 
weather events during its life cycle. Among these extreme weather 
events, spring frost, which is characterized as a short duration of 
freezing temperatures during the jointing and heading stages of winter 
wheat, leads to great declines in both crop yield and quality (Frederiks 
et al., 2015; Crimp et al., 2016; Xiao et al., 2018). The adverse effects of 

spring frost on the crop include not only damage to the chlorophyll 
content and photosynthetic capacity of the leaves (Li et al., 2015) but 
also the reduction of the tiller survival rate, number of spikes, and kernel 
number per spike (XIANGNAN Li et al., 2015; X. Li et al., 2015; Zheng 
et al., 2015). Model analysis suggested that grain yields may decline by 
7% over the entire winter wheat growing region of China for each 1 
◦C⋅day increase in accumulated frost degree-days (Xiao et al., 2018). 
When considering climate change, global warming would seem to 
reduce the occurrence of frost events. However, this does not necessarily 
reduce the loss of winter wheat caused by spring frost (Gu et al., 2008; 
Eccel et al., 2009; Zheng et al., 2015) because global warming 
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accelerates vegetative development and causes the frost-sensitive stages 
to develop earlier due to a warmed winter and spring (Li et al., 2015; 
Xiao et al., 2018). Consequently, the advancement of winter wheat 
growth and the increasing occurrence of extreme weather events along 
with global warming, especially in winter and spring, simultaneously 
lead to a greater risk of spring frost to winter wheat (Trnka et al., 2014; 
Zheng et al., 2018). Accordingly, effectively monitoring and assessment 
of the impact of spring frost on winter wheat at a large scale is of great 
significance for mitigating crop losses for food security and the 
economy. 

Previous studies have largely been concerned with the spatiotem-
poral patterns of spring frost and their impacts on wheat yield in China 
(Li et al., 2015; Xiao et al., 2018). Xiao et al. (2018) analyzed long-term 
historical climate data and yield records and provided a comprehensive 
assessment of frost risk from a meteorological perspective. However, the 
risk-based study did not directly analyze the immediate response of 
winter wheat during spring frost events. Therefore, this study could not 
be applied to quantify the direct spring frost damage to winter wheat in 
near real time. Current studies on spring frost damage to winter wheat 
have primarily depended on controlled field experiments (Sutka, 1994; 
Fedoulov, 1997; Whaley et al., 2004; Wang et al., 2012; XIANGNAN Li 
et al., 2015a, 2015b; X. Li et al., 2015 ) and crop model simulations 
(Lazăr et al., 2005; Zhang et al., 2012; Zheng et al., 2015). Through 
controlled field experiments, the impacts of spring frost on winter wheat 
growth can be directly observed and measured following the strategy of 
changing one factor in an experiment while keeping the others fixed. For 
example, Meng et al. (2017) found that freezing injury had the highest 
impact on winter wheat yield under a soil surface drying treatment 
through a joint experiment that involved controlling both soil surface 
moisture and frost intensity in cryogenic chambers. Zheng et al. (2018) 
conducted two years of controlled freezing experiments with different 
freezing temperatures and durations. Their results revealed that the ef-
fects of freezing duration on the mortality of plants and tillers and the 
effects on the grain yield per pot were much more severe under lower 
temperatures. Nuttall et al. (2019) used mobile frost chambers to 
examine the impact of simulated frost at the reproductive stage on wheat 
growth and yield. The results showed that grain number and yield were 
reduced by 8.8% and 7.2%, respectively, for each degree Celsius below 
zero when frost treatments were applied at the anthesis stage. A more 
recent study evaluated the response of the wheat canopy hyperspectral 
reflectance to low temperature injury and estimated the yield losses (Xie 
et al., 2020). Although this study provided very valuable insight, it only 
used hyperspectral data collected from a controlled field-based experi-
ment, which might be difficult to implement and reproduce at a large 
scale with existing remotely sensed data due to the limitations of in-
struments and complex atmospheric conditions. Controlled field exper-
iments are indispensable for understanding the physiological and 
ecological mechanisms of spring frost damage. However, this approach 
can neglect the compounding impacts of other factors and cannot reflect 
the real growth conditions in the natural environment. 

Process-based crop model simulations are another way to evaluate 
spring frost damage to winter wheat by changing temperature condi-
tions to represent spring frost and then simulating the growth and yield 
of winter wheat. Zheng et al. (2015) used the APSIM-Wheat crop model 
to simulate the frost impact on wheat yield. Their results suggested that 
the yield decreased by up to 1–2% per year in certain regions of 
Australia due to frost damage, and the frost impacts on wheat yield were 
related not only to temperature but also to the phenology of winter 
wheat. Bergjord Olsen et al. (2018) employed the FROSTOL model to 
explore how soil temperature, snow depth, and the grown cultivar’s 
maximum attainable level of frost tolerance affected the frost damage to 
winter wheat. The advantages of crop model simulations are that the 
spring frost intensity can be controlled to desired levels and that the 
interactions between spring frost and other factors can be well 
addressed. However, as Barlow et al. (2015) noted, the existing crop 
models are still not sophisticated enough to adequately account for the 

impact of extreme climate events on crop growth. The calibration of 
many model parameters is also problematic, and sometimes models are 
only applicable to specific small regions, which can introduce great 
uncertainty in simulation results. Therefore, direct observation and 
quantification of spring frost damage to winter wheat in the natural 
environment are urgently needed and can be further used to estimate 
yield loss and improve field management in subsequent growth 
processes. 

In recent years, remote sensing has become one of the most powerful 
tools for monitoring the impacts of natural hazards on agriculture 
(Duveiller and Defourny, 2010; Rojas et al., 2011; Huang et al., 2014; 
Zhang et al., 2017) since it offers relevant information over large areas 
in a rapid and cost-effective manner. More importantly, this type of 
monitoring can include the combined impacts of various factors in the 
natural environment. The advantages of remote sensing techniques have 
prompted a series of related studies using remotely sensed data to 
monitor the impacts of spring frost on vegetation. Gu et al. (2008) found 
that the impacts of the 2007 spring freeze on vegetation development in 
the United States could be identified by reduced normalized difference 
vegetation index (NDVI) values after the event. Menzel et al. (2015) 
analyzed the time series of a greenness index extracted from webcam 
pictures of a forest stand and revealed the close link between spring frost 
damage and phenological variation. Following their ideas, several 
studies also used the vegetation index (VI) and land surface temperature 
(LST) to evaluate spring frost damage and further analyzed the influ-
ential factors using various methods, such as support vector machine 
(SVM), recurrent neural network (RNN) and NDVI differencing tech-
niques (de Simões et al., 2015; Nolè et al., 2018; Bascietto et al., 2018; 
2019; Allevato et al., 2019). Although these studies were not specific to 
winter wheat, they showed great potential for using the differences in 
the vegetation index before and after spring frost to monitor spring frost 
damage to winter wheat. Despite the potential, a general index to 
quantify spring frost damage has still not been developed due to the lack 
of a commonly accepted baseline to be compared after spring frost, 
especially for winter wheat. Moreover, how environmental factors (e.g., 
temperature and soil moisture) and vegetation growth conditions (e.g., 
phenology) jointly affect spring frost damage has yet to be completely 
explored using remotely sensed data at a large scale. 

To address the abovementioned problems, the objectives of this 
study are two-fold: 1) to develop a remotely sensed VI-based damage 
indicator for quantifying spring frost damage to winter wheat at the 
provincial scale and 2) to identify key biotic and abiotic factors that 
affect regional variations in spring frost damage to the crop. Although 
this study aimed to find a flexible and efficient method to assess the 
damage of spring frost to winter wheat, it is not our intent to use this 
method to replace indispensable field surveys to understand the dam-
age. The first objective provides a general method for effectively 
monitoring natural hazard impacts on agriculture, which ideally can be 
extended to other hazards and crop types (Section 2). The developed 
index was implemented for a spring frost event that occurred from April 
3–7, 2018, in North China as a case study (Section 3, 4). The second 
objective will be helpful for recommending countermeasures to alleviate 
the impact of spring frost on winter wheat cultivation (Section 4, 5). 

2. Methodology 

2.1. Theoretical framework 

The vegetation index (VI), which is calculated from the absorptive 
and reflective features of vegetation (e.g., the red and near-infrared 
(NIR) bands), is commonly used to monitor vegetation rigor and 
represent crop growth status (Tucker, 1979; Huete et al., 2002). A time 
series of remotely sensed VI (hereafter called the VI curve) can reflect 
the status of winter wheat throughout its growth cycle from sowing to 
harvest (Fig. 1). 

During spring and early summer, winter wheat experiences the 
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jointing and heading stages, and its VI curve exhibits a continuous up-
ward trend under normal environmental conditions (solid curve in 
Fig. 1). However, in the case of a spring frost event, which is charac-
terized as a sudden decrease in temperature with a duration of several 
days, the spectral signature of winter wheat will be affected by signifi-
cant changes due to decreasing leaf chlorophyll, leaf dehydration, and 
even wilting (Snyder and de Melo-Abreu, 2005; Meng et al., 2017). As a 
result, the VI curve will display a sudden drop, and such a drop can last 
for a certain period before recovering (dashed curve in Fig. 1). Theo-
retically, if we can obtain a VI curve without spring frost impact 
(hereafter referred to as the reference VI curve), the spring frost damage 
can be quantified by calculating the difference between the reference VI 
curve and the actual VI curve affected by spring frost. Based on this 
concept, the spring frost damage index (SFDI) was developed in this 
study to answer the main question: how much damage does winter 
wheat suffer from a spring frost event? The impact of a frost event on 
winter wheat starts with the initiation of the event, which can be 
observed from meteorological records or forecasts, and can persist 
beyond the duration of the spring frost event. To the best of our 
knowledge, there is not a well-established criterion for determining the 
end of the spring frost impact period. In this study, we used the date 
when the VI curve reached a maximum as the end of the impact period. 
Although the frost damage to the crop may be long-lasting for crop 
growth, the signal is difficult to distinguish after this date, when the 
winter wheat enters the grouting stage, which leads to a decline in the VI 
due to decreasing chlorophyll content (Fig. 1). Fig. 2 provides a con-
ceptual schema for developing SFDI with detailed steps presented as 
follows. 

2.1.1. VI calculation 
There are many VIs that represent crop growth while limiting the 

noise from the soil background and atmosphere. Considering data 
availability, three VIs were selected for this study: NDVI (Tucker, 1979), 
the enhanced vegetation index (EVI) (Huete et al., 2002) and the 
normalized difference phenology index (NDPI) (Wang et al., 2017). The 
equations of the three VIs are listed below. 

NDVI =
ρNIR − ρred

ρNIR + ρred
(1)  

EVI = 2.5∙ ρNIR − ρred

ρNIR + C1∙ρred − C2∙ρblue + L
(2)  

NDPI =
ρNIR − (0.74∙ρred + 0.26∙ρSWIR)

ρNIR + (0.74∙ρred + 0.26∙ρSWIR)
(3)  

where ρblue, ρred, ρNIR and ρSWIR are the atmospherically corrected surface 
reflectances for blue, red, NIR, and shortwave-infrared (approximately 
1.5 μm, SWIR) bands, respectively. C1, C2, and L are the coefficients and 

are set as L = 1, C1 = 6, and C2 = 7.5 according to the standard MODIS 
EVI product. These three VIs can be calculated from reflectance data or 
are directly provided as operational VI products, except NDPI, by 
commonly used remotely sensed data, including MODIS, Sentinel, 
SPOT-VGT, and Landsat TM/ETM+. In addition to the most widely used 
NDVI and EVI, the newly developed NDPI was included here because of 
its considerable advantages in minimizing the impacts of snow and soil 
background on VIs (Wang et al., 2017; Chen et al., 2019). 

2.1.2. Reference VI curve 
To quantitatively analyze the VI response to spring frost, it was 

necessary to obtain a reference VI curve, which can represent the typical 
growth cycle of winter wheat that has not been affected by spring frost. 
Since the reference VI curve cannot be obtained directly in the frost year, 
an assumption was carefully made that a multiyear average VI curve 
calculated from frost-free years could be used to approximate a refer-
ence VI curve. However, it should be noted that the multiyear average VI 
curve cannot perfectly represent the reference VI curve of a frost year 
because farmers’ cultivation practices and climatic conditions vary 
yearly. Thus, the shape model fitting (SMF) method (Sakamoto et al., 
2010, 2013) was used here to derive the reference VI curve by adjusting 
the multiyear average VI curve to account for these various factors. 

First, we applied the Savitzky-Golay (SG) filter method (Chen et al., 
2004) to the original VI curves to effectively reduce the noise in the VI 
curves, which was primarily caused by cloud contamination and poor 
atmospheric conditions (Pettorelli et al., 2005). Then, a multiyear 
average VI curve was calculated by simple averaging of the VI curves of 
frost-free years. To avoid the influence of outliers, only the VI values 
within the upper and lower quartiles of the frost-free curves were used 
here (Fig. 2a). It is evident that the multiyear average VI curve mono-
tonically increases during spring and early summer, which is consistent 
with the ideal growth trajectory of winter wheat under normal condi-
tions (solid line in Fig. 1). Thus, the multiyear average VI curve could be 
considered a candidate for the reference VI curve. The multiyear average 
VI curve was then defined as a shape model for the reference VI curve 
(Sakamoto et al.; 2010, 2013, Sakamoto, 2018). 

As Fig. 2b shows, there were still notable differences between the 
shape model and the actual frost-year VI curve, in terms of both the 
magnitude (Y-axis) and the crop growth cycle (X-axis). These differences 
were likely caused by varying climatic conditions and changes in 
farmers’ cultivation practices during the frost year. To adjust for these 
differences, the shape model was then geometrically scaled following 
Eq. (4) to match the SG-filtered frost-year VI as closely as possible 
(Fig. 2c). 

h(x) = sy × {g(sx × (x + t0) ) } (4)  

where the function g(x) refers to the shape model (orange curve in 

Fig. 1. A typical VI curve (solid line) of winter wheat and the VI curve (dashed line) in a year where spring frost occurred. The VI curve enclosed by the dashed box 
emphasizes that the VI curve affected by spring frost declines dramatically compared with the normal VI curve. 
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Fig. 2c). h(x) is the reference VI curve transformed from the shape model 
g(x) by optimizing three scaling parameters, sx, sy, and t0 (red curve in 
Fig. 2c). Here, sx and t0 represent phenological adjustment, while sy 
represents magnitude adjustment. The optimal scaling parameters were 
obtained by minimizing the weighted root mean square error (wRMSE, 
defined in Eq. (5)) between the scaled shape model and the frost-year VI 
curve using a subroutine named “CONSTRAINED_MIN” (Lasdon et al., 
1978; Sakamoto et al., 2010) in the IDL program (ITT Visual Information 
Solution). The search ranges for each parameter were empirically 
determined (Sakamoto et al., 2010) as follows: 0.9 < sx < 1.1, 0.5 < sy <

1.85 and − 10 < t0 < 10. 

wRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
wi(f (ti) − h(ti) )

2

√

(5) 

In Eq. (5), n is the number of data points in a VI curve, wi is the 
weight of the i-th point and ti is the day-of-year (DOY) for the i-th point. 
The data points within the frost impacted period were excluded from the 
optimization process. Different weights were given to each point 
following Eq. (6) (Chen et al., 2016). In general, the greater the temporal 
distance Di between the i-th point ti and the start point of the frost event 
tF, the smaller the weight is. 

Di =

⎧
⎪⎨

⎪⎩

1, ti = tF

1
(ti − tF)

2, ti ∕= tF
wi =

Di
∑n

i=1Di
(6) 

After applying the SMF method to the multiyear average VI curve, 
the transformed shape model was obtained, which was finally regarded 
as the reference VI curve, which is a reasonable representation of the 
typical growth of winter wheat without the impact of a frost event under 
comparable climate and cultivation conditions to those of the frost year. 

2.1.3. Spring frost damage index (SFDI) 
Fig. 2d displays the frost-year VI curve smoothed by the Savitzky- 

Golay filter and the reference VI curve obtained using the SMF 
method. Without the spring frost, the VI curve of winter wheat is ex-
pected to nearly match the reference VI curve (the red curve in Fig. 2d). 
However, the frost event imposes a notable impact on the development 
of winter wheat. As a response, the VI declines dramatically during the 
frost event, and it usually takes several weeks to return to a relatively 
normal level due to crop recovery (black curve in Fig. 2d). The area 
enclosed by these two curves can be considered an indicator reflecting 
the severity of the frost impact on winter wheat. Accordingly, a remote 
sensing-based spring frost damage index (SFDI) can be defined as 
follows: 

SFDI =
∑i=SFend

i=SFbegin
(VIri − VISF i) (7)  

where VIri is the value in the reference VI curve, and VISFi is the value in 
the spring frost-affected VI curve. SFbegin is the start date of the spring 
frost (marked by the first vertical dashed line in Fig. 2d). SFend is the end 
date of the SFDI calculation, which can be determined flexibly according 
to the purpose of the application, such as the end date of the spring frost 
event observed from the meteorological records or the week after the 
occurrence of the spring frost event. Accordingly, the SFDI has the po-
tential for near real-time calculation, which makes it possible for farmers 
to carry out timely field management to reduce frost damage. For the 
purpose of post assessment of frost damage, the SFDI calculation should 
include the period of long-lasting impacts from frost damage. In this 
case, the date when the reference VI curve reached its peak (marked by 
the second vertical dashed line in Fig. 2d) was carefully set as the end 
date for the SFDI calculation. The reason for selecting the day with the 
maximum VI value (before the grouting stage) as the end date was that 
the signal of spring frost impact was difficult to identify after this date 
because the grouting stage involves a gradual leaf color change that 

Fig. 2. Schematic of the development of the spring frost damage index (SFDI), in which SF represents the spring frost and SG is the Savitzky-Golay filter. A shape 
model is defined as the multiyear averaged VI curve. The two black dashed lines represent the start date and end date of the spring frost event impact. 
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creates a confounding VI signal similar to that of the frost impact. In 
brief, the SFDI was calculated as the area enclosed by the two curves 
from the start point to the end point and thus considers the continuous 
impact of spring frost. 

2.2. Multiple regression analysis 

2.2.1. Linear regression model 
Frost damage to winter wheat is affected by many factors (e.g., cli-

matic conditions, cultivation management, and wheat growth status). 
To screen the respective roles of different factors, multiple linear 
regression (MLR) analysis was implemented to explore the relationship 
between the newly developed SFDI and various factors, in which the 
SFDI and its influential factors were set as explained variables and 
explanatory variables, respectively. The MLR model can be expressed as 
follows: 

SFDI = a0 + a1∙x1 + a2∙x2 + a3∙x3 + … + an∙xn + ε (8)  

where ai is the regression coefficient for factor xi, and ε is the residual 
term. To avoid the influence of outliers, Cook’s distance was used to 
judge whether a point was an abnormal point for the explained variable. 
This judgment was based on the following formula: 

D >
4

n − k − 1
(9)  

where D is Cook’s distance, n is the number of observations and k is the 
number of explanatory variables. 

2.2.2. Geographically weighted regression 
To consider the possibility that the roles of the influential factors 

were spatially dependent over larger areas, geographically weighted 
regression (GWR) was also employed to explore the spatial variations in 
the factor coefficients (Brunsdon et al., 1996; Fotheringham et al.,2003; 
Charlton and Fotheringham, 2009). The GWR model is given as follows: 

yi = β0(ui, vi)+
∑

k
βk(ui, vi)xik + εi (10)  

where yi is the global explained variable (SFDI), xik is the explanatory 
variable k (influential factor) at sampling point i, (ui, vi) are the spatial 
coordinates of the i-th sampling point, and β0(ui, vi) and βk(ui, vi)

represent the local coefficients, which can be estimated by considering 
observations for places near sampling point i as follows: 

β̂(ui, vi) =
(
XT WiX

)− 1XT Wiy (11)  

where 

Wi =

⎛

⎜
⎜
⎝

ai1 0 ⋯ 0
0 ai2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ aiN

⎞

⎟
⎟
⎠ (12) 

and N is the number of observations near point i. Wi is a diagonal 
weight matrix, which has diagonal elements corresponding to the spatial 
weight (aij) when calibrating a weighted regression around point i. The 
aij can be determined by spatial weighting functions (also referred to as 
kernel functions). Here, the Gauss kernel function was used (Eq. (13)) to 
avoid the estimation error caused by fewer sample data around indi-
vidual sampling points as follows: 

aij = e
− 1

2

(
dij
b

)2

(13)  

where dij is the distance between sampling point i and its nearby 
observation j, and b is a quantity known as the bandwidth. The Akaike 
information criterion (AIC) was used to determine the optimal 

bandwidth. 

3. Study area and data 

3.1. Study area 

We chose Henan Province, Shandong Province and the southern part 
of Hebei Province (110 ◦E-122 ◦E and 31 ◦N-38 ◦N, Fig. 3) as the case 
study area. This region is the largest wheat-planting area and has the 
highest yield in China (Xiao, et al., 2018). This region has a warm 
temperate climate and favorable environmental conditions for winter 
wheat cultivation. The annual mean temperature of the study area 
ranges from 11.0 ◦C to 15.4 ◦C from north to south. Climatologically, the 
lowest monthly average temperature of this area ranges from − 4.6 ◦C to 
− 0.7 ◦C, which is suitable for growing winter wheat (Jin, 1996). Along 
the temperature gradient from north to south, the maximum pheno-
logical difference of the winter wheat in the study area is approximately 
one month, with a later wheat growth cycle in the northern area. The 
annual precipitation of the study area ranges from 520 mm to 980 mm 
(approximately 280 mm during the wheat growth period), which can 
meet most of the water demands for the crop. Most of this region is 
located on the North China Plain, with an average altitude of approxi-
mately 200 m. The entire study region falls within a single tile of MODIS 
imagery (h27v05). 

From April 3–7, 2018, a spring frost event occurred in North China 
with a rapid temperature drop of more than 14 ◦C, which led to severe 
frost damage to the winter wheat in the area. This spring frost event can 
serve as an ideal case for exploring the enduring impact of spring frost on 
winter wheat and its various influential factors in the natural environ-
ment using remotely sensed data. Accordingly, the SFDI was only used 
for the postdamage assessment in this study. 

3.2. Data 

The MODIS nadir BRDF-adjusted daily reflectance data (MCD43A4) 
from 2001 to 2018 were downloaded from the NASA EARTHDATA 
website (https://earthdata.nasa.gov/). The original MCD43A4 data 
were produced on a sinusoidal tile grid in the HDF-EOS format (with a 
resolution of approximately 500 m), and they were reprojected into the 
GCS_WGS_1984 coordinate system in GeoTIFF format by the official 
HDF-EOS to GeoTIFF conversion tool (HEG). Considering that the frost 
event occurred in April 2018, only the data between March 1 and May 
31 were used to generate VI data (i.e., NDVI, EVI and NDPI). The VI data 
of the years from 2001 to 2017 without severe frost events were used to 
calculate the multiyear average VI curve as the shape model. The 
reference VI curve was then derived by adjusting the shape model to 
match the VI curve of 2018 following the method described in Section 
2.1.2. Then, the SFDI was calculated for the spring frost event that 
occurred from April 3–7, 2018. Since the duration of a spring frost is 
usually no longer than a week, we used the daily MODIS reflectance to 
calculate VI data instead of using multiday composite data (e.g., 8 days 
or 16 days) in this study. The multiday composite data selected a value 
with the best quality to represent the value over a certain time interval 
(8–16 days) to minimize the influences of external factors, such as cloud 
and atmospheric conditions, on the remotely sensed data (Holben, 1986; 
van Leeuwen et al., 1999). However, composite data can still suffer from 
remaining noise from atmospheric conditions (Ql and Kerr, 1997) and 
lose important temporal information caused by the compositing process, 
which is useful for detecting abrupt change. For example, if the peak 
date of a frost event is not selected during the compositing process, the 
signal represented in the VI data would be weakened by the use of the 
multiday composite data. Moreover, if the frost impact period was 
shorter than the composite period (8–16 days), the signal of the frost 
impact might be ignored by the compositing process (Ql and Kerr, 
1997). The BRDF-adjusted daily reflectance data allowed us to analyze 
the detailed signal of the winter wheat response to spring frost and avoid 
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losing (or weakening) the frost event signal during the VI compositing 
process. To remove the VI data noise caused by cloud contamination and 
poor atmospheric conditions, the daily VI data calculated from 
MCD43A4 were smoothed by the Savitzky-Golay (SG) filter (Chen et al., 
2004). Moreover, we kept only the pixels within the winter wheat 
cultivation area for subsequent analysis, which were identified using a 
16-meter crop type map provided by the Chinese Academy of Agricul-
tural Sciences (CAAS) (Tang et al., 2016). 

In addition, the daily meteorological data (2001–2018) of 319 
meteorological stations located in the study area (Fig. 3) were collected 
from the Chinese Meteorological Administration (CMA) and included 
the mean temperature, minimum temperature, and precipitation. The 
meteorological data were used to identify frost-free years based on the 
method described in the China National Standard (Standardization 
Administration, 2017), to determine the start date of the frost event and 
to calculate the meteorological factors for the frost year. 

Additionally, daily soil moisture data from 2018 were acquired from 
the ESA Soil Moisture Climate Change Initiative (CCI) project (Gruber 
et al., 2017; Dorigo et al., 2017; Gruber et al., 2019), which provides 
spatially complete and temporally consistent global soil moisture data at 
a spatial resolution of 0.25◦ by merging both active and passive mi-
crowave satellite sensor data (https://www.esa-soilmoisture-cci.org/). 

Finally, county-level wheat yield data from 2014 to 2018 in Henan 
Province and Shandong Province were collected from the EPS CHINA 
DATA platform (http://olap.epsnet.com.cn/) to evaluate the effective-
ness of SFDI on quantifying spring frost damage. Unfortunately, there 
were no relevant data for Hebei Province for 2018; thus, Hebei was 
excluded from the validation analysis. 

3.3. Factors influencing spring frost damage 

Previous studies have shown that the severity of winter wheat 
damage from spring frost is mainly controlled by environmental factors 
(e.g., temperature and soil moisture) and crop growth conditions (Kang 
et al., 2002; Rozbicki et al., 2015; Sun et al., 2018). Accordingly, factors 
related to crop growth and environmental conditions were calculated 
from the collected data to explain the spatial variation in the SFDI across 
the study area. The detailed definitions of the factors and how to 
calculate the factors are explained below. 

3.3.1. Factors related to crop growth conditions 
Since spring frost damage can be affected by crop growth conditions, 

five factors were selected according to existing studies (Gu et al., 2008; 
Eccel et al., 2009; Zheng et al., 2015): sowing date (SD), green-up date 
(GUD), maximum VI value during the tillering stage (VItil), VI value at 
green-up date (VIgud) and VI value before the occurrence of the frost 
event (VIbsf) (shown in Fig. 4a). The first two factors represent the 
phenological status, while the remaining factors represent the crop 
growth status at the corresponding phenological stages. Generally, early 
sowing and green-up dates indicate that the crop is at an advanced 
phenological stage. The VI value before the frost event reflects the crop 
condition resulting from both the growth status and the phenological 
stage before the frost event. A higher VIbsf value indicates that the crop 
may have greater vulnerability to spring frost. 

Most of these factors, except the sowing date, can be directly ob-
tained from the remotely sensed VI curve. It is difficult to collect the 
sowing date for a large area in the field. Considering the link between 
the sowing date and the VI curve, we indirectly estimated the sowing 
date by calculating the date when the VI value achieved the 50% 
threshold of the first small peak (Til50) in the VI curve, which corre-
sponds to the maximum VI during the tillering stage. This estimation 
was reasonable and acceptable because an early Til50 corresponds to an 
early sowing date under typical conditions. Moreover, the GUD was 
determined using the logistic method (Zhang et al., 2003), in which the 
GUD was defined as the date when the change rate of the curvature of 
the logistic-fitted VI curve reached its first local maximum. 

After extracting these five factors (Til50, GUD, VItil, VIgud and VIbsf), it 
is necessary to reduce the geographical differences in both the crop 
growth cycle and the growth conditions across the large study area via 
standardization. Based on the five factors derived from the VI curves of 
all frost-free years, we calculated the pixel-based interquartile average 
of all values falling between the upper and lower quartiles. The pixel- 
based interquartile averages were then subtracted from the values of 
the five factors obtained in the spring frost year. Taking VIbsf as an 
example, the formula to standardize the geographical differences can be 
expressed as follows: 

VIbsf − s = VIbsf − VIbsf (14)  

where VIbsf and VIbsf − s are the interquartile average and standardized 

Fig. 3. The study area and locations of meteorological stations.  
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values for the VIbsf factor, respectively. The standardization of the other 
four factors was similar. After standardization, the values of the five 
factors represented the changes in the spring frost year compared with 
the averaged conditions without spring frost, which ensured that the 
factor values for all pixels were comparable over a larger area. 

3.3.2. Factors related to environmental conditions 
Frost damage is supposed to be inversely proportional to the freezing 

temperature and proportional to the duration of the freezing days 
(Cannell and Smith, 1986). Therefore, the accumulated frost degree- 
days (AFDD), which is defined as accumulated days when the temper-
ature is below a given threshold (Tthr) during the frost event, was used to 
represent the comprehensive effects of the intensity and duration of the 
event (Eq. (15) (Xiao et al., 2018). This metric can be calculated from 
both the daily mean temperature (AFDDmean) and the daily minimum 
temperature (AFDDmin) with thresholds (Tthr) of 10 ◦C and 2 ◦C, 
respectively. The temperature thresholds were chosen to be consistent 
with those of previous studies (Li et al., 2010; Crimp et al., 2015; Xiao 
et al., 2018). To further reflect the spring frost intensity, the temperature 
drop range (ΔT) was also calculated as the difference between the daily 
mean temperature at the beginning of the frost event and the minimum 
of the daily mean temperature across the frost period (Eq. (16)) (Ma 
et al., 2011). In addition, the total precipitation (Pt) during the frost 
impact period was also selected to reflect the water conditions under low 
temperature stress (Eq. (17)). 

AFDDvar =
∑i=SFend

i=SFstart
max

(
Tthr − Ti

var, 0
)

(15)  

ΔT = Tstart − Tmin (16)  

Pt =
∑i=SFend

i=SFstart
Pi (17) 

The subscript var can be set as the mean or min, which correspond to 
the daily mean temperature or daily minimum temperature. Tstart is the 
daily mean temperature at the beginning of the frost event, and Tmin is 
the minimum daily mean temperature during the frost period (Fig. 4b). 
These abovementioned factors were calculated for each meteorological 
station and then interpolated by the kriging method to the MODIS grid. 

Some studies have shown that irrigation before frost events can 
greatly alleviate the damage to winter wheat (Kang et al., 2002; Meng 
et al., 2017); thus, soil moisture (SM) at the beginning of the frost event 
was also used as a proxy for irrigation status for the crop. The main 
problem here is that the ESA Soil Moisture CCI data have a coarser 
spatial resolution than MODIS. Accordingly, a thin plate spline (TPS) 
function was used to interpolate the soil moisture data to 500-m reso-
lution (Dubrule, 1984; Zhu et al., 2016). 

4. Results 

4.1. Spatial distribution of SFDI 

Based on the method proposed above, three VIs were used to 
calculate the SFDI that quantified the VI response of winter wheat to the 
spring frost event (Fig. 5a, c, and e). Overall, the SFDI values calculated 
from the three VIs had similar spatial patterns, and their spatial corre-
lation exceeded 0.8. This suggests that all three VIs can capture similar 
impacts of the spring frost. The distributions of their histograms were 
also similar (Fig. 5a, c, and e). The severely impacted areas with higher 
SFDI values were mainly located at the junction of Hebei, Henan and 
Shandong provinces, especially in the western part of Shandong Prov-
ince. The frost impact degraded as the frost moved away from the 
serving affected area. Since all three VI-based SFDI showed similar 
patterns of spring frost impact, only SFDIndpi was used in the following 
analysis because of its advantages of removing the snow background 
noise, containing more information than SFDIndvi and SFDIevi and having 
a higher mean and variance (mean: 0.74 v.s. 0.69, 0.69; variance: 0.50 v. 
s. 0.46, 0.39). Additionally, we also calculated the VI differences (ΔVI) 
between the spring frost year and the previous frost-free year (Fig. 5b, d, 
and f) to compare with the SFDI results in Fig. 5a, c and e. The spatial 
distribution of the VI differences showed large variations across the 
study area with contrasting signs. Some areas even experienced an in-
crease in VI during the frost event, which suggests that the spring frost 
event benefited the crops in these regions (Fig. 5b, d, and f). This 
confusing signal was likely caused by the yearly variation in weather 
conditions and other environmental factors. The SFDI did not suffer 
from such variation and showed a more cohesive spatial pattern of frost 
damage to winter wheat (Fig. 5a, c, and e). 

To validate the spatial distribution of the SFDI in the absence of 
actual frost damage data, we collected reports from several regional 
newspapers in the three provinces in 2018 based on keywords (Fig. 5g). 
These printed newspapers were retrieved from the National Library of 
China and included Henan Daily and the rural edition of Henan Daily in 
Henan Province; Dazhong Daily and the rural edition of Dazhong Daily 
in Shandong Province; and Hebei Daily, Hebei Farmers’ Newspaper, and 
Yanzhao Metropolis Daily in Hebei Province. Assuming that frost- 
stricken areas are more likely to be reported in newspapers than in 
less affected areas, the frequency of local region names that appeared in 
the frost-related newspaper reports can be used to identify regions that 
were seriously or slightly affected by a frost event. For unreported areas, 
we assumed that the impact of spring frost was very limited. This kind of 
validation is qualitative and may not be accurate, but it can test the 
rationality of the spatial pattern of our results to a certain extent. The 
results of the frost keyword retrieval showed that several counties 

Fig. 4. Definitions of five factors related to crop growth conditions (a) and environment-related factors (b). The blue arrow represents the start date of spring frost.  
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located at the junction of Hebei, Henan and Shandong provinces were 
seriously affected (red in Fig. 5g) or slightly affected by frost events 
(light orange in Fig. 5g), while the rest of the study area was not 
considered to be affected by the frost event. Such a spatial pattern is 
generally consistent with the SFDI pattern shown in Fig. 5a, c, and e. In 
addition, city-level research on the meteorological conditions of the 
winter wheat growth period found that the same frost event imposed 
slight freezing damage to winter wheat in Shangqiu city in April 2018 
(Shi, 2019), which was also consistent with our results. All of these re-
sults indicated that the SFDI is suitable and effective for mapping the 
frost impact on winter wheat at the provincial scale. 

Furthermore, we also used county-level winter wheat yield data in 

2018 to validate the effectiveness of SFDI in reflecting the crop yield 
decline due to the spring frost event (Xiao et al., 2018; Nuttall et al., 
2019). The yield anomaly (ΔYield) was calculated by subtracting the 
average crop yield of frost-free years during the past five years (i.e., 
2014, 2016 and 2017) from the wheat yield of 2018. The scatterplot 
between the yield anomaly and SFDI at the county level is shown in 
Fig. 6 along with the linear and logarithmic model fitting (Table 1). 
Compared to the average yield of the frost-free years, the county-level 
yield in the frost-affected years (2018) decreased with the increase in 
the SFDI. Both fitting models show that the ΔYield was significantly 
negatively related to the SFDI (p < 0.01 in the linear model and p <
0.001 in the logarithmic model, Fig. 6). However, the R2 was relatively 

Fig. 5. Spatial distribution of NDVI-based SFDI (a), ΔNDVI (b), EVI-based SFDI (c), ΔEVI (d), NDPI-based SFDI (e), ΔNDPI (f), and hotspots derived from newspaper 
keywords (g). The subgraphs in (a)-(f) are their respective histogram distributions. The subgraph in (g) is the location of the study area in China. 
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low despite the statistically significant association between the SFDI and 
yield anomaly. One potential reason for the smaller R2 was that the 
environmental conditions and field management measures after the 
frost might have offset the damage to the crop yield caused by the frost. 
Without proper field survey data, it is difficult to distinguish the direct 
contribution of the frost event from the final yield. Nevertheless, the 
result of winter wheat yield analysis at the county level showed that the 
SFDI can reasonably reflect the damage caused by spring frost events to 
a certain extent. 

4.2. MLR model analysis 

To understand which factors might strongly influence SFDI, stepwise 
multiple linear regression was used to identify high-impact explanatory 
variables from the pool of all candidate factors. Only variables with 
significant contributions to explain the SFDI information were retained. 
As a result, four factors were retained in the MLR model, including the 
standardized VI value (VIbsf-s), soil moisture (SM) before the frost event, 
accumulated frost degree-days calculated from the daily mean temper-
ature (AFDDmean), and total precipitation during the spring frost period 
(Pt). Table 2 shows the coefficient and variance inflation factor (VIF) of 
each factor in the final MLR model. All VIF values were close to 1, 
indicating that multicollinearity did not exist among the selected factors 
(Mansfield and Helms, 1982; Daoud, 2017). SM and Pt were significantly 
negatively correlated with the SFDI, while the other two factors were 

significantly positively correlated with the SFDI (all p values < 0.001). 
The negative coefficients indicated that good water availability (more 
soil moisture before the spring frost event and more precipitation during 
the spring frost period) may alleviate frost damage to winter wheat. On 
the other hand, higher values of VIbsf-s and AFDDmean can be associated 
with more severe frost damage. The standardized coefficients in Table 2 
indicate that VIbsf-s and Pt were more influential factors. The scatterplot 
of the observed SFDI and predicted SFDI in the MLR model is shown in 
Fig. 7a with R2 equal to 0.362 and RMSE equal to 0.532 (n = 551,564, p 
< 0.001). 

4.3. GWR model analysis 

GWR was implemented to examine whether there was spatial non-
stationarity in the relationship between the SFDI and the selected four 
factors. To make the coefficients comparable, the standardized z score of 
the factors was used for GWR. Fig. 7b shows the scatterplot between the 
observed SFDI and predicted SFDI in the GWR model. Overall, the GWR 
model demonstrated better performance than MLR, with higher global 
R2 (0.479 v.s. 0.362) and smaller RMSE (0.443 v.s. 0.532). More 
importantly, the GWR model showed more uniform performance for 
different SFDI ranges after considering the spatial nonstationarity, with 
less severe underestimation/overestimation for high/low SFDI values 
(Fig. 7). 

Fig. 8(a, b) presents the variation in the local R2 and the predicted 
standard error across the study area in the GWR model. This result 
revealed that the GWR model was more effective over the area that was 
seriously affected by the spring frost event (Fig. 5), indicating that the 
SFDI was better associated with these factors over severe frost impacted 
regions. The prediction errors in these areas were also relatively small in 
comparison with those in the other areas (Fig. 8b). Fig. 8(c-f) presents 
the local regression coefficients for each explanatory factor in the GWR 
model. The negative associations are shown by cold colors, while the 
positive associations are indicated by warm colors. The relationships 
between the SFDI and the four explanatory factors showed substantial 
variations across the study area, while some regions showed inconsistent 
results with the MLR model. The coefficients for VIbsf-s of the entire study 
area were all positive, with high values appearing over western Shan-
dong Province (Fig. 8c). The coefficients of Ptotal in most parts of the 
study area were negative (Fig. 8f). The relationship between these two 
factors and SFDI were almost identical to the results of the MLR model 
(Table 2) and had various regional differences. This confirmed that high 
values of VIbsf-s can aggravate frost damage, while abundant precipita-
tion can alleviate this damage. On the other hand, the local regression 
coefficients of soil moisture (SM) and accumulated frost degree-days 
(AFDDmean) displayed more diverse spatial patterns. These two factors 
were positively associated with the SFDI in some places but negatively 
affected the SFDI in other areas (Fig. 8d, e). This divergent spatial 
pattern affirmed the MLR results that SM and AFDDmean were likely 
secondary factors in influencing the SFDI. 

5. Discussion 

5.1. Advantages and limitations of SFDI 

Vegetation indexes calculated from remotely sensed data are 
commonly used as indicators of vegetation greenness and vigor (Huete 
et al., 2002; Prasad et al., 2005). Previous studies have shown that frost- 
induced damage to vegetation can be identified by reduced VI values 
(Gu et al., 2008; Menzel et al., 2015; Bascietto et al., 2018; Allevato et al. 
2019). The physiological mechanism of the decline in VI due to frost has 
been reported by several existing studies (Guy, 1990; Wang et al., 2012; 
Wei et al., 2017). During the frozen and post-thawing periods, the 
decomposition of pigments is greater than the composition; thus, the leaf 
chlorophyll content is decreased significantly. The change in chloro-
phyll content can slightly increase the reflection of red wavelengths 

Fig. 6. Scatterplot between the yield anomaly and the SFDI in 2018.  

Table 1 
Fitting coefficients between the yield anomaly and the SFDI.  

Fitting methods Parameters Value t-Value Prob>|t| 

Linear Intercept − 73.014 − 1.836  0.069 
Slope − 184.979 − 2.997  0.003 

Logarithm a − 281.171 − 7.017  0.000 
b 90.713 1.743  0.085 
c − 0.014 − 0.135  0.893  

Table 2 
Multiple linear regression coefficients.  

Variables Unstandardized 
Coefficients 

Standardized 
Coefficients 

t-value Sig. VIF 

(Constant)  0.734   151.748  0.000  
VIbsf-s  3.203  0.433  398.138  0.000  1.024 
SM  − 1.637  − 0.118  − 102.158  0.000  1.150 
AFDDmean  0.016  0.142  94.083  0.000  1.966 
Pt  − 0.005  − 0.245  − 170.216  0.000  1.791  
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Fig. 7. Scatterplots of observed SFDI values vs. predicted SFDI values by the MLR model (a) and GWR model (b). The depth of color represents the density of the data 
point distribution. The red color represents a higher density of the data points. 

Fig. 8. Distribution of local R2 (a), predicted standard error (b) and local coefficients for selected factors in the GWR model (c-f).  
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while decreasing the reflection of green wavelengths. Meanwhile, ice 
crystals form between cells, and the gradient of water potential between 
the inside and the outside of cells can lead to cellular dehydration and 
cell collapse. Consequently, the reflection of the NIR wavelength de-
creases because of the changing cell structure, while the water absorp-
tion valley in the SWIR wavelength weakens due to the reduction in leaf 
water content. These changes in vegetation spectral characteristics lead 
to obvious changes in the calculated VI. The increasing red reflectance 
and decreasing NIR reflectance consequently lead to a notable reduction 
in the NDVI and EVI values for winter wheat under frost stress. The NDPI 
replaces the red band with the weighted sum of the reflectance of red 
and SWIR bands (red-SWIR reflectance, Wang et al., 2017). As the re-
flectances of both the red and SWIR bands increased under frost stress, 
the value of the NDPI also decreased substantially, which was similar to 
the responses of the NDVI and EVI to frost damage. The factors that led 
to a more significant response of the NDPI to frost damage than the NDVI 
and EVI (Fig. 5) may come from two advantages of the NDPI. First, the 
NDPI is sensitive to cell water content because it includes the water- 
sensitive SWIR band. Second, the NDPI greatly enhances the signal 
contrast between vegetation and background (e.g., soil and snow) and 
minimizes the background difference over a large area (Wang et al., 
2017, Chen et al., 2019). Therefore, the NDPI appeared to be more 
suitable for monitoring frost damage to winter wheat. 

In previous studies, the difference in the VI between the frost- 
affected year and a historical frost-free year was commonly used to 
identify and evaluate frost damage (Nolè et al., 2018; Allevato, et al., 
2019). Additionally, the drop in the VI after a frost event compared to 
prefrost conditions has also been used to identify frost damage (Menzel 
et al., 2015). For the first method that selects a single frost-free year as a 
reference, the difference in VI between the frost year and frost-free year 
may result from both frost damage and the differences in climatic con-
ditions and phenology between the two years. It is not trivial to separate 
the impact of frost from other confounding factors due to a lack of 
interannual correction. For the second method of using VI reduction 
before and after the frost event, it is difficult to locate the exact date that 
represents the occurrence of the most severe frost injury. Although the 
minimum VI following a frost event is typically used, the minimum VI 
value can potentially be caused by cloud contamination. More impor-
tantly, these two types of methods both regard spring frost as a short- 
term event and ignore the continuous impact of spring frost on the 
crop. To address these issues, the SFDI considers both the immediate VI 
reduction when frost occurs and the continuous impact of frost on crops 
during the crop recovery period. The SFDI calculates the cumulative VI 
reduction between the reference VI curve and the frost-affected VI curve 
(Fig. 2) during the entire recovery period, which is more robust against 
cloud contamination on an individual date and includes the continuous 
impact of spring frost. In the construction of the SFDI, the selection of a 
reference VI curve that represents the actual trajectory of crop growth 
under frost-free conditions is of great importance. The multiyear 
average VI curve from frost-free years was used as the candidate refer-
ence curve, which can make the reference curve more stable compared 
with using a single VI curve or fewer frost-free VI curves. Moreover, to 
reduce interannual variations caused by changes in farmers’ cultivation 
practices and in climatic conditions, the multiyear average VI curve was 
further geometrically scaled by the shape model fitting (SMF) method to 
match the actual trajectory of crop growth under frost-free conditions in 
the year of interest. The SMF method was verified to be effective in 
simultaneously eliminating phenological shifts and changes in VI mag-
nitudes (Sakamoto et al.; 2010, 2013, Sakamoto, 2018) through three 
optimized scaling parameters (sx, sy, t0). To optimize these parameters, 
we used wRMSE instead of the original RMSE because it can ensure 
better consistency between the reference VI curve and the frost year VI 
curve by assigning higher weight to dates closer to the date when the 
spring frost event occurred. This modification greatly reduced the un-
certainty in SFDI calculations caused by interannual differences in the VI 
curves. 

Due to the lack of proper fieldwork and survey data on the actual 
frost damage to winter wheat that occurred in the past, it was very 
challenging to validate our SFDI results directly. To overcome this 
challenge, we used regional newspaper reports of the event and county- 
level winter wheat yield data as proxies to assess the performance of the 
SFDI indirectly. To address this issue, future work to collect proper field 
data during spring frost events is needed. Such data can be used to 
further evaluate the effectiveness of the SFDI, and provide unique value 
for the broad community who are interested in using remotely sensed 
data to study spring frost damage. With the rapid development of citizen 
science and volunteered geographic information systems on mobile 
devices, we are planning to explore the possibility of using such tech-
nologies to crowdsource field data at county-to-provincial scale. 

The proposed SFDI represents a step forward in automatically 
detecting areas subject to spring frost impacts and quantifying the in-
tensity of frost damage at the provincial scale by using remotely sensed 
VI time series. Although the SFDI was applied to data at the provincial 
scale, it is very flexible and can be easily extended to continental and 
global data. Three advantages of the SFDI can be summarized as follows: 
(1) the SFDI is easy to implement using widely available VI time-series 
datasets; (2) the SFDI is calculated as the area enclosed by the two 
curves from the start point to the end point. The end point can be set 
flexibly according to the purpose of the application, which can be used 
for near real-time or continuous spring frost impact assessment; and (3) 
the methodology can be easily extended to other natural hazards and 
other crop types with reasonable adjustment. 

The newly proposed SFDI also has limitations due to several neces-
sary assumptions made during its calculation. Previous studies have 
revealed that a frost event can inevitably lead to a decline in VI values 
(Gu et al., 2008; Menzel et al., 2015; Bascietto et al., 2018; Allevato et al. 
2019). However, other agricultural events (e.g., drought, diseases, and 
pests) may also reduce VI values. Thus, it is difficult to isolate the pro-
portion of the VI declines resulting from a frost event without prior 
knowledge or assumptions. Therefore, the SFDI requires prior knowl-
edge of the frost event and its start date from the meteorological record 
or forecast. Moreover, if the period used for SFDI calculation coincides 
with other agricultural events or another spring frost, the SFDI reflects 
the compounding impacts rather than the independent impact of the 
frost event of interest. It is difficult to isolate individual contributions 
from different events to SFDI unless a more reasonable end date can be 
identified from the physiological mechanism in future studies. Addi-
tionally, the SFDI is recommended for assessing the frost damage for a 
single crop type (e.g., winter wheat) rather than for multiple crop types 
simultaneously because different crop growth cycles can offset the sig-
nals among different crop types, and making the SFDI values 
incomparable. 

Moreover, we used daily MODIS products at the 500-m resolution for 
the case study. Although the method itself is not dependent on the 
spatial resolution of remotely sensed data, it should be noted that me-
dium resolution data like MODIS may not be suitable for monitoring 
small plantations (less than 25–100 ha). To apply SFDI for small culti-
vated areas, higher spatial resolution data, such as Sentinel-2, Landsat, 
Planet, and WorldView, are needed. Theoretically, the monitoring re-
sults using higher spatial resolution data would not differ much from our 
500-m resolution monitoring results since the method is not resolution- 
dependent. There may be slight differences in the spatial patterns as 
higher resolution data may reveal more spatial details. It should be 
noted that high spatial resolution data typically do not provide frequent 
revisit time which is also essential for this type of rapid response and 
monitoring. One would argue the increasing number of high-resolution 
satellite sensors and constellation may fill in the temporal gap. But 
cautions need to be taken to ensure the data consistency when using data 
from different platforms for monitoring and rapid response. One po-
tential solution to address the issue of spatial–temporal resolution 
tradeoff is to apply data blending methods (e.g., STARFM, FSDAF, etc.) 
(Gao et al., 2006; Zhu et al., 2016). 
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5.2. Main factors influencing the SFDI distribution 

According to existing studies, ten factors associated with biotic and 
abiotic conditions were selected to establish the regression model be-
tween the SFDI and the related factors. The model was expected to 
explain the spatial variation in the SFDI. As a result of stepwise multi-
variate linear regression, only four factors were retained in the model, 
including VIbsf-s, SM, AFDDmean, and Pt. The first factor represents the 
growth condition of the winter wheat crop, and the other three factors 
describe abiotic conditions. This indicates that the interaction among 
biotic and abiotic factors can determine the spatial pattern of the SFDI, 
which is consistent with existing studies (Menzel et al., 2015; Meng 
et al., 2017; Zheng et al., 2018). Among all biotic factors, the sowing 
date (SD), green-up date (GUD), and VIgud, representing crop phenology 
and growth status in the winter and early spring, respectively, were not 
included in the model. The exclusion of these biotic factors seems to 
conflict with previous studies, which suggested that earlier sowing dates 
and green-up dates tended to increase the vulnerability to spring frost 
(Zhao et al., 2014; Liu et al., 2018). This may be due to the relatively 
long time interval between the sowing time (or green-up) and spring 
frost. In contrast, a new factor (VIbsf-s) representing growth status close 
to the frost event was chosen by the model because it represents the 
combined effect of crop phenology and growth conditions after green- 

up. Higher values of VIbsf-s indicate that the crop is at a more vulner-
able stage to low temperatures when spring frost occurs. Theoretically, 
winter wheat is at the stem elongation or jointing stage when it resumes 
growth in spring. This stage is critical for spikelet differentiation and is 
very sensitive to temperature changes. If a severe spring frost were to 
occur during this period, spikelet differentiation would stop, and the 
seed setting rate would also decrease. Furthermore, during the process 
of spikelet differentiation, the crop’s resistance to low temperature de-
creases rapidly; thus, winter wheat becomes more susceptible to frost 
events (Frederiks et al., 2012; Li et al., 2015; Xiao et al., 2018). 

Among the abiotic factors, the accumulated frost degree days 
(AFDDmean) was retained in the regression model rather than the tem-
perature drop range (ΔT) because both freezing temperature and the 
duration of freezing days were important in determining the level of 
frost damage (Cannell and Smith, 1986; Xiao et al., 2018). Additionally, 
SM and Pt, which reflect the water abundance before and after spring 
frost, respectively, were both retained in the regression model. This 
suggests that the water condition is a key factor that may affect the 
severity of spring frost damage to winter wheat, which is consistent with 
existing studies (Wang et al., 2012; Zhao et al., 2014; Meng et al., 2017). 
One plausible reason is that moist soil has more heat capacity and can 
absorb more heat, serving as a heat sink and releasing heat to the near- 
surface atmosphere, thus reducing the frost impact (Burke et al., 1976; 

Fig. 9. Spatial distribution of selected factors (a-d) and NDPI-based SFDI (e). The upper left subgraphs in Fig. 9a-d show the relationship between each factor and the 
SFDI in eight groups, and the labels on the horizontal axis represent different levels of SFDI. The black solid squares in the graph represent the mean values of 
different factors for each group. Error bars represent the mean ± standard deviation for each group. 
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Klein et al., 1994; Trought et al., 1999; Snyder and de Melo-Abreu, 
2005). 

Fig. 9 shows the spatial distribution of SFDIndpi (Fig. 9e) and four 
retained factors (Fig. 9a-d). It was clear that for most of the study area, 
the VIbsf-s values were positive, indicating increased VIbsf values in 2018 
compared to in the previous frost-free years (Fig. 9a). Soil moisture 
displayed relatively small values except for in the southern part of the 
study area (Fig. 9b). The accumulated frost degree-days (AFDDmean) 
showed a decreasing trend from north to south, with values exceeding 
10 ℃⋅days in most of the area (Fig. 9c). In contrast, the precipitation 
generally displayed an increasing trend from north to south. More 
abundant precipitation was observed in Henan Province, followed by 
Hebei Province and Shandong Province (Fig. 9d). To reflect the rela-
tionship between the SFDI and four selected factors more intuitively, we 
divided the SFDI into eight groups from low value to high value and 
calculated the mean and standard deviation of four factors corre-
sponding to each SFDI group (the upper left subgraphs in Fig. 9a-d). The 
results clearly showed that SFDI was positively associated with VIbsf-s 
and AFDDmean but negatively associated with SM and Ptotal. Analysis of 
the variance among the different SFDI values revealed that the differ-
ences between groups were significant (p < 0.001). These relationships 
were consistent with the results of the MLR model, as summarized in 
Table 2. 

The roles of the abovementioned factors in deciding the damage to 
winter wheat can partially explain the spatial distribution of the SFDI, 
which was more severe at the junction of Henan, Hebei, and Shandong, 
especially in western Shandong Province (Fig. 9e). Western Shandong 
Province had relatively higher VI values before the spring frost (VIbsf) 
than those in Hebei Province but lower VI values than those in Henan 
Province. On the one hand, the accumulated frost degree-days (AFDD-
mean) metric during the frost period in this area was larger than in Henan 
Province and comparable to in Hebei Province, together with lower 
values of soil moisture and lower amounts of precipitation than in Henan 
Province. This combination of spatial patterns brought about more 
intensive frost damage from complex interactions among these factors. 
On the other hand, although Henan Province maintained the highest 
values of VIbsf, the accumulated frost degree-days (AFDDmean) were the 
smallest and highest values of soil moisture and precipitation for Henan. 
Thus, the frost damage to winter wheat was greatly alleviated in the 
area. For Hebei Province, the accumulated frost degree-days (AFDDmean) 
metric was the largest in comparison those of the other two provinces, 
but the values of VIbsf were the lowest, indicating the strongest tolerance 
to frost stress. This interaction limited the frost damage to winter wheat 
in Hebei Province. 

It should be noted that the R2 in the MLR model was still low (R2 =

0.362). Thus, this model can be used to explore the relationship between 
various factors and SFDI, but it should not be used as a predictive model 
because of the overestimation and underestimation of extreme SFDI 
values (Fig. 7a). First, the relationship between the SFDI and four 
influential factors was not stable across the study area, and the fitted 
coefficients of the multiple linear regression model cannot adequately 
represent the local effects of each factor. Therefore, the fitting accuracy 
of the MLR model can be greatly improved by implementing the GWR 
model (Fig. 7b). Second, although ten factors were analyzed, some 
important factors other than VIbsf-s, SM, AFDDmean and Pt were still not 
represented. Previous studies have shown that winter wheat varieties, 
adequate fertilization, cultivation, and seeding quality also play 
important roles in determining the severity of frost damage (Rozbicki 
et al., 2015; Sun et al., 2018; Kang et al., 2002). More importantly, 
cultivar selection is a key factor in determining the low-temperature 
resistance of winter wheat. Global warming has caused some of the 
original cultivars to no longer be suitable for continuous planting (Cao 
et al., 2012; Dai et al., 2014). As a result, the wheat varieties planted in 
the study area changed from having a strong winter habit to winter or 
semiwinter habit (e.g., Hebei Province) or even weak spring habit (e.g., 
Henan Province). These changes in wheat cultivars could lead to 

different levels of low-temperature resistance and vulnerability to spring 
frost. Unfortunately, these factors are difficult, if not impossible, to 
extract from remotely sensed data or field census data over large areas. 
Introducing these factors in the future is expected to improve the 
explanatory power of the model. Third, since most of the wheat planting 
parcels are large in the study area, the effect of mixed pixels can be 
alleviated to a great extent with the use of coarse-resolution MODIS 
data, although the influence of mixed pixels cannot be completely 
avoided. Finer resolution data are more appropriate for areas with 
heterogeneous wheat planting parcels. Moreover, the spatial mismatch 
between soil moisture data, MODIS VI data and station meteorological 
data inevitably increased the uncertainty of the regression analysis. 

6. Conclusions 

In this study, we proposed a remote sensing-based index (SFDI) that 
can quantify the continuous impacts of spring frost on winter wheat over 
a large area rapidly and effectively. Compared with the existing 
methods, the new index was easy to implement, and the end date can be 
set flexibly according to the application purpose. It can be used for near 
real-time or enduring spring frost impact assessments and has the po-
tential to be extended to other agricultural hazards and crop types. The 
case study using the new index to characterize the spring frost event that 
occurred from April 3–7, 2018, in North China, showed that the severely 
damaged areas were mainly located at the junction of Hebei, Henan and 
Shandong provinces, especially in western Shandong Province. The 
spatial pattern agreed well with the results of the frost keyword retrieval 
from newspapers. The effectiveness of SFDI in reflecting the crop yield 
decline due to the spring frost event was also evaluated with county- 
level winter wheat yield data. Moreover, we identified that frost dam-
age to winter wheat was not only related to environmental factors, such 
as accumulated frost degree-days, precipitation, and soil moisture but 
was also closely related to the growth status of winter wheat (repre-
sented by VIbsf) before spring frost occurred. Last, our analysis suggested 
that reasonable control of excessive crop growth can be a very effective 
way to alleviate frost damage by limiting the increasing vulnerability of 
the crop caused by rapid development before the spring frost. Favorable 
water conditions can also effectively alleviate frost damage; thus, field 
water management, such as timely irrigation, should be strengthened to 
reduce frost damage to winter wheat if there is not enough water 
available during the frost period. 
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