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Accurate estimation of satellite-derived ocean latent heat flux (LHF) at high spatial resolution remains a major challenge. Here, we
estimate monthly ocean LHF at 4 km spatial resolution over 5 years using bulk algorithm COARE 3.0, driven by satellite data and
meteorological variables from reanalysis. We validated the estimated ocean LHF by multiyear observations and by comparison
with seven ocean LHF products. Validation results frommonthly observations at 96 widely distributed buoy sites from three buoy
site arrays (TAO, PIRATA, and RAMA) indicated a bias of less than 7W/m2 with R2 of more than 0.80 (p< 0.01) and with a
King–Gupta efficiency (KGE) of over 0.84. Our estimated ocean LHF also performs well in simulating annual variability and
predicting between-site variability, as indicated by a bias of lower than 6W/m2 and an R2 of more than 0.84 (p< 0.01). Overall, the
average KGE for estimated ocean LHF increased by 18%–23% compared to other LHF products, indicating robust LHF estimation
performance. Importantly, our estimated annual ocean LHF has similar global spatial distribution compared to other LHF
products, although there are general differences in LHF values due to the difference in the models and the spatial resolution.

1. Introduction

Ocean latent heat flux (LHF) plays an important role in
exchanges of energy and water at the interface of the at-
mosphere and ocean. Knowledge of these fluxes is essential
for understanding the water and energy budget and the
linkage between ocean heat fluxes and large-scale climate
change [1–3]. Since the 1980s, moored buoys and ships have
been widely used to measure ocean LHF [4–7]. However,
sparse observations hamper the accurate characterization of
spatiotemporal global ocean LHF patterns over large spatial
scales.

Remote sensing can provide spatially and temporally
continuous information on ocean state variables over large
scales and has been considered to be the most viable method
for estimating global distributed LHF [8–10]. Currently,
most existing satellite-based global ocean LHF products are

derived from bulk method with meteorological quantities,
such as the Goddard Satellite-Based Surface Turbulent
Fluxes (GSSTF), the Hamburg Ocean-Atmosphere Param-
eters and Fluxes from Satellite Data (HOAPS), and the
Japanese Ocean Flux Data Sets with Use of Remote Sensing
Observations (J-OFURO). To evaluate these turbulent flux
products, Bourras [11] compared five satellite-based prod-
ucts of ocean LHF with the observed data from 75 moored
buoys, but validation results demonstrated that the
J-OFURO, HOAPS-2, Bourras–Eymard–Liu (BEL) dataset,
and GSSTF-2 satellite products had moderate systematic
errors; in addition, the Jones Fluxes product had a large
systematic deviation with respect to Tropical Atmosphere
Ocean (TAO) data. Moreover, the existing satellite-based
products, such as HOAPS-3, have high accuracy but a rather
coarse spatial resolution of 1° [12, 13]. Later studies [14–16]
showed the demand of accurate ocean surface LHF with
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higher spatial resolution (e.g., 0.25°) for oceanography re-
search. Other existing global LHF products (including re-
analysis and objectively analyzed products), such as the
European Centre for Medium-Range Weather Forecasts
(ECMWF) interim reanalysis (ERA-I), provided us with
global spatial coverage and high temporal resolution, as well
as a large amount of error caused by algorithms and pa-
rameterization schemes of the boundary layer [17, 18].

During the last 40 years, there has been a lot of effort
to develop models for estimating global ocean LHF. In
general, the methods used to derive ocean LHF can be
divided into four categories.: (1) eddy covariance
methods [19–21], physically based models, estimated
surface fluxes using direct measurements of temporally
continuous information with high-frequency instru-
ments equipped by cruises or specially designed buoys
[22]; (2) inertial dissipation methods [23–25], based on
the turbulent kinetic energy theory and budget equations,
estimated surface turbulent fluxes by calculating the
dissipation variables determined from vertical wind
speed gradients and vertical temperature gradients, but
they can only be applied to experiment sites and airborne
data [24, 26, 27]; (3) data assimilation methods [28–30]
are designed based on the assumption of linearity or near-
linearity, and most of them have been applied to nu-
merical weather prediction (NWP) models; although they
provide reasonable simulations of global coverage of
surface fluxes, there are also notable problems caused by
their prediction schemes [31]; and (4) bulk aerodynamic
methods [27, 32–34] generally related turbulent fluxes to
satellite-derived meteorological variables by defining
turbulent exchange coefficients. Currently, significant
effort has been made to develop bulk aerodynamic
methods that address the problem of absence of direct
measurements. Although these methods are widely used
to estimate ocean LHF, a limitation with both the eddy
correlation methods and inertial dissipation methods is
the essential requirement for high-frequency equipment.
Meanwhile, bulk models have been successfully used to
estimate ocean LHF by building relationships among
meteorological variables. (e Coupled Ocean-Atmo-
sphere Response Experiment (COARE) version 3.0 [35]
has been considered to be the most reliable bulk model
[36, 37].

(e bulk turbulent algorithm, COARE-3.0, can be
successfully used to estimate ocean LHF with high ac-
curacy. Currently, it has been applied to various existing
satellite-based ocean LHF products, such as the South
China Sea (SCS), HOAPS, J-OFURO, and objectively
analyzed air-sea fluxes (OAFlux). Existing ocean LHF
products based on the COARE 3.0 model have accurate
estimates and high temporal resolution (e.g., daily) but
rather coarse spatial resolution (e.g., >1°). Moreover,
some COARE-based LHF estimations (e.g., SCS) are
limited to regional coverage. For example, commonly
used products such as SCS provide an accurate estimate of
LHF, but its research area is limited to the South China
Sea region. (erefore, as articulated by numerous groups
within the global climate community, there is still a need

for high-resolution, accurate ocean surface LHF esti-
mation [38].

In this study, we used a bulk model (COARE 3.0) to
estimate global ocean LHF with 4 km spatial resolution,
driven by the Moderate-Resolution Imaging Spectro-
radiometer (MODIS) sea surface temperature (SST) prod-
uct, Advanced Microwave Scanning Radiometer–EOS
(AMSR-E) wind speed data, and reanalysis meteorological
data. We had two major objectives. First, we estimated and
mapped global ocean LHF using the COARE 3.0 model
driven by the MODIS SSTproduct and AMSR-E wind speed
data. Second, we validated our estimated ocean LHF using
buoy measurements from the moored buoy array of TAO,
the Research Moored Array for African-Asian-Australian
Monsoon Analysis and Prediction (RAMA), and the Pre-
diction and Research Moored Array in the Tropical Atlantic
(PIRATA) and then compared our estimated ocean LHF
with the results of eight ocean LHF products (three re-
analysis products, three satellite products, and two com-
bined products).

2. Data and Methods

2.1. Data

2.1.1. Satellite and Reanalysis Inputs to the LHF Model.
To estimate monthly ocean LHF, the forcing data (Table 1)
for COARE 3.0 model include (1) satellite-based data (i.e.,
the MODIS SSTproduct and AMSR-E wind speed data) and
(2) reanalysis variables (Ta and q dataset). (e monthly SST
(SST4) product [40, 41] with 4 km spatial resolution was
obtained from MODIS on board the Terra satellite provided
by the National Oceanic and Atmospheric Administration
(NOAA). (e monthly wind speed data of the AMSR-E
provided by the Japan Aerospace Exploration Agency
(JAXA) [39] with a spatial resolution of 0.25° is available
from May 2002 to October 2011. Input datasets for the
COARE 3.0 model also included ERA-Interim [14] 2 m air
temperature (Ta) data and 2m air specific humidity (q) data
with a spatial resolution of 0.125°, both of which are com-
monly used as accuracy datasets [50].

Considering the high correlation between SSTand ocean
LHF [51, 52], we decided to maintain the high spatial res-
olution of SST4 dataset to increase spatial heterogeneity. To
generate the monthly global ocean LHF products from 2003
to 2007, we used the bilinear interpolation method to in-
terpolate other monthly input data (U, Ta, q) to 4 km spatial
resolution over 2003–2007.

2.1.2. Buoy Observations. (e monthly ocean state variable
observations from different moored buoy arrays were used
as the reference data to evaluate the performance of the
ocean LHF estimation (Figure 1). (e data used in this study
mainly include monthly ocean surface LHF. Ninety-seven
moored buoys selected here can be divided into three groups
due to various environmental conditions: 67 buoys were
collected from the TAO/TRITON array (Tropical Atmo-
sphere Ocean/Triangle Trans-Ocean Buoy Network), 18
buoys were collected from the PIRATA array, and 12 buoys
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were collected from the RAMA array. It is worth noting that
the ocean LHF observations of the moored buoy sites used in
this article were not direct observations but were computed
by buoy-measurement meteorological variables using the
COARE 3.0 bulk model. More details about the measure-
ments and data postprocessing are given in https://www.
pmel.noaa.gov/gtmba/.

(e TAO/TRITON array [46, 47] located in the equa-
torial Pacific was supported primarily by NOAA of the
United States (USA) and Japan.(e PIRATA array [48] uses
Autonomous Temperature Line Acquisition System (Atlas)
moored buoys supported by France, Brazil, and the USA
(NOAA), and the RAMAmoored buoys array [49] located in
the tropical Indian Ocean consists of 30 operational moored
buoys, although only 12 buoys were available until 2007.

2.1.3. Comparison with Other Global Ocean LHF Products.
To evaluate the performance of the COARE 3.0 model, seven
global ocean LHF products were chosen as the comparison
datasets (Table 1).(ese products include reanalysis datasets
(MERRA-2, ERA-Interim, National Centers for

Environmental Prediction (NCEP-2), and Japanese 25-year
Reanalysis (JRA-25)), satellite-derived products (GSSTF
version 3 and J-OUFRO version 2), and objectively analyzed
air-sea fluxes product (OAFlux).

For comparison with the estimated product, we used the
bilinear interpolation method to interpolate all LHF prod-
ucts from 2003 to 2007 to a spatial resolution of 4 km.

(1) MERRA-2. (e assimilation system of Modern-Era
Retrospective analysis for Research and Applications version
2 (MERRA-2) [42] has a key component that is the GEOS-5
(Goddard Earth Observing System) atmospheric model [53],
which uses the finite-volume dynamical core of Lin [54]. To
correct the background errors, the incremental analysis
update (IAU) method [55] was applied to the analysis for
adjusting the background state based on observations. It has
global coverage from 1980 with a spatial resolution of 0.5°
latitude× 0.625° longitude.

(2) ERA-I. ERA-Interim utilized an advanced atmospheric
model with a spectral resolution of T255 on 60 vertical
levels from the surface up to 0.1 hPa, and the data
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Figure 1: Locations of the 96 buoy sites used in this study.

Table 1: Summary of the forcing input variables, seven ocean LHF products, and three groups of buoy observations.

Products Variables Spatial resolution References
AMSR-E U 0.25° [39]
MODIS SST4 SST 4 km [40, 41]
MERRA-2 LHF 1/2× 2/3° [42]
ERA-Interim q, Ta, LHF 0.125° [14]
JRA-25 LHF 1.125° [29]
NCEP-2 LHF ∼1.9° [29]
GSSTF-3 LHF 0.25° [43]
J-OFURO LHF 0.25° [44]
OAFLUX LHF 1° [45]
TAO LHF observations — [46, 47]
PIRATA LHF observations — [48]
RAMA LHF observations — [49]
U is wind speed, SST is the sea surface temperature, q is the air specific humidity, and LHF presents the ocean latent heat flux.
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assimilation system uses 4D-Var analysis with a 12-hour
analysis window to produce fields at 00, 06, 12, and 18 Z each
day. ERA-I has a high spatial resolution at 0.125° and a high
temporal resolution of hours.

(3) NCEP-2. NCEP-2 [29] is a reanalysis of NCEP, which is
considered to be a revised version of the NCEP-NCAR
(NCEP-1), with an approximate horizontal resolution of
1.9°. Assimilation was completed using spectral statistical
interpolation (SSI) that is a 3D-Var assimilation system.

(4) JRA-25. JRA-25 [56] is a second generation reanalysis
product produced by the Japan Meteorological Agency
(JMA) and the Central Research Institute of Electric Power
Industry (CRIEPI) covering the period from 1979 to 2004.
(e JRA-25 reanalysis applied a three-dimensional varia-
tional (3D-Var) data assimilation system and global spectral
model with a spatial resolution of 1.125°.

(5) J-OFURO. J-OFURO is a third generation product
produced by the School of Marine Science and Technology at
Tokai University [44]. J-OFURO applied a wider variety of
satellite measurements and has updated algorithms for re-
trieving variables. J-OFURO 3 has also adopted the COARE
3.0 method [35] for LHF estimation and has improved
spatial resolution to 0.25°.

(6) GSSTF-3. GSSTF-3 dataset, produced by GES DISC, was
released in October 2011 [43]. GSSTF-3 has further adopted
an improved model [57] to retrieve air humidity directly
related to the corrected Temperature Brightness (Tb), in-
stead of using the two-step approach used in the previous
product, which thus improved the accuracy of the ocean
LHF estimation. GSSTF-3 used here has the advantage of a
high horizontal resolution at 0.25°, and it is available from
July 1987 to December 2009.

(7) OAFlux. (e OAFlux version 3 [45] produced by WHOI
improves the estimates of ocean heat fluxes with COARE 3.0
[35]. It uses an adopted objective analysis method to retrieve
surface variables from an optimal blending of satellite-based
estimations and three atmospheric reanalyses. (e monthly
OAFlux has a coarse spatial resolution at 1° from an optimal
blending of satellite-based estimations and three atmo-
spheric reanalyses.

2.2. Methods

2.2.1. COARE 3.0 Model. In the COARE 3.0 model [35],
Monin–Obukhov [58] similarity theory (MOST) was ap-
plied to estimate ocean turbulent fluxes of Hl, sensible heat
Hs, and stress τ, with standard bulk expressions as follows:

Hs � ρacpau∗T∗ � ρacpaCHS TS − θ( ,

Hl � ρaLeu∗q∗ � ρaLeCES qS − q( ,

τ � −ρau
2
∗ � −ρaCDS

2
,

(1)

where ρa is the density of air; cp is the specific heat of air at
constant pressure; Le is the latent heat of vaporization; and
CH, CE, and CD are the transfer coefficients for sensible heat,
latent heat, and stress, respectively. (e input data require
mean quantities, including SST, near-surface potential
temperature (θ), average value of wind speed (U) at reference
height, and near-surface specific humidity (q).

As described in MOST, the transfer coefficients are
partitioned into individual profile components,
CH � c1/2T c1/2d , CE � c1/2T c1/2d , CH � c1/2q c1/2d , CD � c1/2d c1/2d , and
the parameters (cT, cq, and cd) are the bulk transfer co-
efficients for temperature, humidity, and wind speed,
respectively. (ey have a dependence on surface stability
ζ:

c
1/2
x (ζ) �

c1/2xn

1 − c1/2xn /κ( ψx(ζ) 
,

c
1/2
xn �

κ
ln z/zox( 

,

(2)

where κ is the von Kármán constant at 0.4, the subscript n of
cxn refers to neutral stability (where ζ � 0), z is the reference
height of variable measurement, and zox (zoq, zot, zo) are the
roughness lengths that characterize the transfer properties
for variable x. ψx (ζ) is the MOST profile function that
explains the stability dependence of the profile. (e bulk
stability parameter ζb has replaced the stability parameter ζ
in the COARE 3.0 model, which reduces the iterations from
20 to 3 by improving the initial stability based on a
Richardson number, Rib [59].

Considering the fact that some progress has been
made in wave conditions related to bulk flux, an im-
provement of the COARE model version 3 is that it
calculated velocity roughness length under specified wave
conditions by implementing different parameterization
schemes. (ree parameterization schemes (YT96, TY01,
and Oo02) have been applied in the COARE 3.0 model.
(e parameterization schemes of Yelland and Taylor [60]
were also used in a previous version and have modified
the Charnock parameter from a constant at 0.011 to a
parameter increasing with the increment of wind speed.
With the improvement in the Charnock parameter (α),
the available range of roughness lengths for momentum
has been extended to U below 20m/s. For both TY01 [61]
and Oo02 [62], the velocity roughness length was re-
trieved from wave properties to estimate ocean heat fluxes
for diverse regions. Parameterization schemes have been
described in more detail elsewhere [2, 35].

2.2.2. Evaluation Metrics. We used metrics of the squared
correlation coefficient (R2), mean bias, and root-mean-
square error (RMSE) to evaluate the performance of the
COARE 3.0 model and different ocean LHF products. (e
matching degree between two datasets ({xi} {yi}) can be
judged by the evaluation metrics of R2, bias, and RMSE,
and they are calculated given as follows:
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(eKing–Gupta efficiency (KGE) [63] is also considered
to be a comprehensive evaluation metric, as follows:

KGE � 1 −
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2




, (4)

where R is a correlation coefficient between an observations
dataset and an estimates dataset, SDe and SDo represent the
standard deviation of estimates datasets and observations
datasets, respectively, andMe andMo are the mean values of
the estimates dataset and observations dataset, respectively.
KGE reaches a maximum of 1 without any simulation errors.

3. Results

3.1. Validation of the Estimated Global Ocean LHF with Buoy
Observations. We used the COARE 3.0 model driven by the
MODIS SST product, AMSR-E U data, ECWMF ERA-In-
terim Ta, and MERRA-2 q data to estimate global monthly
ocean LHF at 4 km spatial resolution from 2003 to 2007.

(e estimated LHF results using the COARE 3.0 model
were directly compared with buoy observations at different
buoy sites over 5 years. To reduce the uncertainties from the
comparison between the estimation and observations, the
average value of the observations for more than one buoy
site within one pixel was considered as a reference.

Figure 2 shows scatter plots between the monthly ob-
served ocean LHF and eight ocean LHF estimates for three
buoy site arrays. For 67 buoy sites among the TAO array, our
estimated LHF using the COARE 3.0 model performs the
best at estimating monthly ocean LHF, with the highest KGE
(0.83) and R2 (0.80, p< 0.01), the lowest RMSE (16.0W/m2),
and lower bias (6.7W/m2). Similarly, it has a good per-
formance for the PIRATA buoy site array for ocean LHF, as
indicated by a KGE� 0.89 and bias <6W/m2. For the RAMA
array, our estimated LHF performs unsatisfactorily com-
pared to other buoy site arrays, with an R2 � 0.57 and
RMSE� 19.4W/m2; this result may have been caused by
insufficient efficient observations.

Almost all estimated ocean LHF values from all products
tend to present poor results for the RAMA buoy site array,
with R2 values ranging from 0.25 to 0.57 and bias ranging
from 19.4 to 66.8W/m2. For the PIRATA buoy site array,
however, almost all ocean LHF estimations showed good
agreement with observations, as indicated by 0.03–0.2 higher
R2 values. It is clear that the ocean LHF estimations for
PIRATA were superior to that of TAO, as indicated by R2

being 0.03–0.21 higher. Among all ocean LHF products, the
J-OFURO product is also produced based on the COARE 3.0
model. (us, secondary to our estimated LHF, J-OFURO
also performs unsatisfactorily for RAMA buoy site array, but
it still showed better performance than that of other ocean
LHF products and exhibited a higher KGE ranging from 0.50
to 0.83. It is worthwhile to note that the estimated ocean LHF
from the ERA-I product outperforms other reanalyses
(MERRA-2, JRA-25, and NCEP-2) at most buoy site arrays,
as indicated by KGE being 0.13–0.24 higher, R2 being
0.02–0.18 (p< 0.01) higher, RMSE being 6.58–26.04 lower,
and bias being 4.57–25.05 lower. Almost all products
overestimate ocean LHF for all buoy site arrays, especially
for the JRA-25 reanalysis, which has biases that are more
than 44W/m2 higher than all buoy site arrays. Overall, our
estimated LHF yields the best ocean LHF with the highest R2

and KGE and lower RMSE and bias in comparison to other
ocean LHF products.

Figure 3 shows the comparison of the estimated an-
nual ocean LHF and observed ocean LHF at all 96 buoy
sites, and the results illustrated that our estimated LHF
derived from the COARE 3.0 model has a good ability to
accurately estimate ocean seasonal and annual LHF.
Overall, the KGE values for our estimated seasonal and
annual LHF versus observations were approximately 0.80
and 0.84, the RMSEs were 16.2W/m2 and 9.9W/m2, and
the bias values were 6.6W/m2 and 5.0W/m2, respectively.
Similarly, we can also note the ability of our estimated
ocean LHF to estimate the among-site variability, where
the R2 of site-averaged estimates compared to the ob-
served LHF is approximately 0.87, which is slightly higher
than that of J-OFURO (0.84). Overall, our estimated LHF
driven by the COARE 3.0 model has a high accuracy
according to the validation of temporal and spatial
variation in ocean LHF estimates.

Compared to estimated LHF values derived from other
products, our estimated ocean LHF is also satisfactory for
reproducing interannual variability at the site scale with at
least five years of data. Moreover, the bias between our
estimated LHF anomaly and the buoy site observations
anomaly is significantly lower than those of other LHF
products, with values of 0.4W/m2, and has the highest R2 of
0.61. For all buoy site observations, although the medians of
the KGE for eight ocean LHF products were close (Figure 4),
JRA-25, GSSTF-3, and NCEP-2 showed large differences
among sites, implying inconsistent model performance for
buoy site observations. In contrast, our estimated monthly
LHF outperforms other ocean LHF products at all buoy sites,
as indicated by an average KGE of 0.84, followed by
J-OFURO, ERA-I, and OAFlux with KGEs of 0.82, 0.74, and
0.73, respectively.

3.2. Mapping of the Estimated Global Ocean LHF

3.2.1. Seasonal LHF. Figure 5 shows the seasonal patterns of
ocean LHF distribution averaged over years (2003–2007),
where positive values indicate heat loss from ocean to at-
mosphere and negative values represent heat loss from
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atmosphere to ocean. (e global average LHF for MAM
(March, April, and May), JJA (June, July, and August), SON
(September, October, and November), and DJF (December,

January, and February) is 220.2W/m2, 206.5W/m2,
236.3W/m2, and 252.8W/m2, respectively, indicating that
maximum heat loss occurs in DJF and that minimum heat

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

N
ce

p-
2

Es
tim

at
ed

M
ER

RA
-2

O
A

Fl
ux

G
SS

TF
-3

JR
A-

25
J-

O
FU

RO
ER

A-
I

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

N
ce

p-
2

Es
tim

at
ed

M
ER

RA
-2

O
A

Fl
ux

G
SS

TF
-3

JR
A-

25
J-

O
FU

RO
ER

A-
I

0

0 100 200 0 100 200 0 100 200
Observation (W/m2) Observation (W/m2) Observation (W/m2)

0 100 200 0 100 200 0 100 200
Observation (W/m2) Observation (W/m2) Observation (W/m2)

0 100 200 0 100 200 0 100 200
Observation (W/m2) Observation (W/m2) Observation (W/m2)

0 100 200 0 100 200 0 100 200
Observation (W/m2) Observation (W/m2) Observation (W/m2)

0 100 200 0 100 200 0 100 200
Observation (W/m2) Observation (W/m2) Observation (W/m2)

0 100 200 0 100 200 0 100 200
Observation (W/m2) Observation (W/m2) Observation (W/m2)

0 100 200 0 100 200 0 100 200
Observation (W/m2) Observation (W/m2) Observation (W/m2)

0

R2 = 0.25
RMSE = 66.9
Bias = 53.1

KGE = –0.03

R2 = 0.77
RMSE = 51.8
Bias = 45.9
KGE = 0.45

R2 = 0.57
RMSE = 40.7
Bias = 31.8
KGE = 0.48

R2 = 0.42
RMSE = 40.8
Bias = 34.3
KGE = 0.49

R2 = 0.83
RMSE = 27.3
Bias = 21.8
KGE = 0.77

R2 = 0.80
RMSE = 28.7
Bias = 25.2
KGE = 0.72

R2 = 0.34
RMSE = 31.0
Bias = 20.5
KGE = 0.50

R2 = 0.79
RMSE = 21.5
Bias = 10.4
KGE = 0.81

R2 = 0.72
RMSE = 18.2

Bias = 8.4
KGE = 0.83

R2 = 0.29
RMSE = 57.4
Bias = 51..3
KGE = 0.28

R2 = 0.76
RMSE = 48.4
Bias = 44.8
KGE = 0.56

R2 = 0.62
RMSE = 48.3
Bias = 44.5
KGE = 0.51

R2 = 0.36
RMSE = 31.3

Bias = 2.9
KGE = 0.43

R2 = 0.73
RMSE = 26.2

Bias = 7.5
KGE = 0.65

R2 = 0.56
RMSE = 30.3
Bias = 10.7
KGE = 0.46

R2 = 0.18
RMSE = 38.0
Bias = 27.7
KGE = 0.28

R2 = 0.77
RMSE = 18.9

Bias = 5.9
KGE = 0.75

R2 = 0.56
RMSE = 20.9

Bias = 6.3
KGE = 0.72

R2 = 0.39
RMSE = 46.1
Bias = 38.9
KGE = 0.43

R2 = 0.81
RMSE = 33.8
Bias = 29.2
KGE = 0.70

R2 = 0.75
RMSE = 37.6
Bias = 33.2
KGE = 0.59

R2 = 0.57
RMSE = 19.4

Bias = 6.5
KGE = 0.70

R2 = 0.84
RMSE = 16.4

Bias = 5.6
KGE = 0.89

R2 = 0.80
RMSE = 16.0

Bias = 6.7
KGE = 0.83

100

TAO PIRATA RAMA

200 0 100 200 0 100 200
Observation (W/m2) Observation (W/m2) Observation (W/m2)

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

N
ce

p-
2

Es
tim

at
ed

M
ER

RA
-2

O
A

Fl
ux

G
SS

TF
-3

JR
A-

25
J-

O
FU

RO
ER

A-
I

Figure 2: Comparison of monthly LHF estimates (units: W/m2) against observations (67 buoy sites from the TAO array (first column), 18
buoy sites from the PIRATA array (second column), and 12 buoy sites from the RAMA array (third column)) in the period of 2003 to 2007.
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loss occurs in JJA. Generally, in both SON and DJF, ocean
LHF showed maximum heat loss. In addition, the peak value
of DJF ocean LHF appeared in the Northern Hemisphere.

However, when JJA comes, the peak value decreased and
moved to the Southern Hemisphere (Figure 5). As a result,
the peak value of the Northern Hemisphere has disappeared.
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Figure 3: (e estimated LHF (y axis, units: W/m2) from different products versus observed LHF (x axis, units: W/m2) from buoy sites for
among-site variability, year-average LHF, and annual LHF anomalies.
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Figure 4: Comparison of LHF observations and LHF estimations of eight products at all buoy sites.
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Figure 5: Continued.
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For DJF in the Northern Hemisphere, the maximum
heat loss occurs in the western boundary current regions
(i.e., the Kuroshio and Gulf Stream and its extension). In the
western boundary current regions of the Northern Hemi-
sphere, the seasonal maximum heat loss in DJF exceeds
350W/m2, while it falls to below 150W/m2 in JJA. Similarly,
the large seasonal change of LHF in the Southern Hemi-
sphere occurs in the boundary current regions, especially the
western boundary current regions. One notices that the LHF
difference between JJA and DJF in the Southern Hemisphere
is much less than that in the Northern Hemisphere. (is
outcome partly reflects the differences in the distribution of
land and sea in the Southern and Northern Hemispheres,
allowing the air masses to move southward and reduce the
temperature difference and air-sea humidity difference [13].

3.2.2. Annual LHF. We mapped annual global LHF aver-
aged over the period of 2003 to 2007 from our estimated
LHF, OAFlux, J-OFURO, GSSTF-3, MERRA-2, ERA-I,
NCEP-2, and JRA-25 (Figure 6). (ey have a similar global
distribution of ocean LHF, though general differences exist
in the spatial LHF distributions due to the difference be-
tween models and their spatial resolution. All the LHF es-
timates yield higher annual LHF in western Pacific area, and
Eastern Pacific Cold Tongue region has lower ocean LHF

owing to the decreased SST and moisture limitations. (e
most striking differences among ocean LHF estimations are
the heat loss occurring in low-latitude regions, especially in
the Northern Hemisphere. In contrast, the reanalysis
(MERRA-2, ERA-I, NCEP-2, and JRA-25) yields higher
average annual ocean LHF than that of other ocean LHF
products in low-latitude regions, as indicated by the bias
being more than 30W/m2.

3.3. Comparison with Other Global LHF Products

3.3.1. Spatial Differences among Ocean LHF Products.
Figure 7 is a scatter plot between annual ocean LHF products
and our estimated LHF for all pixels averaged from
2003–2007, and it shows that seven ocean LHF products are
highly correlated to our estimated ocean LHF, as indicated
by an R2 of more than 0.89 (p< 0.01). It is clear that the LHF
results derived from ERA-I and J-OFURO products are
similar with our estimated LHF, with an R2 of more than
0.92, a KGE higher than 0.81, and bias lower than 14W/m2.
(e OAFlux product also provides a similar estimation to
our estimated LHF, as indicated by the highest KGE of 0.89
and the lowest bias of less than 6W/m2. Among these ocean
LHF products, the JRA-25 and NCEP-2 have the greatest
differences from our estimated LHF, with KGEs less than
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Figure 5: Seasonal patterns of LHF: (a) MAM (March, April, andMay); (b) JJA (June, July, and August); (c) SON (September, October, and
November); (d) DJF (December, January, and February).
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Figure 6: Maps of climatology LHF values derived from 8 products averaged from 2003 to 2007: (a) NCEP-2; (b) JRA-25; (c) MERRA-2;
(d) ERA-I; (e) OAFlux; (f ) J-OFURO; (g) GSSTF-3; (h) estimated.
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0.65 and biases more than 24W/m2. We note that the strip
distribution of pixels from NCEP-2 and JRA-25 is mainly
caused by the coarse spatial resolution.

Figure 8 shows the multiyear (2003–2007) average
spatial distribution of the differences between our esti-
mated LHF and other LHF products. (e result illustrated
that the spatial distribution of our LHF estimates is
similar to those of most ocean LHF products, such as
ERA-I, MERRA-2, OAFlux, and J-OFURO, especially the
satellite-based product J-OFURO, which is also estimated

using the COARE 3.0 model. In tropical regions, our
estimated LHF is slightly higher than OAFlux and similar
to ERA-I and J-OFURO; however, in mid-latitude and
high-latitude regions, our estimated ocean LHF is slightly
lower than OAFlux, ERA-I, and J-OFURO product.

(e most striking differences between our estimated
LHF and the satellite-based GSSTF-3 product are the
positive differences (more than 30W/m2) that occur in
the continental boundary region and high-latitude areas,
which may be attributed to large uncertainties from
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Figure 7: Scatter plots between our estimated LHF and other LHF products at all pixels.
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Figure 8: Spatial patterns of difference between our estimated LHF and other LHF products over the period from 2003 to 2007: (a) NCEP-2;
(b) JRA-25; (c) MERRA-2; (d) ERA-I; (e) OAFlux; (f ) J-OFURO; (g) GSSTF-3.
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forcing data. Both NCEP-2 and JRA-25 reanalyses show a
significant increase in LHF in most areas, with average
differences of 24.2W/m2 and 26.5W/m2, which are
probably due to the combination effect of bulk variables,
such as the low humidity difference, the weak wind speed,
and the low SST. Overall, our LHF estimates have a
similar spatial distribution to those of other products, but
there are substantial differences in some areas due to the
differences from different models and forcing data.

3.3.2. Seasonal and Zonal Averages. Figure 9 compares the
estimated monthly global average LHF with other ocean
LHF products. (ey showed strong seasonality and similar
temporal variations among all ocean LHF estimates. Most
ocean LHF estimates decrease from January to July and
increase afterwards, with maximum values occurring in DJF
and minimum values occurring in JJA. Meanwhile, there are
still differences in the monthly LHF among all products; the
multiyear monthly average LHF of GSSTF-3, JRA-25, and
NCEP-2 is higher than those of other LHF estimates. Among
them, the overestimation of LHF in GSSTF product is caused
by the lack of effective value in high-latitude area, which is
the location of low ocean LHF, resulting in the overesti-
mation of average LHF. Besides, it is found that the temporal
pattern of ERA-I is similar to reanalysis, like JRA-25 and
MERRA. Meanwhile, the temporal pattern of our estimated
LHF is similar to satellite-based products (J-OFURO and
GSSTF-3) and OAFlux product, which indicated that the
LHF difference between JJA and DJF in reanalysis is much
less than that in satellite-based products.

Although all eight products showed similar latitudinal
variability of ocean LHF, there are still substantial

differences in eight ocean LHF estimates. (e latitudinal
distribution pattern of latent heat is bimodal with the
maximum in the subtropical region and the minimum at the
pole, suggesting a decrease in LHF from subtropical to high
latitudes (Figure 10). (e highest annual ocean LHF occurs
in the subtropical trade wind zone due to high winds, leading
to incremental changes in LHF. Comparing all LHF prod-
ucts, we found that the peak values of LHF products varied
from 130W/m2 to 175W/m2, while the products of NCEP-2
and JRA-25 simulated the highest LHF values, especially in
low-latitude areas. Our estimated LHF is slightly lower than
J-OFURO, and the pattern of our estimated LHF is similar to
the OAFlux product, with a difference of less than 10W/m2.

4. Discussion

4.1.Performanceof theCOARE3.0Model inEstimatingGlobal
OceanLHF. Validation for 96 globally distributed buoy sites
(TAO, PIRATA, and RAMA) for the period of 2003 to 2007
illustrated that the bulk aerodynamic model COARE 3.0 is
reliable for estimating ocean latent heat LHF and is robust
for low-latitude regions. Comparing buoy observations re-
veals that biases do exist among different LHF estimates,
whereas Figures 2 and 3 both demonstrate that the ocean
surface LHF estimates derived from the COARE 3.0 model
(OAFlux, J-OFURO, and our estimated LHF) have no
significant LHF bias and yield LHF values close to buoy site
observations relative to other LHF estimates (such as
GSSTF-3, JRA-25, and NCEP-2). For example, compared to
the average statistical metrics of five other ocean LHF
products, the COARE 3.0 model shows better performance
for all buoy site observations, with KGE being 11%–30%
higher and RMSE being 30%–35% lower. A number of
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Figure 9: Seasonal variability of oceanic average latent heat flux derived from eight LHF estimations.
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studies have shown that the COARE bulk method has
improved the performance of ocean LHF estimation [64, 65].
Brunke et al. [36] evaluated and ranked 12 bulk aerodynamic
methods and demonstrated that COARE 3.0 has the least
problematic algorithms for estimating ocean latent heat flux.
A similar conclusion has been proposed by Iwasaki et al.
[37], who evaluated four bulk methods (COARE 3.0, Chou,
Kondo, and Zeng) based on observed LHF during 15 cruises
obtained using direct eddy correlation and inertial dissi-
pation flux methods. (e result illustrated that the bias of
COARE 3.0nowc (COARE 3.0 method without warm layer
and cool skin models) is lower than 10W/m2, while those of
other methods are higher than 10W/m2 in all wind speed
regions, and thus they consider COARE 3.0 to be the best
bulk algorithm for calculating ocean LHF. Error from bulk
methods can lead to 30–50% of total error of ocean LHF;
thus, using an applied robust COARE 3.0 algorithm to es-
timate ocean LHF contributed to the high accuracy of our
estimated LHF in this study.

We also noticed that most products overestimate
ocean LHF according to validations at the buoy site scale,
but our estimated LHF in this study has reduced biases by
4–25W/m2. In summary, these comparison results
(Figures 3, 6, 9, and 10) provide confidence regarding
COARE 3.0-derived estimates for mapping of ocean LHF,
and thus we concluded that the COARE 3.0 model is a
better choice for the calculation of LHF.

However, even if the model is less problematic on the
whole, it is highly possible that the COARE 3.0 model
does not perform well for some regions. For instance,
although the OAFlux product has lower RMSE (18.9W/
m2, 38.0W/m2) and bias (5.9W/m2, 27.7W/m2) than

ERA-I at some buoy arrays (PIRATA and RAMA), ERA-I
has a better performance with higher KGEs. As illustrated
by Fairall et al. [35], the bulk COARE 3.0 model is ap-
plicable to wind speeds below 20m/s. Andreas et al. [66]
documented the same conclusion; that is, the bulk
method could successfully estimate ocean LHF in mod-
erate wind (U < 20m/s). Furthermore, Andreas et al. [66]
also reported that the method is not suitable in high wind
speeds due to the nonlinear relationship between high
wind speed and ocean turbulent flux. It is necessary to
improve the parameterization schemes for unstable
conditions included in COARE 3.0.

4.2. Global Ocean LHF Estimation. Another goal of this
study is to assess the quality of our estimated ocean surface
LHF, which is derived from a bulk aerodynamic method
utilizing both reanalyzed meteorological variables and sat-
ellite-derived parameters. Due to the lack of spatial con-
tinuous observations for ocean latent heat flux, it is difficult
to apply the rigorous validation of ocean LHF.(erefore, we
demonstrated the reliability of our estimated ocean LHF
values outside of the tropics by comparing them with those
of other LHF products (Figures 7, 9, and 10).

(e COARE 3.0-based estimate of annual average global
(90S°-90N°) LHF is 69.8W/m2 from 2003 through 2007; this
value is comparable to other LHF estimations. Chou et al.
[67] compared four annual products and reported that
global (60S°-60N°) average LHF varied from 88.5W/m2

derived from the HOAPS product to 108.2W/m2 from the
GSSTF-3 product during 2002 to 2003, while the COARE
3.0-derived annual ocean LHF (60S°-60N°) was 92.8W/m2
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from 2003 to 2007. L Yu and Weller [13] inferred that the
global (60S°-60N°) average estimates of ocean LHF from
OAFlux product ranged from 86W/m2 to 95W/m2 during
the period of 1982 to 2004. Despite general differences
among different products, Figure 6 shows the common
characteristics of all LHF estimations; that is, the annual
average maximum ocean LHF occurs in the western ocean
due to increased SST, and lower ocean LHF occurs in the
Eastern Pacific Cold Tongue region owing to the lower sea
surface temperature and lower air-sea humidity difference.
We then concluded that our estimation successfully captures
the spatial and temporal information of ocean LHF (Fig-
ures 9 and 10) with an average difference of less than 10W/
m2 compared to most products.

Compared with other LHF products, our estimated
LHF has the better performance for the tropics, according
to observation validations. In addition to the method, we
also attributed the better performance of our estimated
LHF to high-resolution SST input data. (e most im-
portant strength of SST4 data is that high spatial reso-
lution can increase the spatial heterogeneity [40]. To
evaluate the effect of SST4 data on the accuracy of ocean
LHF estimation, we recalculated OAFlux and J-OFURO
products based on the same COARE 3.0 model driven by
high-resolution SST4 data to replace the SST data used in
LHF products. As shown in Figure 11, the new products
(OAFlux_new and JOFURO_new) perform well in esti-
mating monthly ocean LHF, with an R2 increase of ap-
proximately 0.04, a bias reduced by 2–5W/m2, and KGE
values increased by approximately 0.04. Compared to
previous products for all buoy sites, JOFURO_new
performs well with higher KGE at 0.84, lower average bias
at 8.0W/m2, and higher R2 at 0.78. (erefore, SST4 data
improves the performance of observations validation
compared to the other coarser LHF products at the buoy
site scale.

4.3. Uncertainties in Ocean LHF Estimation. Compared with
buoy site observations, validation results illustrated that the
uncertainty in monthly LHF estimates based on the COARE
3.0 model varies from 18% to 35%. We have attributed the
bias of ocean LHF estimation to the uncertainties from buoy
site observations, errors in forcing bulk data (e.g., reanalysis
variables and satellite-derived data), algorithm limitations,
and spatial scale mismatches among different data sources.

First, the buoy site observations were used as reference
data to determine the accuracy of ocean LHF. However, the
errors of observations in buoy sites cannot be ignored. (e
uncertainty in the buoy estimate of LHF is approximately
10W/m2 [68], which would have an impact on the accuracy
of the estimated LHF. Another noticeable problem is the
method used in calculating ocean surface LHF for buoy site
observations. (e ocean surface turbulent flux is calculated
using the COARE 3.0 bulk model rather than the eddy
correlation (EC) method. In fact, no EC systems were in-
stalled at the buoy sites; consequently, most buoy site ob-
servations were applied to the COARE 3.0 bulk model to
estimate ocean surface LHF using observed meteorological

variables. (is may be a reason for the high correlation of
observed data to the LHF estimates based on the COARE 3.0
model (in our estimated LHF, OAFlux, and J-OFURO), by
eliminating model errors between LHF products.

Second, biases of forcing data for the COARE 3.0 model
are another factor contributing to the uncertainties for the
global ocean LHF estimation. For all forcing inputs, the
correlation between ocean LHF and the humidity difference
in the tropics can reach 0.87, and for the temperature dif-
ference the correlation can reach 0.74 [69]. (erefore, the
accuracy of bulk variable data impacts the estimation of
ocean LHF. Many studies have illustrated that there are large
errors in bulk variables; for instance, ERA-I data tends to
underestimate air temperature (Ta) when compared to
observations from Kwajalein Experiment (KWAJEX) [70].
In addition, in our study, it was found that continuous
variations of wind speed occur in high-latitude areas for
individual months, resulting in anomalous LHF in the same
area. (is indicates that biases in wind speed data can in-
troduce substantial uncertainties into LHF estimates. (ese
results suggest that it is necessary to minimize variable-
caused biases in the retrieval to improve the accuracy of the
input data and thus improve the estimation of ocean LHF,
for example, through the increment analysis update (IAU)
technique used in MERRA-2 [70].

(ird, spatial scale mismatch among the different
datasets may also lead to uncertainty of ocean LHF esti-
mates. (e horizontal resolution of reanalysis and wind
speed data was greater than 12.5 km, which was much
greater than the SSTdata with the spatial resolution at 4 km.
In addition, the pixel average for LHF products is larger than
0.25° (e.g., MERRA-2), and pixel size in some products
reaches approximately 2° (e.g., in NCEP-2), whereas buoy
site observations can only represent several hundred meters.
(e spatial scale mismatch may lead to uncertainties in the
validations.

Finally, the structure of the COARE 3.0 model will also
reduce the accuracy of ocean LHF estimates due to the
different parameterization schemes.(e parameterization of
important parameters (i.e., CH, CD, and roughness length) is
the key to reducing algorithm uncertainty [71, 72]. Specif-
ically, variations in the exchange coefficients have substantial
differences between moderate wind and high wind [69, 73].
Additionally, the parameterization schemes of exchange
coefficients and roughness length are also influenced by
wave state. It has been a popular topic to develop more
applicable parameterization schemes for exchange coeffi-
cients; these schemes could improve the accuracy of ocean
LHF estimates [71, 72]. Zhang et al. [69] demonstrated that
the neutral drag coefficients derived from the Charnock
parameter become larger [63, 74] at high wind speeds
(U> 30m/s); therefore, they have combined a new param-
eterization scheme (DREMAKIN) of roughness length with
the COARE 3.0 model to suit various wind speed conditions.
Pan et al. [72] developed a regression model of roughness
length (PS07) that is based on the highly sensitive rela-
tionship between wave age and dimensionless roughness
length. In comparison with other parameterization schemes
consistent with the COARE 3.0 model (TY01, YT96, and
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Oo02), they found that the PS07 model had the highest
accuracy in the North Sea Platform experiment and the
Zhanjiang Seaport experiment. Evaluation of LHF product
performance at the site scale in this study was only per-
formed in the tropics due to the lack of available and time-
continuous buoy observations over a wide area outside the
tropics. To analyze the performance of estimated LHF
globally, it is urgent to develop more and longer observa-
tions distributed in wide regions.

5. Conclusions

We applied the bulk aerodynamic COARE 3.0 model driven
by many bulk variables (i.e., MODIS SST with 4 km spatial
resolution, AMSR-E wind speed, specific humidity, and air
temperature obtained from ERA-Interim) to estimate
monthly ocean LHF from 2003 to 2007. To evaluate the
performance of the COARE 3.0 model, we validated our
estimated global ocean LHF using buoy data collected from
96 buoy sites from 3 buoy site arrays (TAO, PIRATA, and
RAMA). Additionally, we also compared our estimated
global ocean LHF values with seven ocean LHF products: 4
reanalysis products (MERRA-2, ERA-I, JRA-25, and NCEP-
2), 2 satellite-derived products (GSSTF-3 and J-OFURO),
and a combined product (OAFlux).

Compared to the observations from buoy sites, the
results for ocean LHF estimation driven by reanalysis
variables and satellite-derived data showed that our LHF
estimates yield better performance than the other seven
ocean LHF products mentioned above. At the buoy site
scale, the validation results show that monthly ocean LHF
estimates based on the COARE 3.0 method performed
better, with the highest R2 values, lower bias and RMSE
values, and the highest KGE values for all buoy site arrays.
Compared to their monthly products, all evaluated an-
nual ocean LHF products are closer to all 96 buoy sites,
and the R2 of the results from NCEP-2 and JRA-25 in-
creased by 20% and 15%, respectively. Moreover, the
mean annual COARE 3.0-based global (60S°-60N°) ocean

LHF was 92.8W/m2 from 2003 to 2007, which is in good
agreement with other studies.

(ese eight products showed strong and similar
seasonality and have similar temporal variation of LHF.
Specifically, high heat loss occurs in DJF, while lower
ocean LHF occurs in JJA. (e spatial distribution of the
average annual ocean LHF values shows high values in the
western boundary current regions and the subtropics,
while low average annual LHF values are observed in the
high-latitude areas. Our estimated ocean LHF performs
well with high accuracy; we attributed this to the
advantaged model COARE 3.0 and the high spatial res-
olution input data which would improve the performance
of ocean LHF estimation. Future work could focus on
generating long-term LHF estimations using SST4 data
and reanalysis wind speed data.
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