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A B S T R A C T   

Dozens of spatiotemporal fusion methods have been developed to reconstruct vegetation index time-series data 
with both high spatial resolution and frequent coverage for monitoring land surface dynamics. Although several 
studies comparing the different fusion methods have been conducted, selecting the suitable fusion methods is 
still challenging, as inevitable influential factors tend to be neglected. To address this problem, this study 
compared six typical spatiotemporal fusion methods, including the Unmixing-Based Data Fusion (UBDF), Linear 
Mixing Growth Model (LMGM), Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Fit-FC 
(regression model Fitting, spatial Filtering and residual Compensation), One Pair Dictionary-Learning method 
(OPDL), and Flexible Spatiotemporal DAta Fusion (FSDAF), based on simulation experiments and theoretical 
analysis considering three influential factors between sensors: geometric misregistration, radiometric incon
sistency, and spatial resolution ratio. The results indicate that Fit-FC achieved the best performance with the 
strongest tolerance to geometric misregistration when radiometric inconsistency was negligible; thus, it is the 
first recommended algorithm for blending normalized difference vegetation index (NDVI) imagery. Instead, the 
FSDAF could generate the best results if radiometric inconsistency was non-negligible. These findings could help 
users determine the method that is appropriate for different remote sensing datasets, and provide guidelines for 
developers in the future development of novel methods.   

1. Introduction 

Time series of vegetation indices (e.g., Normalized Difference 
Vegetation Index, NDVI) produced by satellite sensors play a unique 
role as important data sources in various environmental applications, 
such as cropland mapping (Chang et al. 2007; Wardlow et al. 2007), 
vegetation phenology monitoring (Bradley et al. 2007; Cao et al. 2015;  
Zhang et al. 2003), and disturbance detection (Verbesselt et al. 2012). 
However, most of the sensors onboard the launched satellites cannot 
acquire data with both high spatial and temporal resolutions simulta
neously, owing to hardware technology or budget limitations. For 

example, the data from sensors with dense temporal coverage usually 
have coarse spatial resolution (e.g., MODIS, hereafter referred to as 
coarse images), imposing restrictions on capturing enough spatial de
tails in heterogeneous areas. On the other hand, the data from sensors 
with fine spatial resolution (e.g., Landsat TM or ETM+, hereafter re
ferred to as fine images) have their drawbacks due to a long revisit cycle 
(e.g., 16 days), which limits their potential in time-series analyses. 
Consequently, various spatiotemporal fusion methods that combine the 
merits of two such types of data have been developed and are used to 
produce NDVI data with high spatial and temporal resolutions (Chen 
et al. 2018; Liao et al. 2017; Liu et al., 2019b; Maselli et al. 2019; Rao 
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et al. 2015). Furthermore, they have been successfully applied in var
ious fields, such as crop growth monitoring (Gao et al. 2017), land 
cover classification (Chen et al. 2017; Jia et al. 2014), biomass esti
mation (Zhang et al. 2016), and disturbance detection (Hilker et al. 
2009). 

Zhu et al. (2018) grouped the published spatiotemporal fusion 
methods into the following five categories according to technique 
principles: unmixing-based, weight function-based, learning-based, 
Bayesian-based, and hybrid methods. Unmixing-based methods down
scale coarse pixels to fine resolution based on the linear spectral mixing 
theory (Rao et al. 2015; Zhukov et al. 1999; Zurita-Milla et al. 2008). 
Weight function-based methods estimate the value of a target pixel by 
combining neighborhood pixel information with empirically designed 
weight functions of spectral similarity, spatial distance, or other related 
measurements (Gao et al. 2006; Wang and Atkinson 2018; Zhu et al. 
2010). Learning-based methods, which use machine learning methods 
to model the relationship between coarse and fine images are relatively 
new (Huang and Song 2012; Liu et al. 2016; Song and Huang 2013;  
Song et al. 2018). Bayesian-based methods describe spatiotemporal 
fusions as a Maximum A Posterior problem based on the Bayesian fra
mework (Huang et al. 2013; Liao et al. 2016; Shen et al. 2016). Hybrid 
methods attempt to integrate two or more methods mentioned above to 
improve the performance of the spatiotemporal fusion (Liu et al., 
2019b; Quan et al. 2018; Zhu et al. 2016). 

Although the technique principles are diverse, each developed 
method was claimed by its original study to have unique advantages in 
terms of prediction accuracy, computation efficiency, or input data 
requirements. However, as these studies used different datasets in their 
method comparison, it was difficult to reach a consensus on which 
method outperforms all the others. Thus, it is necessary to assess the 
applicability of these methods to different application scenarios. 
Accordingly, several cross-comparison studies have been conducted to 
explore the advantages and weaknesses of the different methods based 
on time-series data (Chen et al. 2015; Emelyanova et al. 2013; Liu et al., 
2019a). In general, the performances of different fusion methods de
pend mainly on the sensitivity to spatial heterogeneity and temporal 
variations of the data used. 

However, these comparison studies have neglected the influence of 
inevitable noise in real applications, including geometric misregistra
tion and radiometric inconsistency. Despite the large efforts devoted to 
the intercalibration and geometric registration among the different 
sensors, the complete elimination of these intrinsic noises is still chal
lenging (Chander et al., 2013a, 2013b; Claverie et al. 2018; Yan et al. 
2016). A series of studies have noticed these issues and attempted to 
quantify the impact of geometric and radiometric inconsistencies on 
land cover change detection (Dai and Khorram 1998; Chen et al. 2014;  
Roy, 2000) and dynamic vegetation monitoring (Fan and Liu 2018;  
Skakun et al. 2018; Sulla-Menashe et al. 2016). Considering the po
tential impacts of these noises on the spatiotemporal fusion methods 
(Belgiu and Stein 2019; Zhu et al. 2018) and the lack of corresponding 
comparative research, it is still difficult for users to choose appropriate 
methods for their applications. A recent study has shown an encoura
ging desire to address these issues by quantifying the influence of 
geometric errors on fusion methods (Tang et al. 2020). However, only 
two algorithms were explored in this study, which is not sufficient for 
most users. 

Recently, owing to advances in sensor technology and an increased 
number of launched satellites, spatiotemporal fusion methods are no 
longer limited to MODIS and Landsat images only, and could be ex
panded in recent studies (Kong et al. 2016; Kwan et al. 2018; Mizuochi 
et al. 2017; Li et al. 2017; Wang and Atkinson 2018) to images from 
other satellite sensors with different spatial resolutions (e.g., AMSR, 
ASTER, Sentinel-2/3, GF-1, Worldview, and Planet). However, this 
extension brings about a new problem, that is, whether the input 
images with different spatial resolution ratios will affect the perfor
mance of the different methods (Yokoya et al. 2017). Unfortunately, to 

our knowledge, no comparative studies have evaluated the performance 
of the spatiotemporal fusion methods based on data with different 
spatial resolution ratios of sensors. 

To fill the gap from the previous comparison studies, we conducted 
comparison experiments and theoretical analyses on the spatiotemporal 
fusion of NDVI time-series data by considering various influential fac
tors, including geometric misregistration, radiometric inconsistency, 
and spatial resolution ratio. Six typical spatiotemporal fusion methods, 
that required only one fine image and two coarse images as input, in
cluding the Unmixing-Based Data Fusion (UBDF), Linear Mixing 
Growth Model (LMGM), Spatial and Temporal Adaptive Reflectance 
Fusion Model (STARFM), regression model Fitting, spatial Filtering and 
residual Compensation (Fit-FC), one pair dictionary-learning method 
(OPDL), and Flexible Spatiotemporal DAta Fusion (FSDAF), were se
lected for comparison. Six methods were selected in this study, con
sidering their unique contributions in their own categories and the 
availability of source codes. Moreover, the performances were eval
uated on time-series data instead of individual images, to better satisfy 
the application requirements. In general, the goal of this study is to 
explore the sensitivity of the six fusion methods to three influential 
factors and, thus, provide useful guidelines for method selection and 
future method design for users and developers. 

2. Methods and datasets 

2.1. Experiment design 

To explore the sensitivity of spatiotemporal fusion methods for 
NDVI time-series reconstruction to various influencing factors, experi
ments were specifically designed in terms of geometric misregistration, 
radiometric inconsistency, and different spatial resolution ratios. 
Similar to previous studies (Gevaert and García-Haro 2015; Liu et al., 
2019b; Zhu et al. 2016), the time series of cloud-free Landsat imagery 
and simulated coarse resolution imagery aggregated from Landsat data 
were used for spatiotemporal fusion experiments and validation. The 
standard experiment is based on ideal simulated data without any er
rors; it is used as the benchmark for the later simulation experiments. 
To explore the effect of various influencing factors, three additional 
fusion experiments were designed based on the simulated data with 
geometric misregistration, radiometric inconsistency, and different 
spatial resolution ratios. Additionally, fusion experiments based on 
actual Landsat and MODIS data were also conducted. 

Considering the wide applicability of the NDVI time series, this 
study focuses on NDVI data fusion. Moreover, since surface reflectance 
data have also received increasing attention (Hermosilla et al. 2015;  
Xiao et al. 2016), similar fusion experiments were also conducted on 
reflectance data (green, red, near infrared bands) for comparison. 

2.1.1. Standard fusion experiment based on ideal simulated data 
This experiment followed the experimental settings of previous 

studies (Gevaert and García-Haro 2015; Zhu et al. 2016). Coarse images 
were simulated by the aggregation of Landsat images to avoid mis
registration and radiometric inconsistency between the fine and coarse 
images. In the standard experiment, we aggregated 8 × 8 pixels for 
NDVI and 16 × 16 pixels for reflectance, corresponding to the MODIS 
NDVI at 240 m resolution, and MODIS reflectance data at 480 m re
solution, respectively. The first fine image in the time series and the 
corresponding simulated coarse image were used as the base-paired 
image input for the fusion experiment. The other simulated coarse 
images were then downscaled to a fine spatial resolution using different 
fusion methods (Fig. 1. Schematic diagram of the standard experi
ment.). 

2.1.2. Fusion experiment based on simulated data with geometric 
misregistration 

The settings of this experiment are similar to the standard one, 
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except that the misregistration error was simulated when aggregating 
the Landsat images to the coarse images. Pixel shifting is one of the 
most serious consequences of geometric distortions. Therefore, similar 
to the previous study (Tang et al. 2020), the fine images were shifted by 
2, 4, 6, or 8 pixels before aggregation; thus, different degrees of mis
registration error were generated for the simulated coarse images 
(Fig. 2). This experiment compares the robustness of different methods 
to geometric errors. For reflectance experiments, the fine images were 
shifted 4, 8, 12, or 16 pixels before aggregation, considering that the 
resolution of coarse reflectance images was double that of the NDVI 
image. 

2.1.3. Fusion experiment based on simulated data with radiometric 
inconsistency 

The special experimental setting of this experiment, which is the 
only difference compared to the standard one, is that a linear stretch 
was conducted on the aggregated coarse image to simulate the radio
metric inconsistency between fine and coarse sensors (Fig. 3): 

= +C C (1) 

where C and C′ are the ideal and stretched NDVI of simulated coarse 
pixels, respectively, and α and β are the linear stretch parameters. The 
parameters were referenced from an intercalibration study of vegeta
tion indices derived from different sensors (Steven et al. 2003), in 
which the linear relationships of TM and MODIS, TM and AVHRR, ETM 
+ and MODIS, POLDER and ASTR2, and QuickBird and ASTR2 were 
investigated (Table 1). Table 2 presents the linear relationships used in 
the reflectance experiments. With such a simulation, the sensitivity of 
different methods to radiometric inconsistency could be explored. 

2.1.4. Fusion experiment based on simulated data with different spatial 
resolution ratios 

To explore the applicability of the six fusion algorithms to various 
satellite products with different spatial resolutions, this experiment 
compares the sensitivity of these methods to different spatial resolution 
ratios of coarse and fine images. Coarse images are simulated at four 

levels of spatial resolution ratios (4, 8, 16, and 32, respectively, as 
shown in Fig. 4). Other experimental settings are similar to those in the 
standard one (i.e., without any geometric error or radiometric incon
sistency). 

2.1.5. Fusion experiment based on actual MODIS images 
Actual MODIS images were used for this fusion experiment. 

Additionally, simulated MODIS images with certain geometric errors 
and radiometric inconsistencies were also used for comparison. 
Although the geolocation accuracy of MODIS was 50 m at nadir (Wolfe 
et al. 2002), the large scan angle and reprojection and resampling 
procedures could further enlarge the geolocation error. Thus, it is rea
sonable to assume an averaged misregistration error size of approxi
mately a half-pixel (120 m), corresponding to a four-pixel shifting of the 
fine images. The parameters of the linear stretches for the TM-MODIS 
(Table 1) were used to simulate the radiometric inconsistency. This 
experiment was conducted to illustrate how much of the fusion error of 
the results using the actual MODIS data could be accounted for by the 
results based on the simulated MODIS data with simulated geometric 
and radiometric errors. 

2.1.6. Accuracy indices for evaluation 
Two accuracy indices, the root mean square error (RMSE) and 

correlation coefficient (r), were used to evaluate the performance of the 
different fusion methods. The RMSE was calculated using all the pairs of 
predicted and true images throughout the time series. The correlation 
coefficient (r) was calculated between the predicted and true NDVI time 
series for each fine pixel. Then, an averaged r of the whole image was 
used to represent the overall accuracy of the predicted time-series data. 
Different aspects of the fusion results were assessed. The image-based 
RMSE evaluates the average pixel-wise prediction errors, which has 
drawn the attention of quantitative remote sensing studies. The coef
ficient r is the similarity between the predicted temporal profile and the 
true temporal profile, which will benefit dynamic monitoring research. 
With the above two indices, the overall performances on the time series, 
instead of the individual images, were evaluated for the different fusion 
methods under different experimental scenarios. 

Additionally, to further explore the relationship between the fusion 
accuracy and the temporal variation of the input data, an absolute re
lative difference index (ADRI) was calculated to represent the temporal 
change between the base and predicted time. 

= F F FARDI /2 1 1 (2) 

where F1 and F2 denote the NDVI or reflectance of the fine images at the 
base and predicted time, respectively. 

Fig. 1. Schematic diagram of the standard experiment.  

Fig. 2. Schematic diagram of the experiment with geometric misregistration.  

Fig. 3. Schematic diagram of the experiment with radiometric inconsistency.  

Table 1 
Coefficients of linear stretches for simulated radiometric inconsistency between 
two sensors in the NDVI experiments (Steven et al. 2003).     

Satellite sensors Slope (α) Intercept (β)  

TM-MODIS 1.002 −0.012 
TM-AVHRR 1.106 −0.007 
ETM + -MODIS 1.023 −0.013 
POLDER-ASTR2 1.008 −0.110 
QuickBird-ASTR2 0.928 −0.105 

Table 2 
Coefficients of linear stretches for simulated radiometric inconsistency between 
two sensors in the reflectance experiments.     

Simulations Slope (α) Intercept (β)  

Simu1 0.9 0.0 
Simu2 1.1 0.0 
Simu3 1.0 −0.05 
Simu4 1.0 0.05 
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Fig. 4. Schematic diagram of the experiment with different spatial resolution ratios.  

Fig. 5. Test data from the CIA site: 240 m simulated coarse images and corresponding 30 m fine images acquired on (a) and (d) November 9, 2001, (b) and (e) 
February 13, 2002, and (c) and (f) May 4, 2002; and (g) NDVI time series of three typical land covers. All images use NIR–red–green as RGB. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.2. Experimental datasets 

For a unified comparison, the typical datasets from previous spa
tiotemporal fusion studies (Emelyanova et al. 2013; Li et al. 2020): the 
Coleambally Irrigation Area (CIA) in southern New South Wales 
(145.10°E, 34.05°S), Gwydir Catchment (GWY) in northern New South 
Wales (149.63°E, 29.77°S), and Tianjin area in northern China 
(117.20°E, 39.30°N), were used in this study. The CIA site was domi
nated by woodlands, cropland, and dryland cover types. A total of 16 
cloud-free pairs of Landsat-7 ETM+ (800×800 pixels at 30 m spatial 
resolution) data were collected in this area from October 2001 to May 
2002. As shown in Fig. 5(a) and (b), there are fragmented cropland and 
woodland parcels in this area, resulting in a heterogeneous landscape. 
Additionally, woodlands, croplands, and drylands show distinctive 
NDVI profiles during this period (Fig. 5(c)). The main purpose of using 
this dataset with high heterogeneity and complex NDVI seasonality is to 
compare the performance of the fusion methods in monitoring seasonal 
changes in fragmented cropland landscapes. The GWY site was domi
nated by winter crops and natural vegetation. A total of 14 cloud-free 
pairs of Landsat-5 TM (800×800 pixels at 30 m spatial resolution) data 
were collected in this area from April 2004 to April 2005. This site was 
relatively homogeneous, displaying relatively large parcels of crop 
fields and natural vegetation (Fig. 6(a) and (b)). However, a flood oc
curred in December 2004, leading to a sudden drop in the NDVI of the 
inundated areas (Fig. 6(c)). Thus, this dataset is employed to test the 
performance of fusion methods in capturing abrupt land cover changes. 
As for the third site, Tianjin, the main land cover types are impervious 
surfaces, winter crops, summer crops, and waterbodies. The more 
complex land cover types and small built-up patches resulted in a more 
heterogeneous urban landscape at this site. There were 11 cloud-free 
pairs of Landsat-8 OLI (800×800 pixels at 30 m spatial resolution) data 
collected at the Tianjin site. As shown in Fig. 7, each land cover had a 
unique NDVI temporal profile. The main purpose of this dataset is to 
test the accuracy of the fusion methods in detecting seasonal variations 
in urban landscapes. For all three sites, the true MODIS surface re
flectance (MODIS Terra MOD09GQ collection 6, resampled to 240 m 
spatial resolution) acquired in the corresponding periods were also 
downloaded for comparison. 

2.3. Spatiotemporal fusion methods 

We selected 1–2 typical methods for each category mentioned by  
Zhu et al. (2018) for the comparison experiments, except for the 
Bayesian-based methods because of the lack of open-source code. To 
quantify the error propagation of the fusion results caused by mis
registration and radiometric consistency between two sensors, key 
concepts and equations of each method were introduced here for the 
convenience of the later theoretical analysis in the discussion section. 
For simplification, the algorithms were reintroduced here based on a 
consistent denotation (Table 3). 

2.3.1. UBDF 
As an unmixing-based method, UBDF employs a constrained least 

square with a moving to unmix coarse images for appropriate results 
(Zurita-Milla et al. 2008). Based on the linear spectral mixing model, 
the NDVI at a coarse pixel is regarded as a linear combination of the 
NDVIs of its endmembers. Assuming that the fine pixels are pure en
ough to be endmembers, the NDVI at the coarse pixels (x,y) and the 
predicted time is 

= +
=

C x y f x y F x y x y( , ) ( , ) ( , ) ( , )
i

c

i
i

2
1

2
(3) 

where F2
i(x,y) is the NDVI of the ith land cover type in the coarse pixel 

(x,y), fi(x,y) is the fraction of the ith endmember in the coarse pixel, c is 
the number of endmembers, and ε is the residual error. The fi(x,y) is 

calculated based on the classification result of the fine images at t1, as 
land cover is assumed to be unchanged in UBDF. With another as
sumption that endmembers are consistent in a moving window of 
coarse pixels ( ), F2

i(x,y) can be solved by the following equations with 
constrained corresponding to the mixing models in a moving window 
(m × m coarse pixels): 

=
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Also, Eq. (4) can be written in matrix form for convenience: 

=C f F( ) ( ) ( )2 2 (5)  

Thus, F2
i can be estimated by the least-squares method: 

=F f f f C( ) [ ( ) ( )] ( ) ( )T T
2

1
2 (6)  

Finally, the fine image at t2 can be generated by assigning the es
timated F2

i to the corresponding fine pixels based on the classification 
result of t1. 

2.3.2. LMGM 
To further enhance the spatial details in the unmixing-based fusion 

results, LMGM makes use of F1 (Rao et al. 2015). It assumes that the 
growth rate of the same land cover is constant over a short period of 
time. Therefore, LMGM estimates the growth rates of endmembers 
(ΔF=F2-F1) by unmixing the growth rate of coarse pixels (ΔC=C2-C1), 
as shown in Eq. (7): 

=

C

C x y

C m m

f f f

f x y f x y f x y

f m m f m m f m m

F
F

F
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1 2
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(7)  

Then, the LMGM calculates F2 by adding the estimated growth rate 
of class i ( F i) to F1: 

= +F x y F x y F( , ) ( , ) i
2 1 (8)  

2.3.3. STARFM 
STARFM is the most typical and popular fusion method based on a 

weight function (Gao et al. 2006). It assumes that the systematic bias 
between two sensors does not change over time. STARFM first re
samples the coarse images to the same spatial resolution as the fine 
image. Thus, F2(x, y) can be estimated as 

= +F x y F x y C x y( , ) ( , ) ( , )2 1 (9)  

Considering the issues of mixed pixel and land cover change, the 
information of similar neighboring pixels is introduced for the final 
estimation of F2: 

= +
=

F x y W F x y C x y( , ) ( ( , ) ( , ))
i

n

i i i i i2
1

1

s

(10) 

where ns is the number of similar pixels in the moving window, and Wi 

is the weight of the ith similar pixel. The definition of spectral neighbor 
similar pixels is that they belong to the same class. The calculation of 
the weight Wi combines the spatial distance (Di) and spectral difference 
between the coarse and fine images (Si) (Gao et al. 2006; Gao et al. 
2015): 

= +D x x y y( ) ( )i w i w i/2
2

/2
2 (11)  

=S F x y C x y| ( , ) ( , )|i i i i i1 1 (12) 
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where (xw/2, yw/2) and (xi, yi) are the central pixels of the moving 
window and candidate similar neighboring pixels, respectively. The 
spatial closer similar pixel with smaller spectral difference holds higher 
weight. 

2.3.4. Fit-FC 
To capture the temporal changes of the fine pixels accurately, Fit-FC 

introduces a linear regression model established from coarse images 
(Wang and Atkinson 2018). A local linear regression model is first es
tablished between C2 and C1 within a moving window : 

= × + +a bC C R( ) ( ) ( )2 1 (13) 

where R( ) are the coarse residuals in the moving window, and a and b 
are the regression coefficients. Then, the regression coefficients are 

Fig. 6. Test data from the GWY site: 240 m simulated coarse images and corresponding 30 m fine images acquired on (a) and (d) May 2, 2004, (b) and (e) December 
12, 2004, and (c) and (f) April 4, 2005; and (g) NDVI time series of three typical land covers. All images use NIR-red-green as RGB. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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applied to the fine pixels within a moving window corresponding to the 
coarse moving window ( ) for the RM (i.e., regression model) predic
tion. Then, a spatial filtering by weighting similar neighboring pixels 
with spatial distance is adopted to address the problem of blocky arti
facts while considering the residuals of the regression model: 

= × + +
=

F x y W a F x y b r x y( , ) ( ( , ) ( , ))
i

n

i i i i i2
1

1

s

(14) 

where r(xi,yi) is the residual at the fine pixel (xi,yi), which is resampled 
from R( ) by bicubic interpolation. 

Fig. 7. Test data from the Tianjin site: 240 m simulated coarse images and corresponding 30 m fine images acquired on (a) and (d) April 29, 2014, (b) and (e) 
December 25, 2014, and (c) and (f) August 2, 2015; and (g) NDVI time series of three typical land covers. All images use NIR-red-green as RGB. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.3.5. OPDL 
Dictionary-learning based methods reconstruct images with an 

overcomplete dictionary and the corresponding coefficients of sparse 
representation (Huang and Song 2012). Song and Huang (2013) pro
posed the dictionary-based learning method OPDL, which requires only 
one image pair. The key idea of OPDL is that coarse and fine images 
acquired at the same location share the same sparse representation 
coefficients, and the overcomplete dictionary trained from images ac
quired at base time should be time-invariant. Therefore, C1 and F1 

provide the dictionary, and C2 provides the corresponding coefficients 
to generate the transition image T2. With the same process, T1 can also 
be produced. Finally, a high-pass modulation is introduced to transfer 
the temporal change from transition images to F1 for prediction: 

=F x y T x y
T x y

F x y( , ) ( , )
( , )

( , )2
2

1
1 (15)  

Owing to the large spatial resolution difference between the fine 
and coarse images, OPDL is implemented in a two-layer framework 
(Song and Huang 2013). The first layer produces an image with an 
intermediate resolution between the coarse and fine images. Subse
quently, the second layer generates final results using the image syn
thesized by the first layer. 

2.3.6. FSDAF 
FSDAF (Zhu et al. 2016) is a hybrid method that combines un

mixing, spatial interpolation, and similar neighboring pixel smoothing 
for robust fusion results. First, similar to LMGM, FSDAF estimates the 
temporal change of a fine pixel (ΔFtp) by an unmixing-based method to 
produce the temporal prediction (F2

tp), except that the unmixing pro
cedure is conducted in the whole image instead of a moving window. 
Then, with the TPS interpolation (Dubrule 1984), the spatial prediction 
(F2

sp) of F2 can be generated. The residuals between the sum of ΔF and 
ΔC are considered in the FSDAF: 

=
= =

R x y C x y
n

F x y F x y( , ) ( , ) 1 ( , ) ( , )
i

n
tp

i i
i

n

i i
1

2
1

1
(16) 

where R(x, y) is the residual in the coarse pixel at location (x, y), n is the 
number of fine pixels inside a coarse pixel, and the fine pixel at location 
(xi, yi) is inside the coarse pixel at location (x, y). In a homogenous area, 
the spatial prediction performs well, which is applied to calculate a new 
residual: 

=R x y F x y F x y( , ) ( , ) ( , )ho
sp tp
2 2 (17)  

Thus, a weighted function (wh) integrates the two residuals (i.e., Rho 

and R) using a homogeneity index for residual compensation. The final 
prediction of FSDAF can be expressed as 

= + + × ×
=

F x y F x y W F x y n R x y w x y( , ) ( , ) ( ( , ) ( , ) ( , ))
i

n

i
tp

i i i i h i i2 1
1

s

(18) 

where Wi is the weight of a similar pixel as that of the Fit-FC. 

2.4. Parameter settings of the six spatiotemporal fusion methods 

Based on previous studies (Gao et al. 2006; Song and Huang 2013;  
Rao et al. 2015; Wang and Atkinson, 2018; Zhu et al. 2016; Zurita-Milla 
et al. 2008), the parameters of the six spatiotemporal fusion methods 
were carefully tuned for different experimental sites and different re
solution ratios. Table 4 shows the key parameters of UBDF, LMGM, 
STARFM, Fit-FC, and FSDAF. Note that we set the same values for the 
parameters with similar functions in different methods, to achieve a fair 
comparison (i.e., similar neighboring pixel smoothing in STARFM, Fit- 
FC, and FSDAF). The key parameters of the OPDL are shown separately 
in Table 5 as they are very different from those of the other five fusion 
methods. The patch size of the dictionary representation in the two 
layers was consistently set as 3 and 4 for all of the experimental sites 
and resolution ratios. The fusion methods were implemented with their 
authors' source codes except that UBDF was rewritten by ourselves. 
Among them, The source codes of STARFM, FSDAF, and Fit-FC are 
publicly available (https://www.ars.usda.gov/research/software/ 
download/?softwareid=432; https://github.com/qunmingwang/Fit- 
FC; https://xiaolinzhu.weebly.com/open-source-code.html). 

3. Results 

3.1. Standard comparison 

The performances of the six methods at the three sites were eval
uated using the ideal simulation data. Table 6 shows the averaged 
RMSE and r for each method. In general, Fit-FC performed best, fol
lowed by FSDAF. Among the other four methods, STARFM performed 
better than UBDF, LMGM, and OPDL. As shown in Fig. 8, all the 
methods performed worse when the ADRI increased, which is similar to 
previous study (Xie et al. 2018), while Fit-FC and FSDAF always gen
erated better results than the other four methods for all the images in 
the time series. 

3.2. Geometric misregistration 

The performances of the six methods with the simulated mis
registration errors between the coarse and fine images are presented in 
this section. The extent of misregistration was quantitatively measured 
as the shifting pixel distance. Based on a visual comparison of the NDVI 
fusion results (Fig. 9), there are few distortions of the results fused by 
Fit-FC under eight pixel shifting. However, the results fused by the 
other five fusion methods are obviously different from the reference 
results without geometric errors. When evaluated by quantitative in
dices (Fig. 10), it is apparent that the accuracy of each method gen
erally decreases as the shifting distance increases. Fit-FC is the most 
robust method for misregistration, followed by UBDF, as their evalua
tion index values vary the slowest. The other four methods, LMGM, 
STARFM, OPDL, and FSDAF, are more sensitive to the geometric error, 
as shown in Fig. 10 (a) and (b), where they all have sheer accuracy 

Table 3 
Common variables used in different spatiotemporal fusion methods.    

Symbol Meaning  

(x, y) Geolocation of specific pixel 
t1 Base time 
t2 Predicted time 
C1 The input coarse image at t1 
C2 The input coarse image at t2 
F1 The input fine image at t1 
F2 The output image at t2 

The moving window of pixel (x, y) 

Table 4 
Key parameters of five fusion methods (c is the class number, m is the moving 
window size, ns is the number of similar neighboring pixels, ms is the moving 
window size for searching similar neighboring pixels, and R is the spatial re
solution ratio of the coarse and fine images).          

c m ns ms 

CIA GWY Tianjin  

UBDF 6 5 7 5 × 5 N/A N/A 
LMGM 6 5 7 5 × 5 N/A N/A 
STARFM 6 5 7 N/A N/A 1.5 × R + 1 
Fit-FC N/A N/A N/A 3 × 3 1.5 × R 1.5 × R + 1 
FSDAF 6 5 7 N/A 1.5 × R 1.5 × R + 1 
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drops along with an increase in the shifting distance. The results of the 
reflectance images (Fig. A1, Fig. A2, and Fig. A3) are similar to those of 
NDVI. 

3.3. Radiometric inconsistency 

Fig. 11 shows the robustness of different methods to the radiometric 
inconsistency between two sensors (i.e., the linear stretches of Quick
Bird-ASTR2). There are significant distortions in the results fused by 
UBDF, STARFM, and Fit-FC. The results evaluated by the quantitative 
indices are in good agreement with those of the visual comparison. 
When the fusion methods were applied to the datasets with small 
radiometric inconsistencies (Table 1), such as TM-MODIS, TM-AVHRR, 
and ETM + -MODIS, all produced accurate results. However, when 
there were larger radiometric inconsistencies, such as POLDER-ASTR2, 
QuickBird-ASTR2, UBDF, STARFM, and Fit-FC showed larger errors 
than the other methods. In contrast, LMGM, OPDL, and FSDAF are more 

robust to radiometric inconsistencies between the two sensors. As for 
the reflectance images results (Fig. A4, Fig. A5, and Fig. A6), the sen
sitivity of the fusion methods to radiometric inconsistency is consistent 
with that of the NDVI. Especially, Fit-FC and STARFM were very sen
sitive to radiometric bias for green and red bands due to the relatively 
small reflectance values for these two bands. 

3.4. Spatial resolution ratio 

Fig. 13 presents the accuracies of the six fusion methods in the 
scenarios of different spatial resolution ratios between the coarse and 
fine images. In general, all the methods perform worse when the spatial 
resolution ratio increases. Among these methods, OPDL is the most 
sensitive to the spatial resolution ratio. The accuracy of the OPDL fusion 
results decreases the fastest as the spatial resolution ratio increases 
(Fig. 14). STARFM is also highly sensitive to the spatial resolution ratio, 
especially in heterogeneous sites such as CIA. In contrast, UBDF, 
LMGM, FSDAF, and Fit-FC are somewhat less sensitive to the spatial 
resolution ratio. The results of reflectance images are similar to those of 
the NDVI (Fig. A7, Fig. A8, and Fig. A9). 

3.5. Actual MODIS data 

The performances of the six fusion methods based on the actual 
MODIS images were compared with those based on the simulated 
MODIS images (Fig. 15). Generally, the former results were worse than 
those based on the simulated images with only partial errors, and 

Table 5 
Key parameters of the OPDL method (resolution ratio is equal to the product of the scale factors of the two layers).        

Dictionary size (Layer 1, Layer 2) Resolution ratio (scale factors of the two layers) 

4 (2 × 2) 8 (2 × 4) 16 (4 × 4) 32 (4 × 8)  

Experimental site CIA (1500,1500) (700,1500) (700,1500) (50,1500) 
GWY (900,1500) (200,1500) (200,1500) (100,1500) 
Tianjin (600,1500) (200,1500) (200,1500) (50,1200) 

Table 6 
Standard comparison evaluated by averaged RMSE and r at the three sites.            

UBDF LMGM STARFM Fit-FC OPDL FSDAF  

CIA RMSE 0.1533 0.1816 0.1048 0.0816 0.131 0.1006 
r 0.7606 0.7717 0.8756 0.8979 0.8555 0.8758 

GWY RMSE 0.1124 0.1133 0.0729 0.0643 0.0718 0.0669 
r 0.8681 0.8726 0.9207 0.9226 0.9072 0.9175 

Tianjin RMSE 0.1346 0.1296 0.0919 0.0788 0.0843 0.0797 
r 0.8769 0.8749 0.9379 0.9409 0.9329 0.9385 

Fig. 8. The relationship between the prediction accuracy and the temporal variation at the three sites: (a) CIA; (b) GWY; (c) Tianjin. Image number is the number of 
the predicted image in the image time series. 
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further worse than those based on ideal images without any errors. This 
indicates that the simulated geometric and radiometric errors, to some 
extent, account for the performance differences between the experi
ments based on the ideal simulated MODIS data and those based on the 
actual MODIS data. For the experiment based on actual MODIS data, 
Fit-FC performed best at the CIA and GWY sites, whereas OPDL per
formed best at the Tianjin site. FSDAF ranked second for the GWY and 
Tianjin sites, whereas UBDF ranked second for the CIA site. These re
sults imply the complexity of fusion experiments based on actual data. 
However, in general, Fit-FC and FSDAF are still worth recommending, 
considering their relative stability. 

4. Discussions 

To further explore the sensitivity of the six fusion methods to 

various factors, theoretical derivations were conducted to analyze the 
geometric and radiometric error propagation from the input data to the 
results. As for the spatial resolution ratio, its influence was similar to 
the influence of the spatial heterogeneity of the input data. 

For comparison convenience, the different fusion methods (except 
OPDL) were grouped into three types: origin weighting (Eq. (19)), in
crement weighting (Eq. (20)), and regression weighting methods (Eq. 
(21)): 

=F x y w C( , )
i

i i2 2
(19)  

= +F x y F x y w C C( , ) ( , ) ( )
i

i i i2 1 2 1
(20)  

Fig. 9. Based on the fusion results of the CIA site on February 13, 2002, the visual comparison of the NDVI results without geometric errors (e.g., reference) and with 
misregistration (eight pixel shifting) by six methods: (a) UBDF; (b) LMGM; (c) STARFM; (d) Fit-FC; (e) OPDL; and (f) FSDAF. 

Fig. 10. Quantitative comparison of the NDVI fusion results under different levels of geometric errors from 0 to 8 (misregistration pixels): (a) RMSE in CIA; (b) RMSE 
in GWY; (c) RMSE in Tianjin; (d) r in CIA; (e) r in GWY; and (f) r in Tianjin. 
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= × + +F x y w a F b r( , ) ( )
i

i i i2 1
(21) 

where F1i, C1i, C2i, and ri are denoted as F1(Xi,Yi), respectively, for 
simplification. UBDF is a typical origin weighting method. As shown in 
Eq. (19), the fused result is calculated by weighting different coarse 
pixels acquired at t2; the wi is calculated by f f f[ ( ) ( )] ( )T 1 T for 
UBDF. LMGM, STARFM, and FSDAF belong to increment weighting 
methods. As shown in Eq. (20), the fused result is calculated by 
weighting the temporal increments from t1 to t2 of different coarse 
pixels; the wi is calculated in different ways for different algorithms. Fit- 
FC is a novel developed regression weighting method. As shown in Eq. 
(21), the fused result is calculated by weighing the linear transforma
tion of fine pixels acquired at t1; wi is calculated based on a similar pixel 
smoothing strategy. For a convenient theoretical analysis, Eq. (22) was 
further simplified by replacing ri with C2i − aC1i − b: 

= × + +

= +

F x y w a F b C aC b

w a F C C

( , ) ( )

( ( ) )
.i

i i i i

i
i i i i

2 1 2 1

1 1 2
(22)  

4.1. Propagation of geometric errors to fusion results 

As the fine images were considered as reference, the NDVI error 
induced by geometric errors could be expressed only in coarse images. 
Although the geometric error is a kind of systematic error, the induced 
NDVI error is random. Thus, the NDVI error on coarse pixels induced at 
t1 and t2 are assumed to be random variables δC1 and δC2. 
Subsequently, although wi is calculated in different ways by the five 
fusion methods, it is mainly determined by the information of the fine 
pixels that are not affected by geometric errors. Thus, wi could be 
considered as a constant in the error propagation procedure. The fusion 
errors ( F G

2) induced by geometric misregistration can be estimated 
based on the error propagation equation. For UBDF, the fusion un
certainty of UBDF induced by geometric errors can be derived as 

=std F x y w var C( ( , )) ( )G

i
i i2
2

2
(23) 

where std and var are the standard deviation and variance, respectively. 
Similarly, the standard deviation of fusion errors of LMGM, STARFM, 
and FSDAF can be derived as 

=

= +

std F x y var w C C

w var C var C cov C C

( ( , )) ( ( ))

( ) ( ( )) 2 ( , )

G

i
i i i

i
i i i i i

2 2 1

2
2 1 2 1

(24) 

where cov is the covariance. If δC1 and δC2 are independent (i.e., the 
temporal change between t1 and t2 is significant), the term cov 
(δC1i,δC2i) approaches zero. Thus, var(δ(C2i − C1i)) is larger than var 
(δC2i) because of error accumulation, which is also confirmed in the 
simulated data in most cases (Fig. 16). Therefore, LMGM, STARFM, and 
FSDAF are more sensitive to geometric errors than UBDF in general. 
The standard deviation of the fusion error of Fit-FC can also be derived 
as 

=

= +

std F x y var w C aC

w var C var aC cov C aC

( ( , )) ( ( ))

( ) ( ( )) 2 ( , ( ))
.

G

i
i i i

i
i i i i i

2 2 1

2
2 1 2 1

(25)  

As a is the regression coefficient between C1 and C2, var(δ(aC1i))is 
strongly correlated with δC2. Thus, var(δ(C2i − aC1i)) is smaller than 
var(δC2i) because of error compensation, which is also shown in Fig. 16. 
Therefore, Fit-FC is the most robust method for geometric error. 

Analysis of the error propagation of OPDL is difficult because of the 
nonlinear optimization in the dictionary-learning procedure. The sen
sitivity to the geometric error could depend on different learned fea
tures; thus, it varies case by case. 

4.2. Propagation of radiometric error to fused result 

As the radiometric inconsistency is usually a systematic error, the 
linear stretch was used to express the radiometric inconsistency. Thus, 

Fig. 11. Based on the fusion results of the GWY site on December 12, 2004, the visual comparison of the NDVI results without any errors (e.g., reference) and with 
radiometric inconsistency by six methods: (a) UBDF; (b) LMGM; (c) STARFM; (d) Fit-FC; (e) OPDL; and (f) FSDAF. 
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the fusion error of the UBDF induced by the radiometric inconsistency 
can be derived as 

= +

= +

F x y w C w C

w C

( , ) ( )

(( 1) )

R

i
i i

i
i i

i
i i

2 2 2

2
(26) 

where α and β are the coefficients for simulating radiometric incon
sistency (i.e., the slope and intercept in Table 1). The fusion error of the 
UBDF induced by the radiometric inconsistency depends linearly on the 
two stretching parameters. 

For STARFM, LMGM, and FSDAF, the fusion error induced by the 
radiometric inconsistency can be derived as 

= + +

=

F x y w C C w C C

w C C

( , ) [( ) ( )] ( )

( 1)( )

R

i
i i i

i
i i i

i
i i i

2 2 1 2 1

2 1
(27)  

Therefore, the intercept term (β) is removed in terms of ΔC. 
Theoretically, these three methods are less sensitive to radiometric in
consistency compared to UBDF. However, STARFM shows a high sen
sitivity to radiometric inconsistencies in the experiments (Fig. 11 and  
Fig. 12), which is inconsistent with the above theoretical analysis. This 
is because the weight (wi) calculation of the similar pixel smoothing in 
STARFM includes a term of absolute NDVI difference between coarse 
and fine pixels (Eq. (12)), which is sensitive to radiometric incon
sistency. If the weight calculation in the original STARFM is modified as 
that in Fit-FC, the modified STARFM will also be as robust to radio
metric inconsistency as in the theoretical analysis (Fig. 17). 

Similarly, for Fit-FC, the fusion error induced by the radiometric 
inconsistency can be expressed as 

= + + +

= +

F x y
w a F C C w a F C C

W C aC a

( , )
( ( ) ) ( ( ) )

(( 1)( ) (1 ) )

R

i
i i i i

i
i i i i

i
i i i

2

1 1 2 1 1 2

2 1

(28)  

Compared with the second group (LMGM, STARFM, and FSDAF), 
Fit-FC is more sensitive to radiometric inconsistency because α and β 
both influence the fusion result. Subsequently, OPDL is robust to 
radiometric inconsistency because it employs a linear regression model 
for the intercalibration of the coarse and fine images. 

4.3. Influence of spatial resolution ratio on spatiotemporal fusion 

The spatial resolution ratio of the sensors determines the informa
tion gap between the coarse and fine images acquired at the same time. 
In other words, as the spatial resolution ratio increases, coarse pixels 
contain more fine pixels and, thus, become more mixed; this is a similar 
effect as the increase in spatial heterogeneity. Thus, methods that 
perform relatively better in heterogeneous images should also be less 
sensitive to the spatial resolution ratio. As the unmixing module em
ployed in fusion methods can better capture the spatial heterogeneity, 
UBDF, LMGM, and FSDAF, which employ the unmixing module, are less 
sensitive to the spatial resolution ratio than STARFM and OPDL. Fit-FC 
is also relatively less sensitive to the spatial resolution ratio, although 
the unmixing module is not employed in this method. This is because 
only two land cover types (i.e., vegetation and non-vegetation) need to 
be considered in the NDVI fusion; therefore, the linear regression model 
in Fit-FC with two degrees of freedom (i.e., two coefficients a and b) 
plays a similar unmixing role, which is adequate for capturing the 
temporal changes of the two land cover types. Furthermore, it implies 
that Fit-FC is particularly more suitable for the spatiotemporal fusion of 
the NDVI data than of the reflectance data. 

4.4. Method selection and guidance for future research 

The above comparison and analyses can guide the selection of sui
table spatiotemporal fusion methods in applications. In addition to the 
influential factors of geometric misregistration, radiometric incon
sistency, and spatial resolution ratio, the performances of the fusion 
methods mainly depend on the spatiotemporal variations of the input 
datasets. The selection of a suitable method should, therefore, consider 
the influence extent of all the factors, and balance the pros and cons of 
each method according to the characteristics of their data and 

Fig. 12. Quantitative comparison of the NDVI fusion results under different levels of radiometric inconsistencies: (a) RMSE in CIA; (b) RMSE in GWY; (c) RMSE in 
Tianjin; (d) r in CIA; (e) r in GWY; and (f) r in Tianjin. Reference means that there is no radiometric inconsistency. 
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applications. Similar to a recent comparative study (Liu et al., 2019a), 
Fit-FC and FSDAF were shown to have better performances than the 
other three methods (i.e., UBDF, STARFM, and OPDL) for the actual 
MODIS data, indicating that Fit-FC and FSDAF are robust to different 

spatiotemporal variations. For a comprehensive comparison, the ad
vantages and disadvantages of the six fusion methods are summarized 
in Table 7. The most recommended algorithm is Fit-FC, which can 
produce accurate results with high efficiency for NDVI fusion. However, 

Fig. 13. Based on the NDVI fusion results of the Tianjin site on December 25, 2014, the visual comparison under different levels of spatial resolution ratios, from 4 to 
32, by the six methods: (a) UBDF; (b) LMGM; (c) STARFM; (d) Fit-FC; (e) OPDL; and (f) FSDAF. 

Fig. 14. Quantitative comparison of the NDVI fusion results under different levels of spatial resolution ratios, from 4 to 32: (a) RMSE in CIA; (b) RMSE in GWY; (c) 
RMSE in Tianjin; (d) r in CIA; (e) r in GWY; and (f) r in Tianjin. 
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it should be noted that Fit-FC needs to be implemented with radio
metric normalization (Gao et al. 2010; Gevaert and García-Haro 2015) 
considering its sensitivity to systematic radiometric error. FSDAF is 
another favorable method with high accuracy if the geometric mis
registration can be well corrected. 

This study can also provide guidance for the future development of 
spatiotemporal fusion methods. Previous developments in 

spatiotemporal fusion methods were generally designed without con
sidering inevitable geometric and radiometric errors. For example, in
crement weighting (Eq. (20)) is commonly used in a large group of 
fusion methods (e.g., STARFM, LMGM, and FSDAF) because it can 
maintain good spatial details and reduce the radiometric inconsistency 
of sensors to some extent. However, the above analysis indicates that it 
is highly sensitive to geometric error. In contrast, the regression model 

Fig. 15. Quantitative comparison of the NDVI fusion results based on actual MODIS images: (a) RMSE in CIA; (b) RMSE in GWY; (c) RMSE in Tianjin; (d) r in CIA; (e) 
r in GWY; and (f) r in Tianjin. Ideal, Simu, and Actual imply that the input coarse images are simulated ideally without any errors, simulated with geometric and 
radiometric errors, and are the actual MODIS images, respectively. 

Fig. 16. Comparison of the variances of the three weighting terms in the three sites: (a) CIA, (b) GWY, and (c) Tianjin; image number is the number of the predicted 
image in the image time series. Fine images were shifted 8 pixels before aggregation. 
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employed in Fit-FC is resistant to geometric errors, whereas it is sen
sitive to radiometric inconsistency. Therefore, combining the strength 
of Fit-FC and increment weighting might be a promising strategy in the 
future development of novel methods; other techniques that can miti
gate these errors should also be taken into consideration. 

It should be noted that this study did not completely consider all the 
influential factors. The geometric and radiometric errors were simply 
simulated in this study by pixel shifting and linear transformation. 
However, there are more complex errors between sensors, including 
complex geometric errors from imagery scaling, rotation, and skewing 
(Dai and Khorram 1998; Toutin 2004) and radiometric inconsistencies 
caused by nonlinear distortion, such as analogous bands between sen
sors with different spectral response functions, radiometric resolution 
difference, and the angle effect that solar-sensor geometry bidirectional 
reflectance distribution function changes over time (Chander et al., 
2013b; Gao et al. 2006; Roy et al. 2008). These errors could cause large 
uncertainties in the fusion results. This is shown in the actual MODIS 
experiments and should be considered carefully in the future. The se
lection of typical fusion methods might be another issue. It is impossible 
in this study to compare all spatiotemporal fusion methods due to 
limitations of source code availability and heavy work. Notwith
standing the as much representative as possible methods that we se
lected, some better methods were probably missed. Organizing a pro
gramming contest with a standard dataset and assessment protocol 
could be a solution for engaging more algorithm developers and gen
erating a fair comparison of the different spatiotemporal fusion 
methods in the near future. 

Recently, with advances in sensor technology and an increased 
number of launched satellites, more and more remotely sensed data, 
with improved spatial resolution and temporal frequency for land sur
face observations, are becoming available for the public. For example, 

Sentinel-2A and e 2B provide high spatial and temporal resolution data 
for vegetation index (VI) time series together with Landsat free of 
charge (3–4 days revisit). Commercial satellite constellations, such as 
Planet, can provide daily observations at 5 m spatial resolution, al
though it is still expensive for most users. This progress reduces the 
urgency of data fusion approaches for the current VI reconstruction. 
However, the significance of data fusion approaches still remains for 
long-term data analysis, due to the lack of data in the earlier period. 
Moreover, sensors with fine spatial resolution, such as Sentinel-2, have 
made progress in enhancing temporal frequency, although they are still 
not adequate in many study areas with heavy cloud contamination 
(Wang and Atkinson 2018). Thus, spatiotemporal fusion will still be a 
widely used technique in future researches (Kimm et al. 2020; Moreno- 
Martínez et al. 2020). 

5. Conclusions 

In addition to the spatiotemporal variations of the input datasets, 
this study presents the necessity of considering the sensitivity of fusion 
methods to three influential factors (i.e., geometric misregistration, 
radiometric inconsistency, and spatial resolution ratio) when they are 
employed in real life applications. These influencing factors could affect 
different fusion methods to different degrees. The simulation experi
ment and theoretical analysis showed that Fit-FC achieved the best 
performance for both sites, with the best resistance to geometric errors 
among the six typical spatiotemporal fusion methods when the radio
metric inconsistency between sensors was negligible, suggesting that it 
is the first recommended algorithm for NDVI time-series reconstruction. 
However, Fit-FC is sensitive to systematic radiometric error and thus 
performs poorly if there is a significant radiometric inconsistency be
tween the two sensors. The FSDAF could also generate satisfactory re
sults through its ability to reduce radiometric inconsistency; however, it 
is sensitive to geometric errors. Therefore, precise geometric registra
tion is required when using FSDAF. These findings could not only help 
users select suitable methods according to the characteristics of their 
data and applications, but could also provide guidance for developers in 
designing novel algorithms, more robust to different influential factors 
in the future. 
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Fig. 17. Quantitative comparison of the NDVI fusion results of the STARFM_Mod_[Site] (i.e., results of the modified STARFM in different sites) under different levels 
of radiometric inconsistencies: (a) RMSE, and (b) r. Reference means that there is no radiometric inconsistency. 

Table 7 
The pros and cons of the six typical fusion methods under comparison of dif
ferent influential factors (worst: 1, good: 2–4, best: 5). Due to the dominance of 
the spatiotemporal variations in the fusion method performances, a triple 
weight has been used in the calculations of the total scores. 
(Variations = Spatiotemporal variations; Ratio = Spatial Resolution ratio).        

Method Variations Geometric Radiometric Ratio Total  

UBDF 2 3 2 3 14 
LMGM 1 2 5 3 13 
STARFM 3 2 3 1 15 
Fit-FC 5 5 1 5 26 
OPDL 3 3 5 1 18 
FSDAF 4 2 5 3 22    
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Appendix A. Appendix 

Fig. A1. Quantitative comparison of green band fusion results under different levels of geometric errors, from 0 to 16, (misregistration pixel): (a) RMSE in CIA; (b) 
RMSE in GWY; (c) r in CIA; and (d) r in GWY. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 

Fig. A2. Quantitative comparison of red band fusion results under different levels of geometric errors, from 0 to 16, (misregistration pixel): (a) RMSE in CIA; (b) 
RMSE in GWY; (c) r in CIA; and (d) r in GWY. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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Fig. A3. Quantitative comparison of NIR band fusion results under different levels of geometric errors, from 0 to 16, (misregistration pixel): (a) RMSE in CIA; (b) 
RMSE in GWY; (c) r in CIA; and (d) r in GWY. 

Fig. A4. Quantitative comparison of green band fusion results under different levels of radiometric inconsistencies: (a) RMSE in CIA; (b) RMSE in GWY; (c) r in CIA; 
and (d) r in GWY. Reference means that there is no radiometric inconsistency. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. A5. Quantitative comparison of red band fusion results under different levels of radiometric inconsistencies: (a) RMSE in CIA; (b) RMSE in GWY; (c) r in CIA; and 
(d) r in GWY. Reference means that there is no radiometric inconsistency. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. A6. Quantitative comparison of NIR band fusion results under different levels of radiometric inconsistencies: (a) RMSE in CIA; (b) RMSE in GWY; (c) r in CIA; 
and (d) r in GWY. Reference means that there is no radiometric inconsistency. 
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Fig. A7. Quantitative comparison of green band fusion results under different levels of spatial resolution ratios, from 4 to 32: (a) RMSE in CIA; (b) RMSE in GWY; (c) r 
in CIA; and (d) r in GWY. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. A8. Quantitative comparison of red band fusion results under different levels of spatial resolution ratios, from 4 to 32, (a) RMSE in CIA; (b) RMSE in GWY; (c) r 
in CIA; and (d) r in GWY. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. A9. Quantitative comparison of NIR band fusion results under different levels of spatial resolution ratios, from 4 to 32: (a) RMSE in CIA; (b) RMSE in GWY; (c) r 
in CIA; and (d) r in GWY.  
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