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A B S T R A C T

The cloud-base temperature (CBT) is one of the parameters that dominates the cloudy sky surface downward
longwave radiation (SDLR). However, CBT is rarely available at regional and global scales, and its application in
estimating cloud sky SDLR is limited. In this study, a framework to globally estimate cloud sky SDLR during both
daytime and nighttime is proposed. This framework is composed of three parts. First, a global cloudy property
database was constructed by combing the extracted cloud vertical structure (CVS) parameters from the active
CloudSat data and cloud properties from passive MODIS data. Second, the empirical methods for estimating
cloud thickness (CT) under ISCCP cloud classification system and MODIS cloud classification system were de-
veloped. Additionally, the coefficients of CERES CT estimate models were refitted using the constructed cloud
property database. With the estimated CT and reanalysis data, calculating the CBT is straightforward. The ac-
curacy of the estimated CT for ISCCP cloud type is compared with the existing studies that were conducted at
local scales. Our CT estimate accuracy is comparable to that of the existing studies. According to the validation
results at ARM NSA and SGP stations, the CT estimated by the developed CT model for MODIS cloud type is
better than that estimated by the original CERES CT model. Finally, the cloudy sky SDLR values were derived by
feeding the estimated CBT and other parameters to the single-layer cloud model (SLCM). When validated by the
ground measured SDLR collected from the SURFRAD network, the bias and RMSE are 5.42 W∙m−2 and
30.3 W∙m−2, respectively. This accuracy is comparable to the evaluation results of the mainstream SDLR pro-
ducts (Gui et al. 2010), the new evaluation results of SLCMs (Yu et al. 2018), and the accuracy of a new cloudy
sky SDLR estimate method (Wang et al. 2018). All the derived CBTs improve the SDLR estimate accuracy more
than the SLCM that directly uses cloud-top temperature (CTT). We will collect more ground measurements and
continue to validate the developed framework in the future.

1. Introduction

The surface downward longwave radiation (SDLR) is one of the four
components of the surface radiation budget (Barkstrom, 1984Cheng
et al., 2018Wang and Dickinson, 2013). SDLR is a required input to land
surface models, which characterize the planet's hydrological, ecolo-
gical, and biogeochemical processes (Liang et al., 2010). Remote sen-
sing is a unique means of estimating high-spatial resolution SDLR at
regional and global scales. Significant progress have been achieved
during the past several decades (Bisht and Bras, 2010Cheng et al.,
2019Diak et al., 2000Ellingson, 1995Fu et al., 1997Gupta, 1989Kratz
et al., 2020Schmetz et al., 1986Trigo et al., 2010Wang et al., 2018Wang
and Liang, 2009Yu et al., 2018Zhang et al., 2004Zhou et al., 2007). To

meet the requirements of the meteorological, hydrological, and agri-
cultural research communities, i.e., a monthly averaged accuracy of
5–10 W/m2, the acceptable accuracy of satellite-derived instantaneous
SDLR is 20 W/m2 (CEOS and WMO, 2000Gupta et al., 2004). However,
the existing satellite SDLR products do not meet this accuracy re-
quirement (Gui et al., 2010Zhang et al., 2015Zhou et al., 2011).

Much attention has been paid to the clear-sky SDLR estimate (Cheng
et al., 2018Tang and Li, 2008Wang and Liang, 2009). Clouds cover
approximately 67% of the Earth's surface (King et al., 2013) and
overlapping cloud layers occur about 40% of the time (Wang et al.,
2000). The cloudy sky SDLR consists of two parts: one part is the at-
mospheric longwave radiation between the cloud base and surface, and
the other part is the cloud longwave radiation reaching the surface.

https://doi.org/10.1016/j.rse.2020.111972
Received 23 December 2019; Received in revised form 27 June 2020; Accepted 30 June 2020

⁎ Corresponding author at: State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and
Digital Earth of Chinese Academy of Sciences, Beijing 100875, China.

E-mail address: Jie_Cheng@bnu.edu.cn (J. Cheng).

Remote Sensing of Environment 248 (2020) 111972

0034-4257/ © 2020 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2020.111972
https://doi.org/10.1016/j.rse.2020.111972
mailto:Jie_Cheng@bnu.edu.cn
https://doi.org/10.1016/j.rse.2020.111972
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2020.111972&domain=pdf


Clouds enhance SDLR by absorbing and reemitting thermal radiation
emitted by the surface and beneath atmosphere (Stephens et al.,
2002Takara and Ellingson, 2000). Clouds cause the greatest uncertainty
in SDLR estimates (Trenberth et al., 2009Wild et al., 2001). For ex-
ample, the average global cloud forcing is 31.77 W/m2 for the period of
2003–2009 (Nussbaumer and Pinker, 2012), and this value achieves
46 W/m2 in a previous study (Kiehl and Trenberth, 1997). The un-
certainty of SDLR is considered to be remarkably larger than other
components of surface radiation budget (Stephens et al., 2012Trenberth
et al., 2009Wang and Dickinson, 2013). Therefore, improving the ac-
curacy of the cloudy-sky SDLR estimate, particularly the accurate
quantification of the cloud contribution, urgently needs to be solved.

A straightforward method of estimating cloudy sky SDLR is feed
atmospheric information (atmospheric and water vapor profiles, cloud
properties, etc.) into radiative transfer models (RTMs). RTMs have a
strong physical foundation, but they require entries of many parameters
and are too costly in terms of computation time (Berk et al.,
1989Darnell et al., 1983Emde et al., 2016Ricchiazzi et al.,
1998Wielicki et al., 1998Zhang et al., 2004Zhang et al., 1995). The
remaining studies can be grouped into bulk formulae (Carmona et al.,
2014Crawford and Duchon, 1999Konzelmann et al., 1994Lhomme
et al., 2007Maykut and Church, 1973Trigo et al., 2010), the hybrid
model (Zhou and Cess, 2001Zhou et al., 2007), the single-layer cloud
model (SLCM) (Diak et al., 2000Forman and Margulis, 2009Schmetz
et al., 1986Wang et al., 2018), and the multilayer cloud model (Gupta,
1989Gupta et al., 1992Gupta et al., 2010Kimball and Idso, 1982).

The bulk formula generally views the cloud and atmosphere as a
whole, and the SDLR is expressed as follows:

=SDLR σε Teff eff
4

(1)

where σ = 5.67 × 10−8 [Wm−2K−4] is the Steffan-Boltzmann con-
stant, εeff is effective emissivity of the atmosphere under all sky con-
ditions, and Teff is air temperature at 2 m. εeff is a function of the
thermal infrared clear sky index (CSI) and air emissivity of a clear sky
(Crawford and Duchon, 1999Konzelmann et al., 1994Lhomme et al.,
2007). The bulk formulae only introduce CSI to correct the cloud
contribution to SDLR, whereas the coefficients of the cloud correction
term change continuously with total cloudiness (Niemelä et al., 2001).
Therefore, this practice results in great uncertainties in the estimated
cloudy sky SDLR. The hybrid method from Zhou et al. (2007) estab-
lished the empirical relationship between the total precipitable water
(TPW) and cloud water path (CWP, including liquid water path and ice
water path) based on radiative simulation. However, CWP is not
available at nighttime from the current satellite products, which limits
its applications during nighttime.

Kimball and Idso (1982) and Gupta (1989) are the pioneers who
developed the multilayer cloud models. The former retrieved the cloud
contribution to SDLR using a four-layer cloud, which is a simple alge-
braic addition of the four-layer cloud longwave radiation. It is highly
probable that this method will overestimate SDLR (Kimball and Idso,
1982Zhu et al., 2017). The latter is a two-layer cloud model that is
adopted in the CERES radiation product (Gupta et al., 1997Kratz et al.,
2020). In the calculation of SDLR, longwave radiation of the upper or
lower layer is considered depending on the thickness of the top cloud
(Minnis et al., 2011). Therefore, the current multilayer cloud models
are actually equivalent to SLCMs in nature when calculating the cloudy
sky SDLR.

CBT governs the cloud contribution to the SDLR (Gupta,
1989Schmetz et al., 1986Viúdez-Mora et al., 2015Wang et al., 2018).
Theoretically, cloud base temperature (CBT) is required by the SLCM.
However, current satellite cannot directly provide CBT product but
cloud-top temperature (CTT). Thus, satellite derived CTT are widely
used in the SLCM as a proxy (Bisht and Bras, 2011Diak et al.,
2000Forman and Margulis, 2009Yu et al., 2018). This kind of SLCM is
named as CTT-based SLCM. This practice will inevitably cause some

additional errors in the estimated SDLR. For example, the bias and
RMSE of the SDLR estimated using CTT-based SLCM (Bisht and Bras,
2011) were 12.3 W∙m−2 and 46.1 W∙m−2, respectively. This accuracy
cannot meet the requirements of the aforementioned applications.

The key idea of deriving CBT is to derive cloud thickness (CT, also
named as cloud geometrical thickness (CGT) somewhere) or cloud-base
height (CBH). Provide with the cloud-top height (CTH), CBH is calcu-
lated by minus CT from CTH. Taken satellite or reanalysis temperature
profile as a reference, CBT can be calculated by linearly interpolating
the referenced temperature profile with CBH (Gupta, 1989Minnis et al.,
2011). There are three methods to obtain CT or CBH: (1) the LUT
method (Gupta, 1989). Gupta (1989) established the look-up table
(LUT) method for retrieving global CT and CBH and obtained the CBT
by linearly interpolating the collocated TOVS temperature profile with
CBH. This operation has great errors in terms of SDLR estimates when
clouds have large vertical development, such as cumulonimbus and
cirrostratus. (2) The inverse distance weighted (IDW) method (Barker
et al., 2011Forsythe et al., 2000Miller et al., 2014Sun et al., 2016). The
IDW method determines the contributions of surrounding active pixels
to receiving pixels using the radiation similarity method or cloud type
constraint and calculates the weights of these active pixels contributing
to the receiving pixels based on the inverse distance method. Thus, this
method is not suitable for retrieving a receiving pixel that is too far
away from the active pixels (Miller et al., 2014). (3) The multiple linear
regression (MLR) method (Chakrapani et al., 2002Minnis et al.,
1990aMinnis et al., 2011Minns et al., 1992). Minnis et al. (2011) built
the relationship between CT and cloud optical thickness (COT) and
cloud center temperature (CCT) for the MODIS-derived liquid water
cloud and ice water cloud, and then, CBT is derived by interpolating the
ECWMF temperature profile with CBH. The cloud types (i.e., MODIS-
derived mixed phase cloud and undetermined phase cloud or ISCCP-
derived altocumulus, altostratus, nimbostratus, cirrostratus, and cu-
mulonimbus) are not completely considered in the present research
(Chakrapani et al., 2002Minnis et al., 2011), and thus, the global cov-
erage is not complete; meanwhile, the MLR method was developed at
small scale (Chakrapani et al., 2002Minnis et al., 1990aMinns et al.,
1992), which may not be applicable at the global scale; Apart from their
respective drawbacks, the current CT models cannot well estimate CT
during nighttime. In addition, the Visible infrared Imaging Radiometer
(VIIRS) provides the CBH product, which is defined as the height above
mean sea level of the base of the uppermost cloud layer (Miller et al.,
2019). Thus, VIIRS CBH cannot be used in the calculation of SDLR
under multilayer cloudy condition. This forces us to seek a new CT
estimation method to accurately obtain global CT or CBH during both
daytime and nighttime.

The main purpose of this study is to develop a framework for esti-
mating the cloudy sky SDLR, which includes (1) proposal of a global CT
estimation method that can be used in both daytime and nighttime; and
(2) improvement of the SLCM performance via correcting the over-
estimation phenomenon dealing with the low-level cloud. The structure
of this manuscript is organized as follows: the datasets used are de-
scribed in Section 2; the methods for constructing the cloud property
database, estimating CT and CBT, and the cloudy-sky SDLR are in-
troduced in Section 3; the results are presented in Section 4; Section 5
provides the merits and shortcomings of the developed CT estimation
method. The estimated SDLR is compared with that derived from the
three categories of CBT-based SLCMs in this section; and finally, the
conclusion is provided in Section 6.

2. Datasets

The data used primarily consist of three parts: (1) Satellite data for
extracting the cloud vertical structure (CVS) parameters, cloud property
parameters, and latitude; (2) Satellite and reanalysis data. for gen-
erating the inputs to the SLCM, and (3) Ground measured CVS para-
meters and SDLRs. Table 1 summarizes the characteristics of the
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satellite data and reanalysis data.

2.1. Satellite data

Four years (2012–2015) of Aqua-MODIS products, i.e., MYD03,
MYD06, and MYD35 were downloaded from the NASA Land Process
Distributed Active Archive Center (http://lpdaac.usgs.gov/). MYD03
provides geolocation data (latitude and longitude) at a 1 km spatial
resolution, and these data were used to match different datasets.
MYD06 provides various cloud property parameters, such as COT, CER,
CTT, and CEE (King et al., 1997Menzel et al., 2015). These parameters
were used to train and test the developed CT model, as well as estimate
cloudy sky SDLR. MYD35_L2 are used to identify cloud sky pixels
(Ackerman et al., 2010).

The 2010 Global Multiresolution Terrain Elevation Data was
downloaded from the United States Geological Survey (http://topttols.
cr.usgs.gov/gmted_viewer/). GMTED2010 was produced by combing
multiple high-quality DEM datasets from various international institu-
tions with a spatial resolution of 7.5 arc-seconds (Danielson and Gesch,
2011). GMTED2010 was used to map the spatial distribution of global
land surface elevations.

The CloudSat, CALIPSO and Aqua satellites all belong to the A-train
constellation. The former two lag behind the latter by 1 to 2 min
(Seemann et al., 2008). CloudSat and CALIPSO are separated from each
other by 10 to 15 s, leading to a synergistic instrument suite view of the
same cloud area at nearly the same moment. CALIPSO lidar and
CloudSat radar are complementary with each other and have different
advantages to measure different types of clouds from space (Wang and
Sassen, 2007). CALIPSO lidar is more sensitive to detecting optically
thin upper tropospheric clouds, while CloudSat radar provide a better
coverage for optically thick clouds. 2B-CLDCLASS-LIDAR.P1_R05
combines CloudSat CPR and CALIPSO lidar measurements to classify
clouds into the largest 10 layers for each cloudy pixel (Stephens et al.,
2008Wang, 2019). As shown in Table 1, five parameters (i.e., TAI_Time,
Latitude, Longitude, CLT, and CLB) from 2B-CLDCLASS-LIDAR.P1_R05
are used in this study. TAI_Time, Latitude, and Longitude were used to
match other datasets, and CLT and CLB were used to retrieve the active
CT. Note that 2B-CLDCLASS-LIDAR.P1_R05 was downloaded from ftp1.
cloudsat.cira.colostate.edu. The CloudSat auxiliary data product

(MOD06-1KM-AUX.P1_R05) has matched CloudSat bins with MYD06,
and thus, this study directly used this product instead of MYD06 when
training and testing the CT model.

2.2. Reanalysis data

Merra-2 provides data beginning in 1980 with a spatial resolution of
0.5° × 0.625°, and it assimilates the meteorological data from a modern
satellite database. Merra-2 includes an interactive analysis of aerosols
that feed back into the circulation, it uses NASA's observations of
stratospheric ozone and temperature (when available), and it takes
steps towards representing cryogenic processes (Gelaro et al., 2017).
Merra-2, which includes temperature and specific humidity (QV) pro-
files at 42 levels from 1000 to 0.1 hPa, was used to derive CBT at the
CBH location. The air emissivity was calculated from 2-m air tem-
perature and dew point temperature. TPW was calculated from Merra-2
and used to analyze its contribution to SDLR.

2.3. Site observations

There are two types of site observed data: one is the Atmospheric
Radiation Measurement (ARM) Mace PI Product (Mace et al., 2009Mao
et al., 2018), the other is the ground measured SDLR from SURFRAD
network (Augustine et al., 2000).

The ARM Mace PI product are produced from lidar, ceilometer, and
cloud radar measurements. The North Slope of Alaska Barrow site
(NSA, 71.3177°N, 156.605°W) and the Southern Great Plains Lamont
site (SGP, 36.605°N, 97.485°W) were used to obtain the ground mea-
sured CT and validate the developed CT estimate models in Section 3.2.
The corresponding climate features of the sites are gradually cold and
dry climate and mild climate, respectively. In addition, time of the used
Mace PI products are 2010 and 2009, respectively.

As shown in Fig. 1, the ground measured SDLR collected from the
SURFRAD network (Augustine et al., 2000) was used to evaluate the
estimated cloudy sky SDLR. The SURFRAD sites can provide continuous
and long-term ground-based radiation measurements beginning in 1995
for the earliest established site, and the corresponding data can be
downloaded at http://www.srrb.noaa.gov/surfrad/. The radiation data
are archived as daily files with a 3-min and 1-min average before and

Table 1
Satellite data and reanalysis data used in this study.

Data sources Product name Spatial Resolution Parameters Function

MODIS MYD03 1 km Latitude, Longitude Calculate CTs, CBHs, and cloudy sky SDLRs
MYD06_L2 5 km Cloud fraction (CF)

Cloud top pressure (CTP)
Cloud top height (CTH)
Cloud effective emissivity (CEE)
Cloud top temperature (CTT)
Cloud phase infrared (CPI)

1 km Cloud optical thickness (COT)
Cloud effective radius (CER)

MYD35_L2 1 km Cloud mask (CM)
GMTED 7.5 “ Elevation Map spatial distribution of surface elevation

CloudSat 2B-CLDCLASS-LIDAR.P1_R05 1.4 × 1.8 km TAI_Time, Latitude, Longitude Train and test CT models
CloudLayerTop (CLT)
CloudLayerBase (CLB)

MOD06-1KM-AUX.P1_R05 1 × 1.8 km Cloud_Phase_Infrared_1km
Cloud_top_pressure_1km
Cloud_top_temperature_1km
Cloud_emissivity_1km
Cloud_Effective_Radius
Cloud_Optical_Thickness

Merra-2 inst6_3d_ana_Np 0.5° × 0.625° Vertical level, latitude, Longitude Calculate CBTs and cloudy sky SDLRs
Specific humidity, air temperature

statD_2d_slv_Nx 0.5° × 0.625° Surface_pressure, Latitude, Longitude
2-m air temperature
Dew point temperature at 2 m
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after January 1, 2009, respectively. The SDLR measurements of SUR-
FRAD cover a spectral range of ~4.0 to 50 μm and with an accuracy
of± 9 W∙m−2 (Augustine et al., 2000). The time range of SURFRAD
SDLR observations used in this study is from 2013 to 2015. Detailed site
information is provided in Table 2.

3. Methodology

There are three parts in this section. First, a cloud property database
was constructed by combining extracted CVS and cloud property
parameters. Then, we established an empirical model for CT estima-
tions and calculated CBH and CBT using estimated CT and reanalysis
data in the following section. Finally, cloudy sky SDLR was estimated
using the single-layer cloud model and sensitivity analysis was per-
formed from SimLab. Fig. 2 shows the flowchart for retrieving CT and
cloudy sky SDLR.

3.1. Constructing the cloud property database

According to the study by Minnis et al. (2011), CTT can better re-
present the cloud top properties, and COT and CER are the re-
presentative variables for cloud optical and microphysical properties.
Due to MODIS cloud optical and microphysical properties being un-
available at nighttime, this study chose the CTT, COT, and CER cloud
properties in daytime, and CTT and CEE are used as the cloud prop-
erties at nighttime. 2B-CLDCLASS-LIDAR.P1_R05 provides CLB and CLT

of each layer for a multiple-layer cloud system. The cloud property
database was constructed with the following steps:

(1) Spatial and temporal matching. Even 2B-CLDCLASS-LIDAR.P1_R05
and MOD06-1KM-AUX.P1_R05 are collocated with each other, we
conducted the spatial and temporal matching to ensure the accu-
racy of the collocation. Then, the cloud-base height, cloud-top
height and cloud type of each layer, the number of cloud layers,
overpass time, latitude, longitude, elevation, and flag of land and
sea of each pixel were extracted from 2B-CLDCLASS-LIDAR.P1_R05;
COT, CER, CTT, CTP, CEE, CF, and CPI of that pixel are extracted
from MOD06-1KM-AUX.P1_R05.

(2) Cloud pixels identification. If the cloud fraction is larger than zero,
the pixel was labeled as cloud pixel.

(3) CT calculation. The CT of each cloud layer was calculated by sub-
tracting CLB from CLT and the entire CT of the cloud was the sum of
the CTs of the multiple-layer clouds.

(4) Day and night classification. With the sunrise and sunset time cal-
culated from the latitude, longitude and Julian day of the satellite
overpass time, we can label the cloudy pixel as daytime pixel or
nighttime pixel.

Finally, through the above operations, we completed the construc-
tion of the cloud product database using four years of CloudSat pro-
ducts. There are 243,945,283 samples in the constructed database. Each
sample contains CVS parameters (CLB and CLT), cloud property

Fig. 1. Spatial distribution of the sites in the SURFRAD network.

Table 2
Descriptions of site conditions in the SURFRAD network.

Code Site name Lat & Lon (degree) Elevation (m) Land cover Temporal resolution Temporal period

BND Bondville 40.05, −88.37 230 Grassland 1 min 2013 to 2015
DRA Desert Rock 36.63, −116.02 1007 Arid shrub land 1 min 2013 to 2015
FPK Fort Peck 48.31, −105.10 634 Grassland 1 min 2013 to 2015
GWN Goodwin Creek 34.2547, 89.87 98 Grassland 1 min 2013 to 2015
PSU Penn. State 43.73, −96.62 376 Cropland 1 min 2013 to 2015
SXF Sioux Falls 43.73, −96.62 473 Grassland 1 min 2013 to 2015
TBL Table Mountain 40.13, −105.24 1689 Sparse grassland 1 min 2013 to 2015
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parameters (CTT, CTP, CEE, CPI, COT, and CER), and CT calculated
from the CVS data.

3.2. Estimates of CT and CBT

3.2.1. Rationality of the CT estimate
The same types of clouds (e.g., ISCCP-derived cirrus, cumulus, and

stratocumulus, or MODIS-derived ice and liquid water clouds) often
share geometric, microphysical, and radiative and thermodynamic
properties at the regional scale, and these characteristics obey a certain
spatial distribution rule (Barker et al., 2011Forsythe et al., 2000Miller
et al., 2014Stowe et al., 1999). The reason may be that the atmospheric
conditions of forming a particular type of cloud may represent condi-
tions that exist well beyond the spatial range of an individual cloud
element for a given region. This phenomenon generally ties to airmass
properties (Holton, 1973), which vary on a much broader spatial scale.
Additionally, numerous studies have demonstrated that the CT has a
close relationship with cloud microphysical properties (COT, CER, and
CWR), and radiative and thermodynamic properties (CTT and CEE) for
the same cloud type (Chakrapani et al., 2002Minnis et al., 1995Minnis
et al., 1990b). As a result, we can relate cloud geometric characteristics
(such as CBH, CTH, and CT) to other cloud properties, such as COT,
CER, CTT, and CEE, at the regional scale.

However, water vapor and temperature exhibit significant spatial
variabilities but have a certain spatial distribution rule at global-scale,
particularly in the latitudinal direction, which is related to airmass
properties. In other words, there are some different air mass distribu-
tion patterns from the poles to the equator (Willett, 1933), which is
closely related to the latitude value. Thus, we need to add latitude as a
predictor when establishing the relationship between CT and cloud
properties at the global scale to mitigate large regional jumps.

3.2.2. CT estimates
Currently, there are two different cloud classification systems

(Table 3): The International Satellite Cloud Climatology Project (ISCCP)
cloud classification system and the MODIS cloud classification system
(abbreviated later as the ISCCP cloud type and MODIS cloud type). We
adopted the ISCCP cloud type and MODIS cloud type as the statistical
constraints and developed the ISCCP cloud type and MODIS cloud type
CT estimation models, respectively. Note that we divided the MODIS
cloud types into four types (Menzel et al., 2015Minnis et al., 2011), i.e.,
water-clouds1 (CPI = 1 and COT>1), water-clouds2 (CPI = 1 and
COT ≤1), ice clouds and other clouds (mixed phase cloud and under-
mined phase) in this study. The general formulae are expressed as fol-
lows:

= + + + + >
−CT

lnCOT CER CTT lat if COTa a a a a abs( ) ( 3.6)
ISCCP day1

0 1 2 3 4 (2)

= + + +

+ ≤
−CT COT CER CTT

lat if COT

b b b b

b abs( ) ( 3.6)
ISCCP day2 0 1 2 3

4 (3)

= + + +

+ >
−CT lnCOT CER CTT

lat if COT

c c c c

c abs( ) ( 1)
MODIS day1 0 1 2 3

4 (4)

Fig. 2. The flowchart for retrieving CT and cloudy sky SDLR.

Table 3
ISCCP and MODIS cloud classification systems.

Cloud classification system Cloud types

ISCCP Low-level Stratus, stratocumulus, cumulus
Mid-level Nimbostratus, altostratus, altocumulus
High-level Cirrus, cirrostratus, cirrocumulus

MODIS Water cloud, ice cloud, mixed phase cloud,
and undermined phase
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= + + +

+ ≤
−CT COT CER CTT

lat if COT

d d d d

d abs( ) ( 1)
MODIS day2 0 1 2 3

4 (5)

= + + +−CT CTT lat CEEe e e abs( ) eMODIS night 0 1 2 3 (6)

where Eqs. (2) and (3) are the CT estimation models for the ISCCP cloud
type; Eqs. (4) and (5) are the CT estimation models for the MODIS cloud
type during daytime, while Eq. (6) is the CT estimation model for the
MODIS cloud type during nighttime; a0, a1, a2, a3, a4, b0, b1, b2, b3, b4,
c0, c1, c2, c3, c4, d0, d1, d2, d3, d4, e0, e1, e2, and e3 are regression coef-
ficients. Note that the thresholds of COT in Eqs. (2)–(5) are referred to
Doutriaux-Boucher and Sèze (1998) and Minnis et al. (2011).

The original coefficients of the CERES CT models during daytime
are fitted in small regions using the MODIS cloud type classification
system (Minnis et al., 2011) and may not be applicable at the global
scale, so we refitted the coefficients of the CERES CT estimation model
using the constructed cloud property database in this study. The general
formulations of the CERES CT models (Minnis et al., 2011) are ex-
pressed as follows:

= + = >CT a lnCOT a if CPI and COT( 1 1)1 2 (7)

= = ≤CT b COT if CPI and COT( 1 1)b
1 2 (8)

= − + = ≤CT c c CTT c lnCOT if CPI and CTT( 2 245)1 2 3 (9)

where a1, a2, b1, b2, c1, c2, and c3 are regression coefficients. Also, we
compared the performance of CERES CT models using the refitting
coefficients and original coefficients. The comparison results are shown
in Section 4.2.1 of the revised manuscript.

3.2.3. CBT estimates
To obtain CBT, we first estimate CBH, and then linearly interpolate

the collocated reanalysis temperature profile in time and pressure. CBH
can be calculated by subtracting the estimated CT from the MODIS
CTH, i.e., CBH = CTH − CT. However, there may exist a few un-
reasonable CBHs because of the singular values of inputs to the CT
model. Therefore, several criteria are used to process the estimated CTs
and CBHs (Minnis et al., 1995). If CT < 0.1, then CT is reset to 0.1 km.
If CBH is less than the ground elevation, then CBH is reset to
CBH = CBH + 0.1 km. These steps are repeated if necessary. Note that
the unit of estimated CBH is km, which is converted to pressure units
using the formula provided at http://www.engineeringtoolbox.com/
air-altitude-pressure-d_462.html. Reanalysis temperature profiles for
two different forecast times were interpolated to the satellite time using
linear interpolation with time differences. Next, CBT was derived from
the aforementioned interpolated reanalysis temperature profile with
CBH. Note that the estimated CBT is difficult to validate directly, so the
estimated CBT are not shown in section 4, and the histograms of esti-
mated CBT are displayed in section 5.2.

3.3. Single-layer cloud model and sensitivity analysis

3.3.1. Single-layer cloud model
The general form of SDLR under the framework of SLCM is ex-

pressed as (Diak et al., 2000Kimball and Idso, 1982Schmetz et al.,
1986Wang et al., 2018):

= + × − ×SDLR ε T ε T ε cfσ σ (1 )a a c c a
4 4 (10)

where σ = 5.67 × 10−8 [Wm−2K−4] is the Steffan-Boltzmann con-
stant, εa is clear sky air emissivity, Ta is air temperature at screen level,
εc is cloud effective emissivity and is set to 1, Tc is cloud base tem-
perature, and cf is cloud fraction. The first item on the right of Eq. (10)
represents the contribution of the atmosphere between the cloud base
and surface, and the second item describes the cloud contribution to
SDLR. Note that εa is usually calculated by the bulk scheme of Prata
(1996) because of its high accuracy in estimating clear sky SDLR (Bisht
and Bras, 2010Diak et al., 2000Guo et al., 2019Wang and Dickinson,

2013Yu et al., 2018), which is expressed as follows:

= − + − +ε ξ exp ξ1 (1 ) ( 1.2 3 )a (11)
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where Lv = 2.5 × 106 [kg−1] is the latent heat of vaporization, and
Rv = 461 [kg−1K−1] is the gas constant for water vapor.

SDLR is overestimated for the low-level cloud cover (Bréon et al.,
1991Gupta et al., 1992Schmetz et al., 1986). For example, Bréon et al.
(1991) and Gupta et al. (1992) found that the method of Gupta (1989)
overestimated SDLR when Ps − Pcb ≤ 200 hPa (low-level cloud sce-
nario), where Ps is the surface pressure and Pcb is cloud-base pressure
(CBP). Actually, the method of Gupta (1989) is an SLCM (Minnis et al.,
2011). Therefore, this study corrects the overestimation phenomenon of
SLCM estimated SDLR for low-level cloud cover conditions. Inspired by
the study of Gupta et al. (1992), we calculate the maximum and
minimum cloud contributions to SDLR for low-level cloud cover con-
dition in Eq. (10), denoted as SDLR_cloud_max and SDLR_cloud_min,
respectively. The final low-level cloudy sky SDLR is linearly inter-
polated between SDLR_cloud_max and SDLR_cloud_min using CBP. When
cloud base is located near the surface, SDLR_cloud_max can be expressed
as follows:

= − × − ×SDLR cloud max T ε T ε c_ _ (σ σ ) (1 ) fa a a a
4 4 (14)

Additionally, when CBP = Pupper, which is a low-level cloud upper
boundary, SDLR_cloud_min is calculated by the following equation:

= × − ×ε T ε cfSDLR_cloud_min σ (1 )c c a
4 (15)

(Several criteria are required to determine the low-level cloud upper
boundary (Doutriaux-Boucher and Sèze, 1998). If Ps > 680 hPa, the
upper boundary of the low cloud is reset to 680 hPa; otherwise the
upper boundary of the low-level cloud is reset to 440 hPa.

3.3.2. Sensitivity analysis
To better understand the effect of the cloud property parameters

(COT, CER, and CBH) on the estimated cloudy sky SDLR, a global
sensitivity analysis (GSA) was performed by using the software SimLab
(http://simlab.jrc.ec.europa.eu). Seven parameters listed in Table 4
were input to SimLab and generated 1967 combinations assuming a
uniform distribution between the lower and upper bounds for each
parameter. These combinations were input to the Santa Barbara
DISORT Atmospheric Radiative (SBDART) model to simulate the cloud
sky SDLR(Ricchiazzi et al., 1998). The built-in US62 standard atmo-
spheric vertical profile and the default values of other parameters
provided in SBDART User guide (2007) SBDART, 2007 were adopted in
the simulation. The matchup of input parameters and simulated SDLR
were then input to SimLab, and the built-in Extended Fourier amplitude
sensitivity test (EFAST) model was chosen for sampling and sensitivity
analysis (Saltelli et al., 1999). The total sensitivity index, which ex-
presses the total contribution of this factor to the output variance when

Table 4
Parameters used for generating the inputs of SBDART.

Parameter Implication Units Range

TPW integrated water vapor amount g/cm2 0.8–3.0
UO3 integrated ozone concentration atm-cm 0.1–0.6
CO2 volume mixing ratio of CO2 ppmv 360–390
COT Optical thickness of cloud layer – 0–128
CBH Altitude of cloud layer base km 0–9
CER Cloud drop effective radius micron 2–60
VIS Horizontal path visibility km 2–100
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the other factors' interactions have also been calculated, was used to
determine each factor's sensitivity. Fig. 3 shows the sensitivity analysis
results. CBH has the largest total sensitivity index of 73%, whereas the
total sensitivity indexes of other parameters are around 5%, which in-
dicates that CBH plays the most import role in the estimated cloudy sky
SDLR.

4. Results

4.1. Spatial-temporal distributions of samples in the cloud property
database

In total, we obtained 243,945,283 samples using four years of sa-
tellite data, including 135,820,004 samples in daytime and
108,125,279 samples at nighttime. We randomly divided the samples
into two parts: two-thirds of these samples were used to train the CT
estimate models, while the remaining one-third of samples were used to
test the developed models. Table 5 shows the spatial-temporal dis-
tributions of the training samples that are used to develop the CT es-
timate models. The number of samples for most of the seasons in the
latitudinal zones are larger than 37,804 except for DJF in the 75–90°N
zone during daytime and JJA in the 75–90°S zone during both daytime
and nighttime, which indicated that the temporal distribution of sam-
ples is uniform in most cases.

Fig. 4 shows the spatial distribution of training samples for each
cloud type in the ISCCP cloud type during daytime. It is found that the
cumulus and stratocumulus samples are mainly located in the marine
area; the stratus and nimbostratus samples mainly distribute in the high

altitudes; the altocumulus and altostratus samples are mostly scattered
near 0°, 50° N, and 50° S; the cirrus, cirrostratus, and cumulonimbus
samples are largely distributed between 50° N and 50° S. Note that a two
cloud classification system is used in this study, and the spatial-tem-
poral distributions of the training samples may be different. Here, we
only show the spatial distribution of the training samples for the ISCCP
cloud type during daytime for simplicity. The spatial-temporal dis-
tributions of the samples for testing the developed CT estimate models
are similar to those used for developing the CT estimate models.

4.2. Performance of CT estimate models

4.2.1. Cloud type based CT estimate models
Using two-thirds of the samples selected randomly from the con-

structed cloud property database, we fit Eqs. (2)–(9) and obtained their
coefficients. Each formula and the coefficient for each variable were
significant below the confidence level of P < .001 with the exception
of water-clouds2. The fitting results are show in Tables 6-8. Overall,
considering the coefficients of the CT estimate models, CER and COT
are positively correlated with the CT estimate, while latitude, CTT, and
CEE are negatively correlated with the CT estimate. Table 6 lists the
training results of the MODIS cloud type CT estimate models. During
daytime, the water clouds (water-clouds1 and water-clouds2) CT model
has the best performance with the lowest RMSEs of 0.87 and 0.83 km,
respectively, while the ice clouds CT model has the worst performance
with the largest RMSE of 2.09 km. The performance of other clouds CT
model is intermediate between the water clouds CT model and the ice
clouds CT model with an RMSE of 1.68 km. This may be caused by the
cloud multilayer effects, i.e., some ice clouds identified by CPI often
contain water clouds beneath them and the clouds in the column are
assumed to be composed entirely of ice. During nighttime, the CT
models perform slightly worse than the corresponding CT models
during daytime, which may be caused by the fewer CT model inputs
(only CTT and CEE) used to predict CT.

Table 7 provides the accuracy of ISCCP cloud type CT models. CT
models for ISCCP low-level clouds have the best performance with
RMSEs of 0.96–1.14 km, followed by CT models for ISCCP mid-level
clouds and ISCCP high-level cirrus clouds with RMSEs of 1.45–1.58 km,
and finally, CT models for ISCCP high-level cirrostratus and cumulo-
nimbus clouds have RMSEs of 2.07–2.10 km. Note that the ISCCP high-
level cirrus CT model performs similarly to the ISCCP mid-level CT
models. This can be partially explained by the fact that that the low-
level clouds are more likely to be water clouds, and the high-level
clouds are more likely to be ice clouds. Regarding R2 of ISCCP low-level
clouds and high-level clouds, the smaller the COT value is, the larger
the R2, and vice versa for ISCCP high-level clouds. The biases of all
ISCCP cloud type CT models are less than 0.0068 km.

Table 8 lists the fitting results for the CERES CT models. The CT
models for water-clouds1 and water-clouds2 perform better than that
for ice clouds, with RMSEs of 1.10, 1.10, and 2.50 km, biases of −7.2E-
15, −0.088, and − 0.16 km, successively. Note the same cloud types

Fig. 3. Normalized total sensitivity index of each parameter in Table 4.

Table 5
The distribution of the training samples for different seasons and latitudinal zones. (DJF is the abbreviation for December, January, and February; MAM is the
abbreviation for March, April, and May; JJA is the abbreviation for June, July, and August; and SON is the abbreviation for September, October, and November).

Latitude/season Daytime Percent Nighttime Percent

DJF MAM JJA SON DJF MAM JJA SON

75–90°N 0 1,657,895 4,412,476 17,609,213 16.77% 2,934,831 2,365,077 2,097,632 15,491,866 21.78%
45–75°N 2,672,364 3,963,327 6,640,393 19,005,016 14.62% 3,524,871 5,772,204 8,671,008 15,971,894 13.63%
15–45°N 3,345,831 2,907,469 3,813,881 18,067,331 15.24% 1,565,090 1,818,935 3,225,324 14,627,428 14.11%
15S°-15°N 3,463,188 3,071,685 4,464,114 18,319,662 15.60% 2,339,520 2,247,741 2,666,036 14,742,643 12.73%
15–45°S 3,731,131 3,419,787 4,524,286 18,351,976 16.02% 1,673,699 1,574,257 2,073,152 14,514,572 12.56%
45–75°S 5,839,699 3,503,658 2,750,425 18,739,865 9.44% 1,688,707 1,402,072 1,741,322 14,747,964 10.51%
75–90°S 1,140,700 37,804 0 16,984,789 12.31% 1,977,962 263,973 0 14,139,130 14.69%
Percent 10.49% 9.65% 13.83% 66.04% 55.25% 10.08% 9.91% 13.14% 66.88% 44.75%
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Fig. 4. Spatial distribution of samples in the constructed database that are used to develop the ISCCP cloud type CT estimate models during daytime. The subplots (a)-
(i) are cumulus, stratocumulus, stratus, altocumulus, altostratus, nimbostratus, cirrus, cirrostratus and cumulonimbus, respectively.
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are adopted in MODIS CT models and CERES CT models. However,
CERES CT models cannot include CT models during nighttime. This
may be because CERES CT models depend greatly on COT as a CT
model input.

Overall, the comparison of the training results of MODIS and ISCCP
cloud type CT estimate models shows that the developed CT models for
ISCCP low-level cloud types have comparable accuracy with those for
MODIS water clouds, while performances of the CT models for ISCCP
high-level cirrostratus and cumulonimbus clouds are similar to those for
MODIS ice clouds; the CT models of ISCCP mid-level clouds have
slightly better accuracy than that of other MODIS clouds. Additionally,
although CERES CT models have the same cloud types (i.e., water-
clouds1, water-clouds2, and ice clouds) as the MODIS cloud type CT
models, the CERES CT models perform relatively worse than the cor-
responding CT models of MODIS cloud types.

The developed CT estimation models were tested using the re-
maining one-third of samples. Figs. 5-7 display the testing results.
Overall, most of the fitting lines for the CT estimates using MODIS cloud
types and ISCCP cloud types deviate from the 1:1 line, and the dynamic
range of predicted CT is smaller than the observed CT except for ISCCP
high-level cumulonimbus. Fig. 5 shows the testing density scatter plots
for CT estimates using MODIS cloud type. During daytime, the density
scatterplots for water-clouds1 and water-clouds2 had the best con-
centrated distribution with a range of 0–3 km, followed by that of
other-clouds and ice-clouds with ranges of 0–4 km and 0–10 km, re-
spectively. During nighttime, the density scatterplots for water-clouds,
other-clouds, and ice-clouds had similar distributions to that during
daytime. This indicates that ice clouds have larger CT variation range
than water clouds. Table 9 summarizes the accuracy of the CT estimates
using MODIS cloud type. During daytime, all MODIS cloud type CT
models had slight overestimation phenomena with biases of less than
0.038 km. During nighttime, the water-clouds CT model had slightly

overestimated CT results with a bias of 0.0011 km, while the CT models
for ice-clouds and other-clouds had slightly underestimated CT results
with biases from −8.9e−5 to −2.8e−5 km. Although CTs were slightly
overestimated or underestimated, the biases were very low. This in-
dicated that MODIS CT estimate models perform well as a whole. The
RMSE values of the CT models for water-clouds, ice-clouds, and other-
clouds were 0.85 and 0.96 km, 2.1 and 2.2 km, and 1.7 and 1.8 km,
respectively. The results are consistent with that from the training
phase.

Fig. 6 shows the testing density scatter plots for CT estimates using
the ISCCP cloud type. The density scatter plots for the ISCCP low-level
clouds, ISCCP mid-level clouds and ISCCP high-level cirrus clouds, and
ISCCP high-level cirrostratus and cumulonimbus clouds had in turn the
concentrated distribution ranging from 0 to 3 km, 0 to 6 km, and 0 to
12 km, respectively. This presents a certain correspondence with
MODIS water clouds and ice clouds. Table 10 lists the accuracies of the
ISCCP cloud type CT models. Overall, the bias for each cloud type was
very small. Specifically, the CT models for stratus, nimbostratus, and
cirrus clouds had slightly underestimated CTs with biases of
−0.00081−−0.00015 km, while the other CT models had slightly
overestimated CTs with biases of 0.00061–0.0065 km. The RMSEs of
the CT models for ISCCP low-level clouds, ISCCP mid-level clouds and
ISCCP high-level cirrus clouds, and ISCCP high-level cirrostratus and
cumulonimbus clouds were 0.96–0.14 km, 1.45–1.58 km, and
2.07–2.10 km, respectively. The results are consistent with that from
the training phase.

Fig. 7 shows the density scatter plots for CERES CT models. We find
that CERES CT models presented similar scatterplot distributions with
MODIS cloud type CT models. Table 11 also lists the accuracies of the
CERES CT models. The CT models for water-clouds2 and ice-clouds had
slightly underestimated CT values with biases of
−6.2E−05−−0.16 km, and the corresponding RMSE values were 1.0,

Table 6
The fitting results of the CT estimation models using MODIS cloud types.

Time Cloud type Count Const coef_cod coef_cer coef_ctt coef_lat coef_cee RMSE (km) bias (km) R2

Daytime Water-clouds1 33,515,045 11.2704 0.2239 0.0600 −0.0393 −0.0169 NA 0.87 0.014 0.29
Water-clouds2 338,581 5.4206 0.3547 0.0360 −0.0190 −0.0005 NA 0.83 0.0006 0.39
Ice-clouds 44,880,526 14.2773 1.3414 0.1019 −0.0594 −0.0136 NA 2.09 0.038 0.57
Other-clouds 11,312,279 13.8756 0.6254 0.0820 −0.0480 −0.0398 NA 1.68 0.018 0.49

Nighttime Water-clouds 16,670,799 14.2078 −0.4061 NA −0.0432 −0.0171 −0.4061 0.93 0.0009 0.11
Ice-clouds 16,206,415 24.4160 3.2212 NA −0.0927 −0.0054 3.2212 2.21 0.0019 0.26
Other-clouds 7,750,730 15.8096 −2.5316 NA −0.0302 −0.0509 −2.5316 1.75 0 0.18

Table 7
The fitting results of the CT estimation models using ISCCP cloud types.

Cloud level Cloud type Count Const coef_cod coef_cer coef_ctt coef_lat RMSE (km) bias (km) R2

Low cloud Cumulus 8,031,299 11.5435 0.0404 0.0517 −0.0401 −0.0040 0.96 0.0068 0.43
Stratocumulus 26,891,360 9.5965 0.0686 0.0655 −0.0340 −0.0057 0.99 0.0016 0.23
Stratus 5,800,174 3.7159 0.4178 0.0544 −0.0162 −0.0019 1.14 0 0.12

Middle cloud Altocumulus 2,225,242 9.4921 0.8738 0.0441 −0.0381 0.0183 1.52 0.0003 0.39
Altostratus 8,804,747 14.7270 0.4213 0.0875 −0.0544 −0.0081 1.50 0 0.43
Nimbostratus 4,127,788 13.2535 0.2997 0.0703 −0.0448 −0.0150 1.58 0 0.20

High cloud Cirrus 9,685,130 7.1732 2.0011 0.0421 −0.0352 0.0176 1.45 0 0.25
Cirrostratus 18,165,456 15.9730 1.9982 0.1169 −0.0745 −0.0100 2.07 0.0010 0.50
Deep-convection 5,723,675 33.4008 0.4785 0.1160 −0.1221 −0.0500 2.10 0 0.69

Table 8
The refitting results of the CERES CT estimation models using MODIS cloud types.

Cloud type Count Const coef_ctt coef_cod RMSE (km) bias (km) R2

water-clouds1 33,515,045 0.4401 NA 0.2937 1.10 −7.2E-15 0.07
water-clouds2 338,581 NA NA 1.4217 1.10 −0.0880 −0.15
ice-clouds 31,282,706 23.3319 −0.0869 1.0610 2.50 −0.1600 0.39
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Fig. 5. Testing results of the developed CT estimation models for MODIS cloud type daytime and nighttime, respectively. The first column represents the results
during daytime, and the second column represents the results during nighttime.
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Fig. 6. Testing results of the developed CT estimation models for the ISCCP cloud type.
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1.15, and 2.43 km, respectively. As shown in Figs. 7(a) and (b), there
seems a boundary in the estimated CTs. The cloud optical thickness
(COT) was used to predict CT in the CERES CT estimate model. How-
ever, COT is retrieved from the optical and thermal infrared observa-
tions with limited penetration depth, which means the retrieved COT
may by smaller than the real one. The CT derived from the lidar (CA-
LIPSO) and radar (CloudSat) observations, which can be treated as real
CT. It is reasonable to obtain smaller COT using the established re-
lationship between real CT and the COT smaller than the real one.
When more variables are incorporated into the CT predict models (e.g.,
Eqs. (4)–(5)), the CT estimate results are much better, please see
Figs. 5(a), (b) and (e). We also compared the performance of CERES CT
modes with the original and refitted coefficients. The comparison re-
sults are shown in Table 11. The CT estimation models for water-
clouds1 and ice clouds using the refitting coefficients performed better
than that using original coefficients. The reason may be that the refit-
ting coefficients of CT estimate models were trained using global
samples, while the original coefficients of CT estimate models were
mainly trained by the observations of ARM stations. Most of the esti-
mated CT for water-clouds2 using the original coefficients were less
than 0.1 km and then set to 0.1 km based on section 3.2.3, thus we did
not conduct the comparison for water-clouds2.

In summary, the density scatterplot distributions for MODIS cloud
type CT models had a similar rule with the corresponding CERES CT
models. Additionally, ISCCP low-level clouds, ISCCP mid-level clouds

Fig. 7. The testing results of the CERES CT estimation models using the refitted coefficients.

Table 9
Testing results for the developed CT models using MODIS cloud types.

Overpass time Cloud type Count RMSE (km) bias (km) R2

Daytime Water-clouds1 16,749,377 0.86 0.0138 0.31
Water-clouds2 170,184 0.84 0.0014 0.39
Ice-clouds 22,443,639 2.06 0.0383 0.59
Other-clouds 5,659,642 1.67 0.0196 0.5

Nighttime Water-clouds 8,339,409 0.93 0.0011 0.11
Ice-clouds 8,103,592 2.21 −0.0001 0.26
Other-clouds 3,869,489 1.75 0 0.18

Table 10
Testing results for the developed CT estimation models using the ISCCP cloud
type.

Cloud level Cloud type Count RMSE (km) bias (km) R2

Low cloud Cumulus 4,015,778 0.96 0.0065 0.44
Stratocumulus 13,443,070 0.99 0.0021 0.24
Stratus 2,900,388 1.14 −0.0008 0.12

Middle cloud Altocumulus 1,114,850 1.52 0.0020 0.39
Alto-stratus 4,399,227 1.50 0.0018 0.43
Nimbostratus 2,064,565 1.58 −0.0015 0.20

High cloud Cirrus 4,843,211 1.45 −0.0004 0.25
Cirrostratus 9,086,326 2.07 0.0020 0.50
Deep-convection 2,860,340 2.10 0.0006 0.69
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and ISCCP high-level cirrus clouds, and ISCCP high-level cirrostratus
and cumulonimbus clouds had similar scatterplot distributions to those
of MODIS water-clouds, other-clouds, and the ice-clouds CT model.
Similarly, the accuracies (MODIS CT models versus CERES CT models,
ISCCP CT models versus MODIS CT models) had similar values. This
finding suggested that there is an internal connection for the three types
of CT models.

Finally, based on training and testing performances for the ISCCP
cloud type CT models, MODIS cloud type CT models, and CERES CT
models, we choose the MODIS cloud type CT model or ISCCP cloud type
CT model to calculate the CTs during daytime, while we only select the
MODIS cloud type CT model to calculate the CTs during nighttime. We
choose the CERES CT model to estimate the CTs when the CBT-based
SLCM is directly used to calculate the cloudy sky SDLR without cor-
recting the low-level cloud longwave radiation.

In addition, we need to compare the developed CT models in this
study with those of similar existing studies. More specifically, MODIS
cloud type CT estimates have rarely been evaluated. We conducted the
validation and the results are provided in Sections 4.2.4. The compar-
ison between the developed ISCCP cloud type CT model with the ex-
isting studies of small-scale area is conducted in section 5.1.

4.2.2. Continental, coastal and marine cloud CT estimate models
Using the same data as in Section 4.2.1, we fitted the coefficients of

Eqs. (4) and (6) for land, coast and sea, and evaluated their perfor-
mance. Table 12 provides the fitting results of the corresponding CT
estimate models. The bias and RMSE at nighttime were smaller than
those in daytime, but R2 is on the opposite. Without considering the
small difference in bias, the marine cloud CT models performed best,
followed by the coastal cloud CT model and continental cloud CT
models. The bias, RMSE and R2 of the marine cloud CT models were
0.1133 km, 1.79 km, 0.67 for daytime, and 0.0259 km, 1.62 km and
0.46 for nighttime, respectively. Table 13 shows the test results of the
developed cloud CT models for land, coast and sea. This result is con-
sistent with that obtained during the fitting stage. The accuracy of the
developed continental, coastal and marine cloud CT estimate models
are between the performances of water clouds CT models and the ice
clouds CT models in Table 9.

4.2.3. Latitudinal CT estimate models
Considering the influence of latitude on the cloud distribution, we

trained and tested the CT estimate models (Eqs. (4) and (6)) for dif-
ferent latitudinal ranges using the same data as in Section 4.2.1.
Table 14 provides the fitting results of the CT estimate models for dif-
ferent latitudinal ranges. In daytime, the accuracy of CT estimate is

distributed symmetrically around latitudinal range 15S°-15°N, which
has the highest bias, RMSE and R2 values of 0.1909 km, 2.11 km and
0.73, respectively. The values of bias, RMSE and R2 of other latitudinal
ranges decrease gradually. We did not find such distribution during
nighttime. The bias, RMSE and R2 are less than 0.0488 km, 1.91 km and
0.54 during nighttime. Table 15 provides the testing results for the
fitted CT estimate models for different latitudinal ranges. The symmetry
of accuracy for different latitudinal ranges still exist in daytime. The
bias and RMSE are less than 0.1916 and 2.0 km in daytime, and 0.0502
and 1.91 km during nighttime. This accuracy is comparable to the re-
sults in Sections 4.2.1 and 4.2.2.

4.2.4. Validation with the ARM observations
To further evaluate the developed cloud CT models, we validated

the CT estimated by the developed models for MODIS cloud type with
the ground measured CT. Fig. 8 shows the validation results. Most of
the CTs are overestimated at SGP stations, and underestimated at NSA
station. This may be caused by the difference lies in the retrieved CT
and ground measured CT. The former is predicted by the cloud prop-
erties derived from the satellite observations with limited penetration
depth, while the latter can represent the real CT. Table 16 provides the
statistical results. The biases were − 0.6481 and 0.8935 km, and RMSE
were 1.99 and 2.86 km, at NSA and SGP stations, respectively. This
result is slightly poor that the test results in Section 4.2.1 (Tables 9-11),
and comparable to the test results of original CERES CT model
(Table 11). Using the same data, we also validated the original CERES
CT models, the biases were − 0.5371 and − 2.3948 km, and RMSE are
2.07 and 3.92 km, at NSA and SGP stations. The CT estimate is im-
proved compared to the original CERES CT models. Note the number of
the collected ground measurements are too limited to guarantee the
representativeness of the validation results. Thus, we will collect more
ground measurement in the future to validate the developed CT esti-
mate models.

Table 11
Comparison of CT estimate results using the original and refitted coefficients of CERES CT models.

Cloud type Count Original coefficients Refitted coefficients

RMSE (km) bias (km) R2 RMSE (km) bias (km) R2

Water-clouds1 16,749,377 1 −0.23 0.08 1 6.2E−05 0.08
Water-clouds2 170,184 NA NA NA 1.15 −0.0880 0.06
Ice-clouds 15,647,392 3.5 −2.3 0.39 2.43 −0.1600 0.4

Table 12
The fitting results of the CT estimate models for different surface types.

Overpass time Surface type Count Const Coef_cod Coef_cer coef_ctt Coef_lat Coef_cee RMSE (km) Bias (km) R2

Daytime land 20,241,735 15.5627 0.8245 0.0957 −0.0603 −0.0220 NA 1.9 0.0666 0.58
sea 67,332,583 16.4198 0.9382 0.1009 −0.0650 −0.0174 NA 1.79 0.1133 0.67
coast 791,259 18.4248 0.7758 0.0907 −0.0714 −0.0142 NA 1.95 0.0485 0.58

Nighttime land 24,725,974 19.9926 NA NA −0.0666 −0.0167 0.6078 1.89 0.0093 0.3
sea 44,593,503 27.1583 NA NA −0.1010 −0.0292 3.4902 1.62 0.0259 0.46
coast 1,094,207 25.2404 NA NA −0.0816 −0.0222 −0.2803 1.88 0.0116 0.35

Table 13
The testing results for the fitted CT estimate models for different surface types.

Overpass time Surface type Count RMSE (km) bias (km) R2

Daytime Land 10,113,692 1.86 0.0668 0.61
Sea 33,638,008 1.74 0.1134 0.7
Coast 395,628 1.93 0.0506 0.6

Nighttime Land 8,307,859 1.89 0.0091 0.31
Sea 17,809,945 1.62 0.0251 0.47
Coast 446,473 1.87 0.0091 0.36
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4.3. SDLR results

4.3.1. SDLR estimate and validation
With the developed CT estimate models, we can easily retrieve the

CBT from the satellite cloud properties and reanalysis data. Then, at-
mospheric emissivity and atmospheric transmittance were derived
using Merra-2 2 m dew point temperature and air temperature. Finally,
cloudy sky SDLR were derived by SLCM provided with the estimated
CBT, cloud fraction, atmospheric emissivity, atmospheric transmit-
tance, and near-surface temperature. The CT estimated by the models
developed for MODIS cloud type were used in this section because it
can work during both daytime and nighttime. The SDLR estimate re-
sults using the CT derived by other models are provided in section 5.

Fig. 9 shows the scatterplot of estimated cloud sky SDLRs versus
observed values at seven SURFRAD sites. Overall, the bias and RMSE of
the SDLR estimates are 5.42 W∙m−2 and 30.3 W∙m−2, respectively.
During daytime, the bias and RMSE of SDLR estimates are 11.4 W∙m−2

and 30.8 W∙m−2, respectively. During nighttime, the SDLR estimate had
a bias and RMSE of 1.95 W∙m−2 and 30 W∙m−2, respectively. This
finding suggested that the SDLR estimate during daytime had an ob-
vious overestimation phenomenon that was likely because of an in-
appropriate low-level cloud upper boundary used to correct the corre-
sponding cloud longwave radiation. Fig. 10 provides a comparison of
the low-level cloudy sky SDLR estimates before and after correcting the
corresponding cloud longwave radiation. We find that the SDLR esti-
mates before correcting the low-level cloud longwave radiation were
seriously overestimated with a bias and RMSE of 32.9 W∙m−2 and
44.5 W∙m−2, respectively, whereas the bias and RMSE are
−3.85 W∙m−2 and 30.1 W∙m−2, respectively, after correcting the low-
level cloud longwave radiation. This finding suggested that the SDLR
estimate with correcting low-level cloud longwave radiation can ob-
viously improve the accuracy of the SDLR estimate in the CBT-based
SLCM.

Finally, in Table 17, we counted the accuracy of the SDLR estimates
at seven SURFRAD sites. The biases and RMSEs of the SDLR estimates
ranged from 3.56 to 11.24 W∙m−2 and 25.11 to 30.82 W∙m−2,

respectively with the exception of the DRA site and TBL site. During
daytime, the SDLR estimates had bias accuracies of 3.56–11.24 W∙m−2

and RMSEs of 24.85–31.44 W∙m−2 except for the DRA and TBL sites.
During nighttime, the SDLR estimates had biases of −0.61-9.14 W∙m−2

and RMSEs of 25.26–30.47 W∙m−2 except for the DRA site and TBL site.
This finding suggested that the SDLR estimates at the DRA site and TBL
site had relatively worse accuracy, which was caused by the fact that
the DRA site was located in a rugged area, and the TBL had a larger
surface elevation.

4.3.2. Comparison with existing studies
As shown in Table 18, total comparisons of SDLR estimates with the

existing works (Gui et al., 2010Wang et al., 2018Yu et al., 2018) were
conducted in this study. This is explained by the fact that: (1) There are
few studies that estimate high-resolution all-sky SDLR in the literature.
The mainstream SDLR products are GEWEX-SRB, ISCCP-FD and CERES-
FSW SDLR products, but their spatial resolutions are really coarse.
Moreover, Gui et al. (2010) have conducted comprehensive evaluation
of these three products with ground measurements. (2) Our study is
similar to Wang et al. (2018) and Yu et al. (2018). We all used the single
layer cloud model. The differences are that Wang et al. (2018) devel-
oped the method of integrating AIRS and AMSR-E temperature and
moisture profiles, and calculated the CBT from satellite CTH product
and CT derived by the CERES CT model; Yu et al. (2018) derived the
CBT from the temperature profile of reanalysis product, and calculated
the CBT from satellite CTH product and CT derived by the CERES CT
model; and we developed the global CT estimate model, derived the
CBT from the temperature profile of reanalysis product, satellite de-
rived CTH product and estimated CT.

In cloudy sky conditions, the SDLR estimates in this study had the
smallest bias with a value of 5.42 W∙m−2 and the lowest RMSE of
30.3 W∙m−2, with the exception of the SDLR estimate for CERES-FSW
with an RMSE of 22.9 W∙m−2. We also compared the SDLR estimate
with the existing studies in all sky conditions (Table 18), which was
considered because of the validation sites were almost the same. The
bias in our study was smaller than the SDLR estimate from ISCCP-FD

Table 14
The fitting results of the CT estimate models for different latitudinal ranges.

Overpass time Latitudinal range Count Const coef_cod coef_cer coef_ctt coef_lat coef_cee RMSE (km) bias
(km)

R2

Daytime 75–90°N 6,724,165 26.9590 0.2267 0.0775 −0.1048 0.0089 NA 1.51 0.0066 0.54
45–75°N 18,548,104 21.4938 0.4464 0.0751 −0.0812 −0.0056 NA 1.57 0.0422 0.65
15–45°N 13,693,704 14.8189 1.1348 0.0955 −0.0588 −0.0271 NA 1.81 0.1407 0.67
15S°-15°N 15,254,577 13.0725 1.7887 0.1077 −0.0580 −0.0061 NA 2.11 0.1909 0.73
15–45°S 16,229,138 17.0895 0.9690 0.0822 −0.0660 −0.0226 NA 1.59 0.1505 0.71
45–75°S 18,396,377 24.9616 0.2681 0.0903 −0.0936 −0.0119 NA 1.49 0.0313 0.69
75–90°S 1,700,604 31.4925 0.1092 0.0584 −0.0966 −0.0833 NA 1.63 0.0034 0.42

Nighttime 75–90°N 12,499,867 25.3340 NA NA −0.0759 0.0008 −3.8196 1.91 0.0001 0.32
45–75°N 22,622,517 30.5071 NA NA −0.1002 −0.0381 −3.8196 1.80 0.0215 0.47
15–45°N 8,709,693 25.4709 NA NA −0.1055 −0.0235 6.6670 1.29 0.0488 0.54
15S°-15°N 10,004,881 23.3534 NA NA −0.1037 −0.0145 8.3078 0.91 0.0138 0.42
15–45°S 7,176,473 18.5590 NA NA −0.0736 −0.0304 4.2490 0.75 0.0176 0.35
45–75°S 6,874,509 33.3497 NA NA −0.1085 −0.0516 −0.0995 1.70 0.0031 0.51
75–90°S 4,195,579 24.2774 NA NA −0.0503 −0.0608 −5.1423 1.87 −3.60E-13 0.22

Table 15
The testing results for the fitted CT estimate models for different latitudinal ranges.

Latitudinal range Overpass time Count RMSE (km) bias (km) R2 Overpass time Count RMSE (km) Bias (km) R2

75–90°N Daytime 3,359,565 1.51 0.0091 0.54 Nighttime 4,580,700 1.91 −0.0024 0.32
45–75°N 9,267,225 1.55 0.0415 0.66 9,601,575 1.79 0.0211 0.48
15–45°N 6,849,236 1.74 0.1414 0.71 3,063,424 1.26 0.0502 0.57
15S°-15°N 7,622,930 2.00 0.1916 0.77 3,406,886 0.90 0.0138 0.44
15–45°S 8,104,698 1.51 0.1499 0.75 2,695,261 0.73 0.0173 0.38
45–75°S 9,186,325 1.48 0.0312 0.70 2,822,418 1.69 0.0019 0.51
75–90°S 849,353 1.62 0.0032 0.42 1,051,407 1.87 0.0001 0.22
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and CERES-FSW, with the exception of the SDLR estimate from GEWEX-
SRB. Our study had the lowest RMSE, with the exception of the SDLR
estimate from CERES-FSW with an RMSE of 18.5 W∙m−2. This is pos-
sibly because the SDLR estimate performances from GEWEX-SRB,
ISCCP-FD and CERES-FSW included clear sky evaluations, but the clear
sky SDLR estimate generally yielded a higher accuracy (Cheng et al.,
2017). Regarding the SDLR estimate in all sky conditions, the accuracy
of our work is no lower than that for most of the existing studies, al-
though our study did not yield the best accuracy.

Moreover, Fig. 11 shows site-by-site comparisons of the SDLR esti-
mates in this study with those of the existing studies. All studies had
relatively larger biases at the DRA site (the rugged area) and TBL site
(the larger surface elevation). The bias of our work at other sites had a
relatively smaller difference from the existing studies with a bias of less
than 11.24 W∙m−2. Our study had relatively lower RMSE with the ex-
ception of the DRA site and TBL site, but the RMSEs of our work at the
DRA site and TBL site were slightly larger than those of the existing
studies. This finding suggested that our work can achieve an acceptable
accuracy regarding site-by-site SDLR validation. Note that our study
showed a preliminarily improvement in the overestimation phenom-
enon of the SDLR estimate using CBT-based SLCM, but validation stu-
dies were still required. For example, the SDLR estimate at the larger
surface elevation TBL site can be directly estimated and verified with
biases of 7.22 W∙m−2 and 25.7 W∙m−2.

Overall, our study can achieve a satisfactory accuracy with a bias of
5.42 W∙m−2 and RMSE of 30.3 W∙m−2, compared to the existing SDLR
estimate accuracy from methods of SDLR estimates or products
(GEWEX-SRB, ISCCP-FD and CERES-FSW). Additionally, the SDLR es-
timate in this study can produce SDLRs with a 5-km spatial resolution
during both daytime and nighttime. However, in the future, we need to
conduct an SDLR estimate with a larger surface elevation location.

4.3.3. The relationship between SDLR and its affecting variables
We quantitatively analyzed the contributions (in terms of the de-

termination coefficient, R2) of COT, CBT, TPW, T2M (2 m air tem-
perature), and E2M (clear air emissivity) to the measured cloud sky
SDLR at SURFRAD network. The matched COT, CBT, TPW, T2M, and
E2M samples were obtained from section 4.3.1. CBT, T2M, and E2M are
the inputs to SLCM, while COT and TPW have significant impacts on
SDLR. Fig. 12 shows the scatterplots between the abovementioned
parameters and site measured SDLRs when dividing all samples into
daytime and nighttime parts. R2 of the atmospheric parameters is larger
than 0.64, while the R2 of the CBTs were 0.12 and 0.077 during daytime
and nighttime, respectively. There is a scatter separation phenomenon
between the TPW and observed cloudy sky SDLR, which may be caused
by that TPW has relatively larger elevation difference between the six
SURFRAD sites (i.e., BND, DRA, FPK, GWN, and PSU) and TBL site.

TPW can explain a considerable part (approximately 68%) of SDLR,
while the contribution of CBT is less than 8%. Combine the results of
sensitivity analysis, we attempted to predict cloudy sky SDLR with TPW
and CBT. With the randomly selected two-thirds of the samples that
were used in section 4.3.1, we fit the nonlinear relationship between

Fig. 8. Scatterplots of estimated and observed CTs at ARM NSA and SGP stations.

Table 16
Validation results of the developed CT models for MODIS cloud type at ARM
NSA and SGP stations.

Station Overpass time Count Bias (km) RMSE (km)

NSA day 211 −1.1526 2.04
night 776 −0.5109 1.98
all 987 −0.6481 1.99

SGP day 58 −0.0231 2.68
night 159 1.2279 2.93
all 217 0.8935 2.86

Fig. 9. Validation results of estimated cloudy sky SDLRs at seven SURFRAD
sites.
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SDLR and TPW and CBT. The fitted formula is shown as Eq. (16). The
remaining one-third of samples were used to test the fitted formula, and
the tested results are show in Fig. 13. It is clear that the proposed hybrid
method performed well, with an RMSE of 33.9 W∙m−2 and bias of
0.681 W∙m−2.

= + −SDLR TPW lnCBT269.84 58.70 0.08 (16)

5. Discussion

5.1. CT retrieval at the global scale

This study first constructed a cloud property database at the global
scale, including 135,820,004 and 108,125,279 data points during
daytime and nighttime, respectively; thus, this database is very re-
presentative and can be used to developed CT estimate models.
Additionally, the chosen factors that predict CT have very clear physical
meanings (Platnick et al., 2003), and they all have relatively stronger
physical relationships with CT (Chakrapani et al., 2002Minnis et al.,
2011Minns et al., 1992). This can improve stability of the developed CT
models. Importantly, this study introduced the latitude variable to
regulate the temperature and water vapor variabilities from the poles to
the equator, which greatly affects cloud properties (Miller et al., 2014).
Finally, this study established relationships among the ISCCP cloud type
CT estimate, MODIS cloud type CT estimate, and CERES CT estimate,
which may provide potential choices for different users. Overall, the
developed CT models achieved a satisfactory accuracy based on the
training and testing results.

However, the CT used in this study is the sum of the CTs of multiple
layer clouds, so the inversed CT may be less than the real CT value if
there is a gap between two layers of clouds. Therefore, larger un-
certainty may exist in the derived SDLR when this phenomenon occurs.
A large number of samples were used to develop the CT estimate model,

and the MLR method was adopted, which allowed for simplicity. Later,
we will attempt to use the complex methods (Chakrapani et al.,
2002Rao et al., 2019).

We attempted to compare the accuracies of the CT estimate results
in this study with those of similar studies. However, we did not find
similar studies for MODIS cloud type in the literature. Therefore, we
compared the ISCCP cloud type CT estimates in this study to those of
the existing studies conducted at local scales (Chakrapani et al.,
2002Minnis et al., 1990aMinns et al., 1992), whose accuracy are pre-
sented in Table 19. Note that the cloud properties used to predict CTs
are different. The cloud types are the same (cumulus, stratocumulus,
stratus, and cirrus). Generally, the bias of the estimated CT is extremely
low, and the existing studies did not provide biases of their estimated
CTs with the exception of cirrus. Regarding cirrus, our accuracy is much
better. The RMSEs of the estimated CTs are larger than those of the
existing studies with the exception of cumulus. The potential reason is
that the developed CT estimate model is a global model, whereas ex-
isting studies used local models that were developed and tested by tens
or hundreds of samples. Thus, we believe our CT estimate accuracy is
comparable to those of existing studies conducted at local scales.

5.2. SDLR retrieval using different sources of CBT

The SLCM framework has been established for a long time (Diak
et al., 2000Gupta et al., 2010Kimball and Idso, 1982Schmetz et al.,
1986Wang et al., 2018). The research hotspot focuses on how to derive
CBT, which dominates the accuracy of cloud sky SDLR estimates using
SLCM (Bisht and Bras, 2010Diak et al., 2000Gupta et al., 2010Kimball
and Idso, 1982Schmetz et al., 1986Wang et al., 2018). Here, we in-
vestigated the effects of MODIS CTT and three types of estimated CBTs
(i.e., ISCCP CBT, MODIS CBT, and CERES CBT) on SDLR estimates using
SLCM. The method of deriving ISCCP and CERES CBTs were the same as
that used to derive MODIS CBT, which is discussed in detail in section

Fig. 10. Validation results of estimated low-level cloudy sky SDLRs before (a) and after (b) correcting their low-level cloud longwave radiation reaching surface.

Table 17
Validation results of the cloudy sky SDLRs at seven SURFRAD sites.

Accuracy index Overpass time BND DRA FPK GWN PSU SXF TBL All sites

bias (W∙m−2) day and night 6.98 27.57 11.24 8.32 3.56 8.61 −17.3 5.42
day 10.84 37.72 14.96 13.90 10.10 13.89 −8.76 11.4
night 4.56 22.21 9.14 5.20 −0.61 5.48 −21.5 1.95

RMSE (W∙m−2) day and night 25.51 39.49 30.82 25.11 26.08 28.85 38.3 30.3
day 25.39 48.13 31.44 24.85 25.65 28.70 38 30.8
night 25.58 34.05 30.47 25.26 26.34 28.94 38.4 30
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4.3.1.
Fig. 14 shows the histograms of the aforementioned estimated CBTs.

The mean values for MODIS CBT, CERES CBT, ISCCP CBT, and MODIS
CTT were 280 K, 246 K, 266 K, and 252 K, respectively; during daytime,
the mean MODIS CBT was 266 K, while at nighttime, the mean MODIS
CBT was 252 K; CERES CBT and MODIS CTT both had two peak values.
MODIS CBT and ISCCP CBTs had relatively smaller standard deviations
(stds) than CERES CBT and MODIS CTT, whose std. values ranged from
13.2–13.5 K to 24.6–27.2 K. Additionally, MODIS CBT and ISCCP CBT
are mainly larger than 240 K; CERES CBT and MODIS CTT have bi-
modal distributions and both range from 210 to 300 K. This may sug-
gest that the temporal variability in CERES CBT is similar to that of
MODIS CTT.

Table 20 provided the comparison results of the SDLR estimate
using three CBT-based SLCMs and CTT-based SLCM at SURFRAD sites.
During daytime, the bias and RMSE of SDLR estimates using CBT were
all better than that estimated by CTT, with the exception of the SDLR
estimated by MODIS CBT, whose bias was slightly larger than that of
the CTT estimated SDLR. For example, the SDLR estimate using CERES
CBT had a bias of 0.54 W∙m−2 and RMSE of 25 W∙m−2, while the bias
and RMSE of the SDLR estimate with MODIS CTT were 11.5 W∙m−2 and
31.3 W∙m−2, respectively. During nighttime, the bias and RMSE of the
SDLR estimated using MODIS CBT were better than that estimated by
CTT, with values of 1.95 and 30 W∙m−2 and 11.5 and 37.5 W∙m−2,
respectively. The total accuracies of the SDLR estimated by MODIS CBT
were 5.42 W∙m−2 (bias) and 30.3 W∙m−2 (RMSE), compared with the
SDLR estimated by MODIS CTT, with a bias of 11.5 W∙m−2 and RMSE of
35.4 W∙m−2. Clearly, the physically based CBT can improve the accu-
racy of cloudy sky SDLR estimates better than that of directly using the
CTT in the SLCM.

6. Conclusions

CBT is an important parameter that dominates the cloudy sky SDLR.
However, the satellite CBT product has rarely been available at regional
and global scales, which limits the application of CBT in the estimates
of cloud sky SDLR. In this study, a framework for estimating global
cloudy sky SDLR in both daytime and nighttime was developed. First,
we constructed the cloudy property database by combing the CVS
parameters from CloudSat and cloud property parameters from MODIS.
Then, the empirical models for estimating CT and CBT under the ISCCP
cloud classification system and MODIS cloud classification system were
developed. With the constructed database, we also refitted the coeffi-
cients of the CERES CT estimate models, which were originally de-
termined by data at the local scale. With the estimated CT and re-
analysis data, it is straightforward to calculate the corresponding CBT.
Finally, the cloudy sky SDLR were obtained by inputting the estimated
CBT and other parameters into the SLCM.

The training, testing and validation results of the developed CT
models for MODIS cloud type are in good consistent. We did not find
similar studies of CT estimate for ISCCP cloud type in the literature.
Thus, we compared the accuracies of the CT estimation results in this
study with those of similar studies that were conducted at local scales
(Chakrapani et al., 2002Minnis et al., 1990aMinns et al., 1992). Gen-
erally, the bias of the estimated CT is extremely low, while the existing
studies did not provide the biases of their estimated CTs with the ex-
ception of cirrus. Regarding cirrus, our accuracy is much better. The
RMSEs of estimated CTs are larger than those of the existing studies
with the exception of cumulus. The potential reason is the developed CT
estimate model is a global model, and the existing studies used a local
model that was developed and tested by tens or hundreds of samples.
Thus, we believe our CT estimate accuracy is comparable to the existing
studies conducted at local scales.

The SLCM estimated cloudy sky SDLR are validated by the ground

Table 18
Comparisons of SDLR estimates in this study with existing studies.

Author Method or product Weather types Sites Bias (W∙m−2) RMSE (W∙m−2)

This study CBT-based SLCM cloudy sky seven SURFRAD sites 5.42 30.3
Gui et al. (2010) GEWEX-SRB product cloudy sky fifteen sites from SURFRAD, CEOP-Tibet, and AsiaFlux 5.8 32

ISCCP-FD product cloudy sky 10 35.2
CERES-FSW product cloudy sky −11.8 22.9
GEWEX-SRB product all sky six SURFRAD sites except for SXF site 0.1 32.7
ISCCP-FD product all sky 9.7 35.8
CERES-FSW product all sky −8.8 18.5

Wang et al. (2018) CBT-based SLCM product cloudy sky seven SURFRAD sites −7.7 32.8
Yu et al. (2018) CBT-based SLCM (Schmetz et al., 1986) cloudy sky eleven sites from networks of HiWATER, ARM, and BSRN 21.7 42.5

CBT-based SLCM (Gupta et al., 2010) cloudy sky 15.9 33.3
CBT-based SLCM (Diak et al., 2000) cloudy sky 24.3 41.8

Fig. 11. The site-by-site comparisons of SDLR estimates between this study and the existing studies at seven SURFRAD sites. Note that this study and Wang et al.
(2018) evaluated cloudy sky SDLRs, while Gui et al. (2010) evaluated all sky SDLRs. Gui et al. (2010) 1, Gui et al. (2010) 2, and Gui et al. (2010) 3 were all sky SDLR
evaluation accuracies for GEWEX-SRB, ISCCP-FD, and CERES-FSW, respectively.
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Fig. 12. The contributions of COT, CBT, TPW, T2M, and E2M to measured cloudy sky SDLR for all samples. The subplots (a)-(e) are the results for daytime, and
subplots (f)-(i) are the results for nighttime.
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measured SDLR collected from the SURFRAD network. The bias and
RMSE are 5.42 W∙m−2 and 30.3 W∙m−2, respectively. The accuracy of
this study is comparable to the evaluation results of the mainstream
GEWEX-SRB, ISCCP-FD and CERES-FSW products, the evaluation re-
sults of Yu et al. (2018), and the validation accuracy of the method of
Wang et al. (2018). The merit of this study is that the developed fra-
mework can be used to estimate 5-km SDLR during both daytime and
nighttime. When compared to the SLCM that directly uses CTT, the
physical-based CBTs derived using three cloud type classification sys-
tems all improve the cloudy sky SDLR estimate accuracy.

There are some limitations worth noting that need to be improved in
the future: (1) The impact of the cloud type classification system.
According to the evaluation results of the estimated CT in section 4.2,
the accuracies of the CT estimates under different cloud type classifi-
cation systems are different, which will inevitably affect the accuracies
of the estimated CBT and SDLR. (2) The uncertainties in the measured
CTs with complex CVSs. CT, as dependent variable input, was the sum
of the sub CTs from multiple layer clouds. The retrieved CT may be less
than the real CT value if there is a gap between the two layers of clouds.
In addition, the used cloud properties are only measured in a certain
range below the cloud top. (3) The correction of SDLR for low-level
cloud type. The pressure difference between the surface and the CBP is
set to 320 hPa, although this study has modified the low-level cloud sky
SDLR. In fact, this is the reference value of Gupta et al. (1992) and
Doutriaux-Boucher and Sèze (1998). In future research, a more rea-
sonable pressure difference threshold should be experimentally

determined. (4) Validation of estimated CT and SDLR. We will collect
more ground measurements of CT and SDLR to comprehensively vali-
date the developed CT-estimated method and the SLCM-estimated SDLR
in the future.
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Fig. 13. The testing results of the proposed hybrid method for estimating the cloudy sky SDLR.

Table 19
The accuracy of the existing CT estimation studies for ISCCP cloud type for small-scale areas.

Author Location Cloud type Bias (W∙m−2) RMSE (W∙m−2) Count Cloud properties

Minnis et al. (1990a) FIRE cirrus 0.29(−0.0004) 1(1.45) NA Tc, COT, σa (CEE, CER, CTT, and latitude)
Minns et al. (1992) southwest of Los Angeles stratocumulus NA (0.0021) 0.06(0.99) NA COT (CEE, CER, CTT, and latitude)
Chakrapani et al. (2002) ARM-SGP cirrus NA (−0.0004) 0.84(1.45) 65 σ(Tc), CER, COT (CEE, CER, CTT, and latitude)

cumulus NA (0.0065) 1.26(0.96) 141 COT (CEE, CER, CTT, and latitude)
thick stratus NA (−0.0008) 0.61(1.14) 209 σ(Tc), COT (CEE, CER, CTT, and latitude)
thin stratus NA (−0.0008) 0.35(1.14) 208 NA (CEE, CER, CTT, and latitude)
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Fig. 14. Histograms of MODIS CTT and three categories of CBTs estimated by combining MODIS CTH, Merra-2 temperature profile, and CT estimated from the CT
models in section 4.2. (CBT1, CBT2, and CBT3 were derived from MODIS CT, CERES CT, and ISCCP CT, respectively, while CTT was provided by MYD06).
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temperature
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(W∙m−2)

Number of
samples

MODIS CBT Day+Night 5.42 30.3 11,972
Day 11.4 30.8 4381
Night 1.95 30 7591

CERES CBT Day 0.54 25 3513
ISCCP CBT Day 3.99 30.4 4381
MODIS CTT Day+Night 11.5 35.4 11,972

Day 11.5 31.3 4381
Night 11.5 37.5 7591

F. Yang and J. Cheng Remote Sensing of Environment 248 (2020) 111972

21

https://modis-images.gsfc.nasa.gov/_docs/MOD35_ATBD_Collection6.pdf
https://modis-images.gsfc.nasa.gov/_docs/MOD35_ATBD_Collection6.pdf
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0010
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0010
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0015
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0015
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0015
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0020
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0020
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0025
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0025
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0025
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0030
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0030
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0035
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0035
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0035
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0040
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0040
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0040
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0045
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0045
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0045
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0050
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0050
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0050
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0055
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0055
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0055
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0060
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0060
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0060
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0065
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0065
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0070
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0070
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0070
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0075
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0075
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0075
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0080
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0080
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0085
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0085
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0090
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0090
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0090
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0095
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0095
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0100
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0100
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0105
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0105
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0105
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0105
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0110
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0110
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0110
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0115
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0115
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0115
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0120
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0120
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0125
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0125
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0125
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0125
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0125
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0125
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0125
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0130
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0130
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0135
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0135
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0135
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0140
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0140
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0145
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0145
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0145
https://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.6.3.pdf
https://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.6.3.pdf
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0155
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0155
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0155
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0160
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0160
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0160
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0165
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0170
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0170
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0175
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0175
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0180
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0180
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0180
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0185
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0185
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0185
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0190
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0190
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0190
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0195
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0195
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0200
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0200
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0205
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0205
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0205
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0205
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0210
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0210
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0210
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0215
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0215
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0215
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0220
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0220
https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD06-ATBD_2015_05_01_2.pdf
https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD06-ATBD_2015_05_01_2.pdf
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0225
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0225
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0225
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0225
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_EPS_Cloud_ACHA_v3.0.pdf
https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_EPS_Cloud_ACHA_v3.0.pdf
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0235
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0235
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0235
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0240
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0240
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0240
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0245
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0245
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0245
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0245
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0250
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0250
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0250
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0250
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0250


Minns, P., Heck, P.W., Young, D.F., Fairall, C.W., Snider, J.B., 1992. Stratocumulus cloud
properties derived from simultaneous satellite and island-based instrumentation
during FIRE. J. Appl. Meteorol. 31, 317–339.

Niemelä, S., Räisänen, P., Savijärvi, H., 2001. Comparison of surface radiative flux
parameterizations: part I: Longwave radiation. Atmos. Res. 58, 1–18.

Nussbaumer, E.A., Pinker, R.T., 2012. Estimating surface longwave radiative fluxes from
satellites utilizing artificial neural networks. J. Geophys. Res.-Atmos. 117 (n/a-n/a).

Platnick, S., King, M.D., Ackerman, S.A., Menzel, W.P., Baum, B.A., Riedi, J.C., Frey, R.A.,
2003. The MODIS cloud products: algorithms and examples from terra. IEEE Trans.
Geosci. Remote Sens. 41, 459–473.

Prata, A.J., 1996. A new long-wave formula for estimating downward clear-sky radiation
at the surface. Q. J. R. Meteorol. Soc. 122, 1127–1151.

Rao, Y., Liang, S., Wang, D., Yu, Y., Song, Z., Zhou, Y., Shen, M., Xu, B., 2019. Estimating
daily average surface air temperature using satellite land surface temperature and
top-of-atmosphere radiation products over the Tibetan plateau. Remote Sens.
Environ. 234, 111462.

Ricchiazzi, P., Yang, S., Gautier, C., Sowle, D., 1998. SBDART: a research and teaching
software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am.
Meteorol. Soc. 79, 2101–2114.

Saltelli, A., Tarantola, S., Chan, K., 1999. A quantitative model-independent method for
global sensitivity analysis of model output. Technometrics 41, 39–56.

SBDART User guide, 2007. http://irina.eas.gatech.edu/EAS880_Fall2007/User_guide_
SBDART_input.pdf Accessed date: 1 August 2018.

Schmetz, P., Schmetz, J., Raschke, E., 1986. Estimation of daytime downward longwave
radiation at the surface from satellite and grid point data. Theor. Appl. Climatol. 37,
136–149.

Seemann, S.W., Borbas, E.E., Knuteson, R.O., Stephenson, G.R., Huang, H.-L., 2008.
Development of a global infrared land surface emissivity database for application to
clear sky sounding retrievals from multispectral satellite radiance measurements. J.
Appl. Meteorol. Climatol. 47, 108–123.

Stephens, G.L., Vane, D.G., Boain, R.J., Mace, G.G., Sassen, K., Wang, Z., Illingworth, A.J.,
O’Connor, E.J., Rossow, W.B., Durden, S.L., Miller, S.D., Austin, R.T., Benedetti, A.,
Mitrescu, C., 2002. THE CLOUDSAT MISSION AND THE A-TRAIN: a new dimension
of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 83,
1771–1790.

Stephens, G.L., Vane, D.G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain,
P., Mace, G.G., Austin, R., L’Ecuyer, T., Haynes, J., Lebsock, M., Suzuki, K., Waliser,
D., Wu, D., Kay, J., Gettelman, A., Wang, Z., Marchand, R., 2008. CloudSat mission:
performance and early science after the first year of operation. J. Geophys. Res. 113.

Stephens, G.L., Wild, M., Stackhouse, P.W., L’Ecuyer, T., Kato, S., Henderson, D.S., 2012.
The global character of the flux of downward Longwave radiation. J. Clim. 25,
2329–2340.

Stowe, L.L., Davis, P.A., McClain, E.P., 1999. Scientific basis and initial evaluation of the
CLAVR-1 global clear/cloud classification algorithm for the advanced very high re-
solution radiometer. J. Atmos. Ocean. Technol. 16, 656–681.

Sun, X.J., Li, H.R., Barker, H.W., Zhang, R.W., Zhou, Y.B., Liu, L., 2016. Satellite-based
estimation of cloud-base heights using constrained spectral radiance matching. Q. J.
R. Meteorol. Soc. 142, 224–232.

Takara, E.F., Ellingson, R.G., 2000. Broken cloud field longwave-scattering effects. J.
Atmos. Sci. 57, 1298–1310.

Tang, B., Li, Z.-L., 2008. Estimation of instantaneous net surface longwave radiation from
MODIS cloud-free data. Remote Sens. Environ. 112, 3482–3492.

Trenberth, K.E., Fasullo, J.T., Kiehl, J., 2009. Earth’s global energy budget. Bull. Am.
Meteorol. Soc. 90, 311–323.

Trigo, I.F., Barroso, C., Viterbo, P., Freitas, S.C., Monteiro, I.T., 2010. Estimation of
downward long-wave radiation at the surface combining remotely sensed data and
NWP data. J. Geophys. Res.-Atmos. 115, D24118.

Viúdez-Mora, A., Costa-Surós, M., Calbó, J., González, J.A., 2015. Modeling atmospheric
longwave radiation at the surface during overcast skies: the role of cloud base height.
J. Geophys. Res.-Atmos. 120, 199–214.

Wang, J., Rossow, W.B., Zhang, Y., 2000. Cloud vertical structure and its variations from
a 20-Yr global Rawinsonde dataset. J. Clim. 13, 3041–3056.

Wang, K., Dickinson, R.E., 2013. Global atmospheric downward longwave radiation at
the surface from ground-based observations, satellite retrievals, and reanalyses. Rev.
Geophys. 51, 150–185.

Wang, T., Shi, J., Yu, Y., Husi, L., Gao, B., Zhou, W., Ji, D., Zhao, T., Xiong, C., Chen, L.,
2018. Cloudy-sky land surface longwave downward radiation (LWDR) estimation by
integrating MODIS and AIRS/AMSU measurements. Remote Sens. Environ. 205,
100–111.

Wang, W., Liang, S., 2009. Estimation of high-spatial resolution clear-sky longwave
downward and net radiation over land surfaces from MODIS data. Remote Sens.
Environ. 113, 745–754.

Wang, Z. (2019). CloudSat 2B-CLDCLASS-LIDAR product process description and inter-
face control document. http://www.cloudsat.cira.colostate.edu/sites/default/files/
products/files/2B-CLDCLASS-LIDAR_PDICD.P1_R05.rev0_.pdf, Accessed date: 1 May
2020.

Wang, Z., & Sassen, K. (2007). Level 2 cloud scenario classification product process de-
scription and interface control document. http://www.cloudsat.cira.colostate.edu/
sites/default/files/products/files/2C-ICE_PDICD.P1_R05.rev0_.pdf, Accessed date: 1
May 2020.

Wielicki, B.A., Barkstrom, B.R., Baum, B.A., Charlock, T.P., Green, R.N., Kratz, D.P., Lee,
R.B., et al., 1998. Clouds and the earth's radiant energy syetem (CERES): algorithm
overview. In: IEEE Transactions on Geoscience and Remote Sensing. 36. pp.
1127–1141.

Wild, M., Ohmura, A., Gilgen, H., Morcrette, J.J., Slingo, A., 2001. Evaluation of down-
ward longwave radiation in general circulation model. J. Clim. 14, 3227–3239.

Willett, H.C., 1933. American Air Mass Properties. Massachusetts Institute of Technology
and Woods Hole Oceanographic Institution.

Yu, S., Xin, X., Liu, Q., Zhang, H., Li, L., 2018. Comparison of cloudy-sky downward
longwave radiation algorithms using synthetic data, ground-based data, and satellite
data. J. Geophys. Res.-Atmos. 123, 5397–5415.

Zhang, T., Stackhouse, P.W., Gupta, S.K., Cox, S.J., Mikovitz, J.C., 2015. The validation of
the GEWEX SRB surface longwave flux data products using BSRN measurements. J.
Quant. Spectrosc. Radiat. Transf. 150, 134–147.

Zhang, Y., Rossow, W.B., Lacis, A.A., Oinas, V., Mishchenko, M.I., 2004. Calculation of
radiative fluxes from the surface to top of atmosphere based on ISCCP and other
global data sets: refinements of the radiative transfer model and the input data. J.
Geophys. Res. 109.

Zhang, Y.C., Rossow, W.B., Lacis, A.A., 1995. Calculation of surface and top of atmo-
sphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method
and sensitivity to input data uncertainties. J. Geophys. Res. - Atmos. 100, 1149–1165.

Zhou, D.K., Larar, A.M., Liu, X., Smith, W.L., Strow, L.L., Yang, P., Schlussel, P., Calbet,
X., 2011. Global land surface emissivity retrieved from satellite Ultraspectral IR
measurements. IEEE Trans. Geosci. Remote Sens. 49, 1277–1290.

Zhou, Y., Cess, R.D., 2001. Algorithm development strategies for retrieving the down-
welling longwave flux at the Earth's surface. J. Geophys. Res.-Atmos. 106,
12477–12488.

Zhou, Y., Kratz, D.P., Wilber, A.C., Gupta, S.K., Cess, R.D., 2007. An improved algorithm
for retrieving surface downwelling longwave radiation from satellite measurements.
J. Geophys. Res. 112, D15102.

Zhu, M., Yao, T., Yang, W., Xu, B., Wang, X., 2017. Evaluation of parameterizations of
incoming Longwave radiation in the High-Mountain region of the Tibetan plateau. J.
Appl. Meteorol. Climatol. 56, 833–848.

F. Yang and J. Cheng Remote Sensing of Environment 248 (2020) 111972

22

http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0255
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0255
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0255
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0260
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0260
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0265
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0265
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0270
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0270
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0270
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0275
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0275
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0280
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0280
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0280
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0280
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0285
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0285
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0285
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0290
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0290
http://irina.eas.gatech.edu/EAS880_Fall2007/User_guide_SBDART_input.pdf
http://irina.eas.gatech.edu/EAS880_Fall2007/User_guide_SBDART_input.pdf
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0300
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0300
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0300
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0305
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0305
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0305
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0305
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0310
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0310
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0310
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0310
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0310
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0315
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0315
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0315
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0315
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0320
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0320
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0320
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0325
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0325
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0325
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0330
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0330
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0330
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0335
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0335
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0340
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0340
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0345
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0345
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0350
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0350
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0350
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0355
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0355
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0355
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0360
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0360
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0365
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0365
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0365
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0370
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0370
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0370
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0370
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0375
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0375
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0375
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CLDCLASS-LIDAR_PDICD.P1_R05.rev0_.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-CLDCLASS-LIDAR_PDICD.P1_R05.rev0_.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-ICE_PDICD.P1_R05.rev0_.pdf
http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-ICE_PDICD.P1_R05.rev0_.pdf
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0380
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0380
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0380
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0380
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0385
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0385
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0390
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0390
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0395
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0395
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0395
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0400
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0400
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0400
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0405
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0405
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0405
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0405
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0410
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0410
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0410
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0415
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0415
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0415
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0420
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0420
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0420
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0425
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0425
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0425
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0430
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0430
http://refhub.elsevier.com/S0034-4257(20)30342-4/rf0430

	A framework for estimating cloudy sky surface downward longwave radiation from the derived active and passive cloud property parameters
	Introduction
	Datasets
	Satellite data
	Reanalysis data
	Site observations

	Methodology
	Constructing the cloud property database
	Estimates of CT and CBT
	Rationality of the CT estimate
	CT estimates
	CBT estimates

	Single-layer cloud model and sensitivity analysis
	Single-layer cloud model
	Sensitivity analysis


	Results
	Spatial-temporal distributions of samples in the cloud property database
	Performance of CT estimate models
	Cloud type based CT estimate models
	Continental, coastal and marine cloud CT estimate models
	Latitudinal CT estimate models
	Validation with the ARM observations

	SDLR results
	SDLR estimate and validation
	Comparison with existing studies
	The relationship between SDLR and its affecting variables


	Discussion
	CT retrieval at the global scale
	SDLR retrieval using different sources of CBT

	Conclusions
	Author Statement
	Declaration of Competing Interest
	Acknowledgement
	mk:H1_34
	References




