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Abstract: Mapping and tracing the changes in canola planting areas and yields in China are of great
significance for macro-policy regulation and national food security. The bright yellow flower is a
distinctive feature of canola, compared to other crops, and is also an important factor in predicting
canola yield. Thus, yellowness indices were previously used to detect the canola flower using aerial
imagery or median-resolution satellite data like Sentinel-2. However, it remains challenging to map
the canola planting area and to trace long-term canola yields in China due to the wide areal extent of
cultivation, different flowering periods in different locations and years, and the lack of high spatial
resolution data within a long-term period. In this study, a novel canola index, called the enhanced area
yellowness index (EAYI), for mapping canola flowers and based on Moderate Resolution Imaging
Spectroradiometer (MODIS) time-series data, was developed. There are two improvements in the
EAYI compared with previous studies. First, a method for estimating flowering period, based
on geolocation and normalized difference vegetation index (NDVI) time-series, was established,
to estimate the flowering period at each place in each year. Second, the EAYI enhances the weak flower
signal in coarse pixels by combining the peak of yellowness index time-series and the valley of NDVI
time-series during the estimated flowering period. With the proposed EAYI, canola flowering was
mapped in five typical canola planting areas in China, during 2003-2017. Three different canola indices
proposed previously, the normalized difference yellowness index (NDYI), ratio yellowness index
(RYI) and Ashourloo canola index (Ashourloo CI), were also calculated for a comparison. Validation
using the samples interpreted through higher resolution images demonstrated that the EAYI is better
correlated with the reference canola coverage with R2 ranged from 0.31 to 0.70, compared to the
previous indices with R2 ranged from 0.02 to 0.43. Compared with census canola yield data, the total
EAYI was well correlated with actual yield in Jingmen, Yili and Hulun Buir, and well correlated with
meteorological yields in all five study areas. In contrast, previous canola indices show a very low
or even a negative correlation with both actual and meteorological yields. These results indicate
that the EAYI is a potential index for mapping and tracing the change in canola areas, or yields,
with MODIS data.

Keywords: canola flower mapping; enhanced area yellowness index (EAYI); Moderate Resolution
Imaging Spectroradiometer (MODIS)
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1. Introduction

Canola is one of the most important oilseed crops worldwide, and is the primary source of edible
oil for human consumption, a high protein meal for livestock, and a renewable biological raw material
for the oleochemical industry [1]. Moreover, the ornamental value of canola flowers has also been
discovered in China and has largely promoted the local development of tourism agriculture in recent
years [2]. Although China is the largest producer of canola in the world [3], domestic production
is far from meeting the increasing demand in China. The self-sufficiency rate of canola was only
30.8% in 2017, and the imported amount increased 2–3 fold from 2008 to 2017 [4]. Therefore, mapping
and tracing the changes in canola planting areas and yields are of great importance for macro-policy
regulation and national food security in China.

Remote sensing is a promising tool for efficiently mapping the areal extent and yield of canola
owing to its wide coverage and regular acquisition [5]. The bright yellow flower is a distinctive feature
of canola, compared to other crops and vegetation types, and is also an important factor in predicting
canola yield [6]. Thus, several previous studies have attempted to detect yellow flowers of canola
using remote sensing. For example, Sulik et al. (2015) [6] compared several indices with different
band combinations and found that the ratio yellowness index (RYI), calculated as Green/Blue, is well
correlated with the flower density of canola. Sulik et al. (2016) [7] further proposed the normalized
difference yellowness index (NDYI), computed as (Green − Blue)/(Green + Blue), to predict canola
yield. Fang et al. [8] demonstrated that the green band in unmanned aerial vehicle imagery is a good
indicator for estimating the flower fraction of canola. These studies show the potential of green and
blue bands in detecting the yellow flowers of canola. Moreover, Shen et al. found that yellow flowers
could reduce the value of the vegetation index [9,10]. Thus, Tao [11] employed the EVI difference
between the flowering stage and the pre-flowering stage to map canola in the Middle Reaches of the
Yangtze River Valley. Unfortunately, these indices or features only work for estimating the quantity
of flowers in the pixel during the flowering period. Consequently, they cannot be directly used for
mapping canola flowers over a large area or in multiple years because the period of flowering differs
spatially and temporally. To address this issue, time-series data have been recently employed for
detecting the period of flowering [5,12]. Ashourloo et al. [5] identified the inflection point in the Red +

Green sequence of Sentinel 2A/B data as the date of flowering and classified canola by thresholding
a proposed Canola Index. d’Andrimont et al. [12] employed both the VV-polarized time-series of
Sentinel-1, and the NDYI time-series of Sentinel-2, to detect the peak flowering date. The experimental
sites were relatively small in these studies, thus cloud-free Sentinel time-series data could be selected.
However, the availability of clear Sentinel imagery would become an issue when applying the data over
a large area, especially seeing that canola often flowers during the rainy season in China. Supervised
classification is another efficient method for canola mapping and detection of the flowering period.
Recently, Tao [13] employed an artificial neural network (ANN) model to map canola cultivation in
the Jianghan Plain and Dongting Lake Plain, from 2000 to 2017, using Moderate Resolution Imaging
Spectroradiometer (MODIS) data. Mercier et al. [14] applied random forest classification to Sentinel-1
and Sentinel-2 data to distinguish the different phenological stages. However, the requirement for a
large number of training samples limits its wide application in different areas. In summary, there are
several challenges in monitoring changes in canola flowering in China. First, canola cultivars vary
across China, with very different flowering periods, ranging from January to August. Such diversity
within canola and the mixture with other land-cover types raises the difficulty of detecting the flowering
period using time-series data. Second, the Sentinel-2 data employed in recent studies are not available
for tracing the historical (prior to 2015) change in canola. Coarse-resolution data, such as MODIS,
have a longer-term record. However, it is unknown whether the previously proposed spectral indices
are suitable for MODIS because the yellow spectral signal would be relatively weak in coarse pixels.
Third, supervised classifications, including ANN or random forest, might work effectively in local
areas, but are not suitable for mapping canola flowers across different regions because of the difficulty
in collecting a large number of training samples.
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To address these issues, a novel index was designed to monitor and quantify canola flowering
using MODIS data. There are two improvements compared with previous studies. First, a flowering
prediction model, based on geolocation, was established in this study, to restrict the detection of
flowering because flowering time varies in a relatively small range at any specific location. Second,
an enhanced area yellowness index (EAYI), based on the MODIS time-series, was designed to enhance
the weak flower signal in coarse pixels. With the proposed EAYI, canola flowering was mapped in five
typical canola planting areas in China, during 2003–2017.

2. Materials and Methods

2.1. Study Areas

To validate the proposed EAYI index under various climates in China, five typical prefectures
with large canola planting areas, that is, Qujing, Jingmen, Haibei, Yili, and Hulun Buir, were selected
as experimental sites (Figure 1) in this study. The selected five areas have very different locations,
climates, and canola flowering periods.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 19 
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Figure 1. Study areas and location of agrometeorological stations.

Qujing (24◦21′–27◦03′N, 103◦03′–104◦49′E) is the largest canola planting prefecture in Yunnan
Province [15]. It has a subtropical plateau monsoon climate with an annual average temperature of
15.12 ◦C and annual precipitation of 944.6 mm. Winter canola in this area is sown in October and
flowers from January to February the following year, which is the earliest flowering time of canola in
China because of the warm and wet climate.

Jingmen (30◦23′–31◦37′N, 111◦51′–113◦29′E) is one of the densest winter canola planting
prefectures in the Yangtze River Basin [11]. It has a northern subtropical monsoonal climate, with an
annual precipitation of 834.2–894.8 mm and an average temperature of 16.5 ◦C. Winter canola in
this area is sown in November and flowers from March to April of the following year because the
temperature in this area is lower than that of Qujing.
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Haibei (36◦44′–39◦05′N, 98◦05′–102◦41′E) is located in the north of the Qinghai-Tibet Plateau,
which is one of the largest canola planting prefectures in northern China. Haibei has a plateau
continental climate with an annual precipitation of 426.8 mm and an average temperature of 1.4 ◦C.
The spring canola planted here is sown in April and flowers in July because of a cold climate.

Yili (42◦17′–44◦50′N, 80◦09′–84◦57′E) is the westernmost spring canola planting prefecture in
China. The climate of this area is temperate continental and alpine, with an annual precipitation of
222.0–497.1 mm and average temperature of 10.5 ◦C. Spring canola in this area is also sown in April
and flowers in July.

Hulun Buir (47◦05′–53◦20′N, 115◦31′–126◦04′E) is the northernmost spring canola planting
prefecture in China. It has a temperate continental climate with an annual precipitation of 352 mm and
an average temperature of −0.1 ◦C. Spring canola in this area is sown in April and flowers from July to
August, which is the latest flowering time in China because of its very cold climate.

2.2. Dataset and Preprocessing

2.2.1. Data

MODIS data from Terra and Aqua were used in this study to detect yellow flowers of canola in
the study areas, with a long-term period (2003–2017), which matches the period of available census
data. MODIS daily reflectance data (MOD09GA and MYD09GA) at 500 m resolution were used to
capture the yellowness signal during the flowering period. Daily reflectance data, instead of eight-day
composited reflectance data (MOD09A1 and MYD09A1), were used to enhance the yellowness signal.
In addition, the NDVI time-series derived from MOD09A1 and MYD09A1 at 500 m resolution were
used to help determine the flowering period, considering that yellow flowers could reduce NDVI
values [9].

The peak flowering date of canola, observed in 96 agrometeorological stations (Figure 1), was
accessed from the Chinese Meteorological Agency. Due to the unavailability of phenological data
of canola at all experimental sites each year, field-observed flowering dates were used to establish a
flowering period prediction model that estimated the flowering period of each pixel.

Canola flowering coverage, interpreted from cloud-free images at relatively high resolution and
acquired during flowering seasons in five subareas, were used to validate the mapping results of the
proposed method. One GF-2 image (with 2 m resolution) captured on 17 February 2017, in Qujing;
three Sentinel-2 images (with 10 m resolution) captured on 12 July 2017, in Haibei, on July 19 in Yili,
and on July 28 in Hulun Buir; and a Landsat 8 image (with 30 m resolution) captured on 29 March 2017,
in Jingmen, were selected to visually digitalize canola pixels (Figure 2). The visually interpreted results
were then upscaled to generate a canola flowering coverage map at 500 m resolution to quantitatively
validate results derived from MODIS. It is noteworthy that many cloudy pixels remained in the
Sentinel–2 image acquired in Hulun Buir (Figure 2e). Thus, the sample number in Hulun Buir was
much smaller than that in the other four areas. In addition, the agricultural census data of canola yield
in the five prefectures, from 2003 to 2017 (except for Yili, where the census data are only available
during 2006–2017), from the EPS China data platform (http://www.epschinadata.com/), were used to
verify temporal changes in the quantity of canola flowers detected by remote sensing.

http://www.epschinadata.com/
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Figure 2. MODIS true color images of the study areas, high-resolution images and the canola distribution
interpreted from High-resolution images. (a) Qujing, (b) Haibei, (c) Yili, (d) Jingmen, (e) Hulun Buir.

2.2.2. Preprocessing of MODIS Time Series

Three yellowness indices were calculated from MOD09GA and MYD09GA time-series as follows:

RYI =
B4
B3

, (1)
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NDYI =
B4 − B3
B4 + B3

, (2)

DYI = B4 − B3, (3)

where B3 and B4 are the blue and green bands of the MODIS instrument, respectively. To avoid cloud
contamination, the pixels tagged as cloudy were removed from the time-series. The RYI, NDYI, and DYI
time-series were then composited with an eight-day maximum composing criterion, to enhance the
yellowness signal and reduce the atmospheric effect, considering that atmospheric scattering could
decrease the yellowness index. For the remaining missing observations after maximum composition,
the yellowness indices were linearly interpolated from the valid values on the two nearest dates
before and after the missing observations. Finally, Savitzky–Golay filtering, proposed by Chen [16],
was employed to reduce atmospheric effects further and generate a smoother yellowness time-series.
The NDVI time-series derived from MOD09A1 and MYD09A1 were also preprocessed with similar
steps, except that the maximum composition was not necessary for this product.

2.3. Temporal Characteristics of Canola Spectra

Several spectral time-series samples from three sites (Qujing, Jingmen, and Haibei) were selected
to investigate the temporal characteristics of spectral reflectance for different vegetation types. Canola
in different sites showed consistent local peaks in the red and green bands during flowering (Figure 3).
In particular, the green reflectance of canola flowers is much higher than that of other vegetation
types. In contrast, all the vegetation, including canola, showed similar low reflectance in the blue band.
Thus, in the previous yellowness indices, the green and blue bands are commonly used as measured
and reference bands, respectively.
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Figure 4 further compares the time-series of different yellowness indices, including RYI, NDYI,
and DYI. All three indices showed peaks during the flowering period. However, RYI and NDYI of
winter canola in Qujing and Jingmen were not much higher than those of other vegetation types;
indeed, there was a small valley during flowering for spring canola in Haibei. This may be because
the ratio-formed indices are sensitive to noise in the denominator, especially because the blue band
is influenced by atmospheric effects. In contrast, DYI of canola in all three regions showed a clear
peak during flowering, and the peak values were much higher than those of other vegetation types.
Thus, DYI was selected in this study for capturing the yellowness signal. NDVI time-series were also
compared because the yellow flower can reduce the NDVI [9]. The NDVI of canola increases before
flowering and then declines when canola starts flowering. After canola flowers start to senesce, NDVI
increases again, and then declines when canola starts maturing. Thus, these two local maximum
points of NDVI time-series valley are distinctive features that can be used to identify the duration
of flowering. In contrast, the peak of DYI time-series does not necessarily match with the period of
flowering. For example, DYI time-series of canola in Haibei continued to increase with increased
greenness before flowering. Thus, the NDVI time-series was employed in this study to determine the
period of flowering, as supplementary information to green and blue bands.
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2.4. Development of the EAYI for Canola Flowering Mapping

The EAYI was developed to detect canola flowers in five subregions. The main steps of the
calculation of the EAYI are shown in Figure 5. First, phenological data obtained from agrometeorological
stations were used to roughly predict the flowering date of canola across China. Second, smoothed
NDVI time-series were generated from MOD09A1 and MYD09A1 data, and smoothed DYI time-series
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were generated from MOD09GA and MYD09GA data. Third, the precise flowering period was further
estimated by adjusting the initial predicted flowering date with the NDVI time-series. Finally, the EAYI
was calculated using the DYI peak and NDVI valley during the estimated period of flowering.

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 19 

 

NDVI time-series. Finally, the EAYI was calculated using the DYI peak and NDVI valley during the 
estimated period of flowering. 

 
Figure 5. Workflow of generating the EAYI. 

2.4.1. Determination of the Flowering Period  

Determination of the flowering period is vital for capturing the yellow signal of canola flowers. 
As the flowering period is primarily related to location, a linear regression model was employed here 
to predict the preliminarily the flowering date (T) using latitude (Lat), longitude (Lon), and altitude 
(Alt) as follows: 

T = a*Lat + b*Lon + c*Alt + d, (4)

where the a, b, c, and d are the regression coefficients of latitude, longitude, altitude, and constant. 
Taking the multi-year average peak flowering date recorded by the agrometeorological stations as 
the dependent variable, and the corresponding longitude, latitude, and altitude as the explained 
variables, the a, b, c, and d were determined as 7.07, 1.508, 0.03, −318.11 respectively. The R2 of this 
regression model achieves 0.90, indicating that such an empirical model can estimate the peak flowering 
date with reasonable accuracy. Then, the peak flowering date across China was initially predicted using 
Equation (4). In general, the initially predicted flowering date becomes later from southern to northern 
areas, and from low-altitude to high-altitude areas (Figure 6a). Because the peak flowering date varies 
year on year due to climate variation, the actual date of peak flowering could vary by month (T − 16, T 
+ 16). Thus, the precise flowering period was further adjusted by the valley of the NDVI time-series. 
Specifically, if there was a local minimum NDVI value in the period T − 16 to T + 16 for a pixel, this pixel 
was considered to be a potential canola pixel. The two local maximum points of the NDVI time-series 
valley were then considered as the beginning and end of the flowering period (Figure 6b).  

Figure 5. Workflow of generating the EAYI.

2.4.1. Determination of the Flowering Period

Determination of the flowering period is vital for capturing the yellow signal of canola flowers.
As the flowering period is primarily related to location, a linear regression model was employed here
to predict the preliminarily the flowering date (T) using latitude (Lat), longitude (Lon), and altitude
(Alt) as follows:

T = a ∗ Lat + b ∗ Lon + c ∗Alt + d, (4)

where the a, b, c, and d are the regression coefficients of latitude, longitude, altitude, and constant.
Taking the multi-year average peak flowering date recorded by the agrometeorological stations as the
dependent variable, and the corresponding longitude, latitude, and altitude as the explained variables,
the a, b, c, and d were determined as 7.07, 1.508, 0.03, −318.11 respectively. The R2 of this regression
model achieves 0.90, indicating that such an empirical model can estimate the peak flowering date
with reasonable accuracy. Then, the peak flowering date across China was initially predicted using
Equation (4). In general, the initially predicted flowering date becomes later from southern to northern
areas, and from low-altitude to high-altitude areas (Figure 6a). Because the peak flowering date varies
year on year due to climate variation, the actual date of peak flowering could vary by month (T − 16,
T + 16). Thus, the precise flowering period was further adjusted by the valley of the NDVI time-series.
Specifically, if there was a local minimum NDVI value in the period T − 16 to T + 16 for a pixel, this
pixel was considered to be a potential canola pixel. The two local maximum points of the NDVI
time-series valley were then considered as the beginning and end of the flowering period (Figure 6b).
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Figure 6. (a) Initial predicted peak flowering date by Equation (4). (b) Two examples illustrating how
to adjust flowering period by NDVI time-series.

2.4.2. EAYI Index for Canola Flowering Mapping

The EAYI was developed by combining the peak of DYI time-series and the valley of NDVI
time-series during the flowering period as follows:

EAYI =

SDYI peak
t2 − t1

1 −
SNDVI valley

t2 − t1

=
∑t2

t1(DYI t − 0.5 (DYI t1 + DYIt2))

(t2 − t1) −
∑t2

t1(0.5(NDVI t1 + NDVIt2) − NDVIt)
,

(5)

where SDYI peak and SNDVI valley are areas of DYI time-series peak and NDVI time-series valley during
the flowering period, and t1 and t2 are the beginning and end dates of the estimated flowering period
(Figure 7). The term (t2 − t1) was used to normalize the areas of DYI time-series peak and NDVI
time-series valley, because the length of the flowering period varies from site-to-site. A higher EAYI
corresponds to a higher density of canola flowers.

Two constraints were added to directly exclude non-canola pixels. First, a pixel was excluded
if there was no valley in NDVI time-series during the predicted flowering period, in other words,
the minimum value of NDVI appears at the edge of the estimated flowering period because the valley
of the NDVI time-series is a key feature to identify a canola pixel. Second, a pixel was also excluded if
the local minimum value of the NDVI valley in the flowering period was less than 0.5 because canola
is in a green state during the period of flowering.
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2.5. Mapping and Evaluation of the EAYI

The EAYI in five research areas was calculated from MODIS data from 2003 to 2017. Canola
coverage, interpreted from high-resolution images acquired in 2017, was used to evaluate the spatial
mapping results of the EAYI. For each study area, 500 samples of canola coverage were randomly
selected for comparison, except that only 35 pixels were selected in Hulun Buir because of the low
canola density and serious cloud contamination in the high-resolution image.

Because the canola flower is a key indicator of seed yield, the census canola yield of Qujing,
Haibei, Jingmen, and Hulun Buir from 2003 to 2017 was used for validating temporal variation of the
EAYI, whereas the census yield of Yili from 2006 to 2017 was used for validation due to the lack of
census data before 2006 in Yili. In the long-term analysis of crop yield, the actual crop yield (Y) is
generally decomposed into three parts [17–19]: trend yield (τ), meteorological yield (W), and random
error (ε) as follows:

Y = τ + W + ε, (6)

The trend yield is a long-period yield component which varies with the improvement of
crop varieties, harvesting techniques and statistical methods, which is also called technical yield.
Meteorological yield is a fluctuating yield component that is affected by short-period change factors
dominated by climate elements. As the harvesting techniques and statistical methods are not related
with the flower amount, the meteorological yield that removes the trend yield might be better related
with flower amount and proposed EAYI index. Thus, the meteorological yield was also calculated for
comparison. A commonly used method, the Hodrick–Prescott (HP) filter [20], was used to separate the
meteorological yield from the trend yield. Given a suitable positive number λ, the trend yield was
defined as satisfying Equation (7):

min
(∑T

t=1
(Yt−τt)

2+λ
∑T−1

t=2
[(τt+1−τt) − (τt−τt−1)]

2
)
, (7)
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where λ controls variation of the trend. The larger the λ, the greater the variation of the trend. λwas
set as 100, according to previous studies [21]. Meteorological yield was then calculated as:

W = Y − τ, (8)

The estimated meteorological yield was used to validate temporal variation of the total EAYI in
each study area.

For comparison, three canola indices proposed in previous studies, RYI [6], NDYI [7], and a canola
index proposed by Ashourloo et al. [5] (denoted as Ashourloo CI hereafter) were also calculated from
MOD09GA and MYD09GA time-series. The Ashourloo CI is calculated as:

Ashourloo CI = B2(B1 + B4), (9)

where B1, B2, and B4 are the red, near infrared, and green bands of the MODIS instrument, respectively.
As the previous canola indices were originally calculated from a specific image scene captured in
the flowering period, they cannot be directly calculated from MODIS time-series. Thus, a similar
composition procedure of DYI was conducted. Specifically, the RYI, NDYI, and Ashourloo CI time-series
were firstly composited, with an eight-day maximum composing criterion. Then, the canola indices
images of the peak flowering date determined by the valley of NDVI time-series were selected to map
canola flowers.

3. Results

3.1. EAYI Map Derived from MODIS Data

The EAYI maps of five areas during 2003–2017 were generated from MODIS data (Figure 8).
For Qujing, canola was mainly planted in Luoping County, consistent with a previous study [22].
Canola in Haibei was mainly planted in Menyuan County and northeast of Qinghai Lake, which has
become a famous tourist landscape in Qinghai [23]. Canola in Yili was mainly planted in Zhaosu
County (west of Yili), which was the main canola production area in the Xinjiang Uygur Autonomous
Region [24]. Canola in Jingmen was widely planted across the whole prefecture, including Zhongxiang
City, Jingmen City, and Shayang County, similar to previous studies [11]. Canola in Hulun Buir was
relatively sparse, mainly planted in the junction of Yakeshi City, Argun City, Chen Barag Banner,
and west of Mo Banner, consistent with a previous study [25] showing a main canola planting in
Yakeshi City and Argun City.

3.2. Comparison with Canola Coverage Interpreted from High-Resolution Imagery

The EAYI maps show a good consistent spatial pattern with the reference canola coverage map
derived from high-resolution images (Figure 8b,c). In contrast, the maps of three previous canola
indices match the reference maps relatively worse (Figure S1). Figure 8d further shows the relationship
between the EAYI and reference canola coverage. There are significant correlations between the EAYI
and canola coverage in all five study areas with R2 ranged from 0.31 to 0.70. In contrast, the correlation
between previous canola indices and coverage are relatively lower with R2 ranged from 0.02 to 0.43
(Figure S2). This indicates that EAYI is a better indicator of the density of canola flowers. However,
the regression coefficients vary across sites. The regression slope was relatively small for areas with
dispersed-planted canola, including Yili and Hulun Buir. The results imply that the sensitivity of the
EAYI is not consistent across different areas.
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3.3. Comparison with Census Yield Data

The multi-year total EAYI from 2003 to 2017 was calculated and compared with census yield data
in five areas (Qujing, Haibei, Yili, Jingmen, and Hulun Buir). The total EAYI in Jingmen was calculated
only in 2003, 2005, 2007, 2008, 2010, and 2012 due to heavy cloud contamination. The temporal change
in the EAYI was consistent with the temporal variation of census yield in Yili, Jingmen, and Hulun Buir,
whereas the consistencies in Qujing and Haibei were poor (Figure 9b). However, temporal changes in
the EAYI were somewhat consistent with short-term fluctuation of census yield in all five subareas
(Figure 9a). Thus, multi-year EAYI values were further compared with meteorological yield, which
reflects short-term variation in actual yield. There were positive correlations between meteorological
yield and total EAYI in all five subareas (Figure 9c), although the correlation was not necessarily
significant due to small sample sizes. These results indicate that the EAYI could be a potential indicator
of short-term changes in yield. In contrast, the previous canola indices poorly indicate the total yield
and meteorological yield with very low correlation or even negative correlation between the indices
and yield (Figures S3–S5).
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4. Discussion

4.1. Superiorities of the EAYI

The first improvement of this study was the estimation of the flowering before the calculation of the
EAYI. Estimation of the flowering period is particularly important for canola mapping over China due
to the large variation in the timing of flowering across different areas. Thus, a method of estimating the
period of flowering, combining an empirical regression model and NDVI time-series, was undertaken
in this study. The multi-year date of peak flowering observed at five agrometeorological stations in
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the study areas (Figure 10a) were used to validate the period of flowering estimated by our proposed
method. The period of flowering estimated in the present study encompassed the observed dates
of peak flowering across all five stations (Figure 10b–f). Moreover, temporal changes in the NDVI
valley dates were also consistent with those of the observed dates of peak flowering although there
was some inconsistency in No.56875 station and No.51437 station. Such inconsistency might be partly
induced by the inconsistent standards of field phenological observation at different sites and different
periods [26–28]. However, such uncertainty in the estimation of peak flowering date will not largely
affect the calculation of EAYI, because the EAYI is calculated based on the area of DYI peak and NDVI
valley during the whole flowering period that may keep one to two months. In general, the NDVI
time-series was an important data source for detecting flowering, and the flowering periods estimated
by our method can correctly estimate the actual periods of flowering.
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Figure 10. Comparison between flowering date obtained from agrometeorological stations
and flowering date estimated from empirical regression model and NDVI time-series at five
agrometeorological stations. (a) The distribution of five stations. (b) No.56875 station, (c) No.52765
station, (d) No.51437 station, (e) No. 57474 station, (f) No.57370 station.

The use of DYI instead of RYI or NDYI is another point of difference in this study compared to
previous studies [5–7]. Our experiment shows that the EAYI has a better agreement with reference to
canola spatial distribution and the temporal variation of census yield compared with previous indices.
Indeed, the detected yellowness peak should match the NDVI valley for canola pixels if the yellowness
index robustly detected yellow flowers. To confirm this, 500 canola samples with a minimum coverage
of 50%, in five study areas, were selected to investigate the time difference between the yellow indices
peak and the NDVI valley. The DYI peak exhibited the best consistency with the NDVI valley, with a
time difference of less than 8 days (Figure 11). In contrast, the peaks of RYI and NDYI were poorly
consistent with the NDVI valley. This confirmed that DYI was a more suitable index, reflecting the
yellow signal peak in the MODIS time-series. The better performance of DYI in capturing yellowness
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signals might be attributed to its relative resistance to the atmospheric effect, which consists of the
extinction effect and path radiance. For short-wavelengths, including the blue and green bands, path
radiance accounts for a larger proportion of the atmospheric effect, which means that the apparent
reflectance can be written as:

RTOA= Rsurface+Rpath, (10)

where RTOA, Rsurface and Rpath are top of atmosphere radiance, surface radiance and path radiance
respectively. The common path radiance for blue and green bands could be effectively eliminated by
subtraction. In contrast, the use of a ratio allows better performance in eliminating the extinction effect,
rather than the path radiance. Thus, DYI performed better than the ratio-based indices (RYI and NDYI)
in this study. Ratios are often used in vegetation indices because they employ near-infrared and red
bands that have longer wavelengths, where the extinction effect cannot be ignored.
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Figure 11. (a) Histogram of time difference between DYI peak and NDVI valley. (b) Histogram of
time difference between RYI peak and NDVI valley. (c) Histogram of time differences between NDYI
peak and NDVI valley. Invalid samples are the pixels without yellowness peak during the estimated
flowering period.

Finally, the EAYI combines the DYI peak and the NDVI valley to enhance the yellowness signal.
To confirm the effectiveness of such an enhancement, we further compared the separation degree of
EAYI, area of the DYI peak, and area of the NDVI valley among different canola pixels and other
land-cover pixels. Five hundred canola samples, with a coverage exceeding 50%, and 500 other
land-cover samples from five study areas, were selected randomly to calculate the separation degree
defined by Equation (11) [29,30] for three indices:

M =
|µ1− µ2|
σ1 + σ2

, (11)

where µ1 and µ2 are the mean values of canola samples and other land-cover type samples, respectively;
|µ1–µ2| denotes the interclass variability; σ1 and σ2 are the standard deviations of canola samples and
other land-cover type samples. A higher M indicates better separation of the two types of samples.
The EAYI values of canola and other land-cover samples have the most distinctive distributions and
the highest degree of separation, followed by the area of the DYI peak and the area of the NDVI valley
(Figure 12). These results confirmed the effectiveness of the EAYI in distinguishing canola flowers
from other land-cover types.
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In summary, the proposed EAYI index can be used for detecting canola flowers across a large
area if field observed phenological data is available to establish an empirical regression model for
predicting the peak flowering date roughly. Moreover, a combination of NDVI valley and DYI peak
enhances the yellowness signal in mixed pixels, thus EAYI is applicable for coarse-resolution data like
the MODIS time-series which is available in a long-term period.

4.2. Remaining Challenges and Future Researches

Cloud contamination is a serious issue for flower detection because canola often flowers in the
rainy season. Here, a simulation experiment was conducted to explore the sensitivity of the proposed
EAYI to a number of invalid observations. First, typical NDVI and DYI time-series of canola were
calculated from 100 high-coverage canola pixels (>90%) in Jingmen; 10–100% of the observations
were then randomly removed from the flowering period. Finally, coverage was retrieved by the
Jingmen fitting equation (Figure 8d). The EAYI was very sensitive to missing observations (Figure 13).
The retrieved coverage decreased to 0.4 when there were 30% invalid observations, and it further
decreased to 0 when missing observations accounted for more than 60% of the total. Thus, frequent
observations are needed to detect canola flowers. In this study, the daily observations available
through MODIS generally satisfied this requirement. However, the availability of frequent satellite
observations at higher resolutions is still limited, indicating a challenge in mapping canola at higher
spatial resolutions. Spatial-temporal fusion techniques [31,32] might be helpful in addressing this issue.

Another limitation of the EAYI is the varying sensitivity to canola coverage in different regions
(Figure 8d), which raises the difficulty in retrieving the coverage or determining a uniform threshold
for canola mapping in different regions. Finally, the EAYI remains a poor indicator of actual canola
yield for some study areas, although this study demonstrated a correlation between multi-year EAYI
values and the meteorological yields in most regions. This implies a complex relationship between
actual yield and the quantity of canola flowers or the EAYI. Thus, the role of the EAYI in monitoring
canola yield requires further exploration and validation in the future.

Due to the above limitations, automatically mapping canola flowers over the whole of China is
still challenging, especially in the cloudy areas and the fragmented areas. Thus, a portrait of canola
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flower distribution over China is still missing at this stage. In next step, we will attempt to detect
canola flower signals by combing more data sources, e.g., multi-resolution optical data and synthetic
aperture radar (SAR) data, with advanced fusion techniques [32,33]. Moreover, more field data is
planned for collection to explore the relationship between canola yield and flower amount.
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wide range of longitudes and latitudes, using the NDVI and DYI time-series derived from MODIS
data. A method for estimating flowering was employed to overcome the problems of differences in the
timing of flowering over large areas. The EAYI, which achieved an enhancement of the weak yellow
signal in coarse pixels, was shown to be effective in canola mapping with MODIS data. Validation
using the reference maps and census data demonstrated that the EAYI is a potential index for mapping
canola flowers over a large area and tracing the changes in a long-term period.
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