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Abstract— Occlusion effect, an inherent problem of terrestrial
laser scanning (TLS) measurements, limits the potential of TLS
data in tree attribute estimation. Multiple scans seek to mitigate
this effect to provide enhanced scan completeness. However, the
numbers and locations of the scans (i.e., the scan design) are
usually determined via a subjective assessment of the tree density,
spatial patterns of trees, and attributes to be derived. These
could cause suboptimal scan completeness and limit tree attribute
estimation. This study proposed an iterative-mode scan design to
minimize the occlusion effect. First, we introduced a PoTo index
based on visibility analysis to evaluate how many trees can be
scanned from a location and to select effective candidates for
the optimal TLS location. Second, we introduced a cumulative
degree of ring closure (CDRC) to quantify the scan completeness
for each candidate and determine the optimal TLS location. The
TLS data sets of virtual forests with field-measured and synthetic
plot parameter settings were simulated according to iterative- and
regular-mode designs by using a Heidelberg light detection and
ranging (LiDAR) Operations Simulator (HELIOS). The results
demonstrated that an iterative-mode design can improve the scan
completeness of trees compared to the regular-mode design. The
tree attribute (diameter at breast height (DBH), tree height, stem
curve, and crown volume) estimates of the iterative-mode design
were less erroneous than those of the regular-mode design (e.g.,
the root-mean-square error (RMSE) could decrease the stem
curve estimation by 38% and the crown volume estimation by
15%). This study suggests that the iterative-mode design can
obtain an improved quality of the TLS data, especially for dense
stands.
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I. INTRODUCTION

TERRESTRIAL laser scanning (TLS), also known as
ground-based light detection and ranging (LiDAR),

is a powerful tool for quantifying 3-D forest structures
with unprecedented levels of detail and geometric accu-
racy [1], [2]. The terrestrial platforms, compared with airborne
and spaceborne platforms, allow comprehensive beam cover-
age of the area of interest [3]. Terrestrial LiDAR facilitates
detailed forest modeling [4] and the quantification of tree
attributes [5]–[7], e.g., stem curve, stem volume, biomass,
and leaf area density. Highly detailed forest measurements
also serve as references for validating the retrieval variables
from airborne and spaceborne platforms [8] and for simulating
radiative transfer within the forest canopy [4].

However, various field conditions can affect the quality and
characteristics of the TLS point cloud data [2], [9], [10]. These
conditions generally include the weather (e.g., wind and fog)
and forest (e.g., tree density, architecture, and species) [3],
of which complex forest structure induces an occlusion effect
by shading other objects in the direction of the laser propaga-
tion. The occlusion causes unobserved volumes and missing
elements, which limit the potential of TLS and lead to uncer-
tainty in the tree attribute measurements [11]–[13].

Single- and multiscan approaches have been reported for
the data acquisition of a single plot. Previous studies have
shown that up to 40% of all the trees in a sample plot might
not be detectable with a single scan from the plot center in
the single-scan approach, [12], [14], [15]. In the multiscan
approach, scans are coregistered to merge information from
various viewpoints. Hence, the multiscan approach has the
potential to provide full coverage of the stem surface and is
the most accurate technique for measuring forest plots [3].
Previous studies have identified that the occlusion effect can
be largely eliminated by coregistering multiple scans [3], [16].
However, because general rules for determining the opti-
mal scan design have not been established, the locations
and numbers of multiple scans are usually decided by the
operators [17], [18]. For example, the commonly used design
(i.e., regular-mode design) is composed of a scan near the
center with the other scans regularly distributed inside or out-
side the plot. This subjective decision could lead to suboptimal
coverage and biased sampling of a targeted area, which cannot
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be corrected afterward [19]. Increasing the number of scans
allows for a reduction in the occlusion effect and achieves
more complete data [10]. However, this process requires addi-
tional time for the field data acquisition [20], e.g., replacing
the coregistration reflectors and moving all the equipment and
scanners. Additionally, excessive scans imply great effort in
data processing and storage. In particular, manual or semiau-
tomated coregistration is a challenging work that requires clear
tie points and complex computations. Therefore, arbitrarily
configuring the number of scan locations without considering
the practical situation of the occlusion effects in forest plots
could cause redundant yet incomplete sampling in spite of
high labor and time costs. This circumstance motivates the
development of a scan design that considers the practical
situation of occlusion effects and that has the potential to
maximize the scan completeness and improve the TLS data
quality.

Previous studies have demonstrated that the occlusion effect
is highly related to the spatial pattern of the trees, the tree
density, and tree size [15], [21]. The 2-D cross section of a
3-D forest retains the spatial pattern, tree density, and size
regardless of the height information and 3-D shape, which
provides the possibility of quantifying the occlusion effect in
forest plots. Furthermore, the quantitative value of the occlu-
sion effect can be an indicator for determining the optimal TLS
locations. In this study, we developed a new scan design of the
TLS locations, namely, iterative-mode design, by introducing
the map of the tree locations and tree sizes because this map
is available from various measurement methods [22], [23].
Quantitative indicators associated with the occlusion effect
can be calculated based on the map and then used to derive
the optimal TLS locations. The design aims at maximally
mitigating the occlusion effect and achieving complete and
low-redundant sampling through multiple scans. Importantly,
this study will offer insights into the influence of the scan
design on the scan completeness and tree attribute estimation
(diameter at breast height (DBH), tree height, stem curve, and
crown volume) based on the simulated TLS point clouds.

In this study, our main research questions are as follows:
1) How can optimal scan locations be designed to minimize
the occlusion effect? 2) What are the performances of the
proposed scan design on the scan completeness and tree
attribute estimation? 3) What are the influences of the spatial
pattern of trees, tree density, and tree size on the occlusion
effect, optimal scan locations, and estimation accuracy?

II. METHODS

A. Iterative-Mode Scan Design

We assume that an individual tree can be represented by
an enclosed circle in 2-D space. The tree circle diameter is
assigned to either DBH or crown diameter, depending on
different applications. For example, the tree circle diameter
equals the DBH for stem mapping, whereas it equals the crown
diameter for crown variable estimation (e.g., leaf area density).

The iterative-mode scan design is developed to optimize
the numbers and locations of the TLS scans based on two
aspects: 1) the number of trees that can be scanned from a

location and 2) the angular percentage of a tree scanned from
a location. Correspondingly, we introduced an index, named
the PoTo index, based on the visibility analysis to describe
the percentage of the number of trees that can be scanned
at a location in a given plot. We additionally introduced the
cumulative degree of ring closure (CDRC) to assess the scan
completeness of each tree for the locations in the iterative
processes.

The proposed algorithm for the iterative-mode scan design
consists of five main steps: 1) inputting a data table that
contains the x–y coordinates of the centers and radii of the tree
circles; 2) producing a PoTo index map of the forest plot; 3)
selecting the effective candidates for the optimal TLS location;
4) determining the optimal TLS location; and 5) determining
whether additional scans and iterations are needed. Each
iteration contains these five steps. We developed a customized
script package programed in MATLAB R2018a (MathWorks,
Inc., Natick, MA, USA) to implement the algorithm for the
iterative-mode design. The step-by-step workflow is illustrated
in Fig. 1 and is described next.

1) Producing the PoTo Index Map: The PoTo index of a
location is defined as the percentage of the number of trees
that can be scanned from this location [see (1)]. It is introduced
to assess how many trees can be scanned from a TLS location

∅i(x, y) = Vi (x, y)/Ni · 100% (1)

where ∅i(x, y) refers to the PoTo index of a location (x, y) in a
plot in the i th iteration, Vi(x, y) represents the number of tree
circles that can be observed from the location (x, y), and Ni is
the total number of tree circles in the i th iteration and will be
updated in each iteration. In the first iteration, Ni equals the
total number of trees in the plot. In subsequent iterations, Ni

is the total number of trees that need additional scans (see step
1 in Fig. 1). We used a visibility analysis method to calculate
the PoTo index for all locations in the forest plot. Visibility
analysis produces the areas (Fig. 2(a), green areas) that are
visible to a location by calculating the interactions between the
sightlines and objects [21], [24]–[26]. Appendix presents the
detailed computation of the visibility analysis. In our imple-
mentation, instead of computing the visible areas observed
from each location one by one, we computed the areas that
were visible to each tree location and then produced the PoTo
index map. First, we computed the visible areas to produce
a visibility map for each tree location [Fig. 2(a)]. Each x–y
coordinate within the visible areas [i.e., green areas, Fig. 2(a)]
was assigned the value of 1, and the x–y coordinate within
the invisible area was assigned 0. Second, the visibility maps
for all tree locations were summed up into a global visibility
map for the entire forest plot. Therefore, the value of an
x–y coordinate in the global visibility map of the plot refers
to how many times that coordinate can be observed from all
tree locations. This is equivalent to how many trees can be
observed from this coordinate according to the reciprocal rule.
Third, the PoTo index map [Fig. 2(b)] was derived by dividing
the visibility map of the plot with the total number of trees in
the current iteration [see (1)].

The PoTo index map quantifies the occlusion effect of all
spatial locations in the plot. Apparently, a high PoTo index
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Fig. 1. Implementation of the iterative-mode scan design, where the scan time i equals 1, 2, . . . , and the threshold Th is defined as 85% of the maximum
PoTo index. The threshold TE refers to the expected CDRC set by the operator. Tree circles that need more scans change at each iteration. �δ refers to the
difference in the detection rate between the neighboring two iterations.

Fig. 2. Illustration of the visibility analysis method to produce a PoTo index map for a forest plot. (a) Four visibility maps derived from four different tree
locations and (b) PoTo index map of this plot.

implies a low occlusion effect, whereas a low PoTo index
indicates a high occlusion effect [Fig. 2(b)]. Furthermore,
given that the high-PoTo-index values might be located in a
small area where the neighboring areas have low-PoTo-index
values, a convolution process was conducted onto the PoTo
index map to alleviate this problem. The PoTo index map

serves as the base data to select the optimal TLS location
and is updated in each iteration.

2) Selecting the Effective Candidates for the TLS Location:
In an iteration, all the candidates of a TLS location were
derived by extracting the high-PoTo-index positions via a
specific threshold (Th , i.e., 85% of the maximum PoTo index)
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Fig. 3. Illustration of the gridded downsampling of all candidates for the optimal TLS location based on the PoTo index map. (a) Map of all TLS candidates.
(b) Selection of the effective candidates of the optimal TLS location in each grid.

in the PoTo index map [Fig. 3(a)]. Considering that the adja-
cent locations have similar PoTo index values, we downsam-
pled all the candidate locations by a gridded downsampling
of the PoTo index map. Technically, a coarse grid array
(cell width = 2 m) was created only for the regions of the
candidates [red grids in Fig. 3(b)]. Only the candidate with
the highest PoTo index value in each grid was reserved [white
dots in Fig. 3(b)]. These reserved candidates were the effective
candidates of the optimal TLS location for further processes.

Additionally, to avoid too close a distance between TLS
and trees, we set a buffer area for each tree with 1.3 times
the tree radius [small blue circles in Fig. 3(b)]. We also added
a circle-shape buffer area (a radius of 5 m) for the optimal
locations selected in previous iterations [the large blue circle
in Fig. 3(b)]. This strategy has the potential of preventing too
short of a distance among the scan locations, and it benefits
maximization of the scan’s completeness.

3) Determining the Optimal TLS Location by CDRC: The
CDRC is defined as the angle of the union of scanned sectors
for a tree circle (e.g., αA

1 and αA
2 in Fig. 4). The CDRC value

is 0◦ when the circle is not scanned at all and equals 360◦
when the circle is completely scanned. The scan completeness
of each effective candidate for the optimal TLS location was
quantified through the proposed CDRC index; hence, this
index can determine the optimal TLS location. The optimal
TLS scan (x i

os, yi
os) is located at the position where the CDRC

sum of all the tree circles reaches the maximum

(
x i

os, yi
os

) = argmax
Ni∑

j=1

α j
(
x i

ec, yi
ec

)
(2)

where i refers to the i th iteration, α j (x i
ec, yi

ec) is the CDRC
for the j th circle, and (x i

ec, yi
ec) refers to the location of the

effective TLS scan candidate. The subscripts os and ec mean

Fig. 4. Illustration of the CDRC of tree circles with two scans.

the optimal TLS location and the effective candidate of the
optimal TLS location, respectively.

4) Determining Additional Scans or Stop: We used the
detection rate (δ) as an indicator to stop running or continue
iterations for additional TLS scans. It is defined as the per-
centage of the number of trees that meet the requirement
of operator-expected CDRC (TE) out of the number of all
trees in the plot (Ntotal) [see (3)]. Note that I ( j) is an
indicator function in (3). If the detection rate is larger than
95%, the program will stop, and the optimal TLS location
in each iteration will be exported. If the difference in the
detection rate between two adjacent iterations is less than
5% and detection rate is larger than 80%, the program will
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also stop in consideration of the low contribution made by the
subsequent scan; hence, all the optimal TLS locations will be
outputted except for the one in the last iteration. Otherwise,
new iterations will be conducted for additional scans

δ =
Ntotal∑
j=1

I ( j)/Ntotal · 100%, I ( j) =
{

1, CDRC j ≥ TE

0, CDRC j < TE.
(3)

It should be noted that TE is an important parameter for
the determination of stopping. If the CDRC of the j th tree
circle (CDRC j) reaches the TE defined by the operator, then
it is unnecessary to conduct additional sampling for this tree.
Otherwise, further sampling is required for this tree. Note
that the tree circles used in the new iteration (Ni ) become
the tree circles whose CDRC values are smaller than TE.
Correspondingly, the PoTo index map will be updated by
summing up the visibility maps of these tree circles. In
addition, the TE value in the first iteration is usually different
from the subsequent iterations, because the CDRC of trees
in the first iteration is definitely less than 180◦. The TE is
set to be a value less than 180◦, e.g., 120◦. For subsequent
iterations, the CDRC of the trees can exceed 180◦, and the
TE is, therefore, set to be a value larger than 180◦, e.g., 200◦.
We also suggest setting a larger value for TE for the forest
plot with a larger average tree circle diameter and vice versa.
In addition, the value of TE also depends on the tree attributes
to be derived.

B. Regular-Mode Scan Design

In the multiscan approach, the commonly used scan design
(i.e., regular mode) is composed of a scan at the center and
the other scans regularly distributed inside or outside the plot
[2]. In field plots, the regular-mode designs of five-scan mea-
surements included one scan at the center and the other four
scans distributed at the four plot corners. If the scan location
was overlapping with stems, the scan would be slightly shifted
[20]. In synthetic plots, the regular-mode design consisted of
four scans in the central region and four scans in the four
corners of the plot, for eight-scan measurements. Given that
dense scans distributed in systematic grids can achieve more
complete coverage for all trees in the plot [3], the regular-mode
design of 16-scan measurements contains four scans located
in the central region and the remainder distributed along the
plot borders (see Section IV-D).

III. MATERIALS

A. Forest Plots and Tree Models

Two data sets for the study were generated using field and
synthetic plot parameter settings. The field plot parameters
were derived from six public forest plots provided by the
international TLS benchmarking project launched by the Fin-
ish Geospatial Research Institute, Masala, Finland [27]. The
corresponding data set was used to assess the performance of
different scan designs on stem attribute retrieval when taking
forest inventories. The use of this data set facilitated a com-
parison with previous studies (see [15]) in the framework of
the benchmarking project. The synthetic plot parameters were

set based on three types of classical spatial distributions in a
natural forest. The corresponding data set aims at assessing
the performance of different scan designs on crown attribute
estimation. The investigation using this data set is also valuable
for fine forest reconstruction.

1) Field Plot Parameter Settings: The six public field
plots were categorized into “easy,” “medium,” and “difficult”
plots according to the complexity of the tree architecture
(Table I). The stem visibility at ground level, stem den-
sity, and DBH distribution was considered in the complexity
assessment. Earth surface of all plots is flat with a plot size
of 32 m × 32 m in a southern boreal forest in Evo, Finland
(61.19◦ N, 25.11◦ E). The field plot parameters, including
the tree location, height, and DBH, were collected by the
integration of field inventories and manual measurements from
the TLS data. For the details about these plots, please refer to
the original article about the international TLS benchmarking
project [27].

We used the field plot parameters and a basic broadleaf
tree (Betula pendula) model [Fig. 5(a) and (b)] to generate
six virtual forest scenarios, thus ensuring consistency with
the field actual forest plots in terms of scene structures.
The basic tree model was created by a 3-D realistic tree
structure modeling software, OnyxTREE BROADLEAF 7.0,
according to the exponential relationship between the tree
height and DBH (Table I). The virtual forest scenarios were
technically established by replicating the basic tree model and
then transforming it (i.e., scale, translate, and rotate) according
to the field tree location, tree height, and DBH [Fig. 6(a)–(f)].
The virtual forest models were resampled into point clouds
with a resolution of 1 mm to serve as reference point clouds
for the simulated TLS point clouds. In this data set, we
parameterized each tree as a circle with the radius of its DBH
in the scan design optimization.

2) Synthetic Plot Parameter Settings: Three types of spatial
patterns (i.e., random, row, and clumped) were used to estab-
lish the synthetic forest plots within the flat square ground
surface (50 m × 50 m). These patterns have the ability to
represent various natural forests and plantations while char-
acterizing different occlusion effects. In each spatial pattern,
three plots with a specific number of trees were generated
(Table I).

We used a fully grown broadleaf tree (Betula pendula)
model [Fig. 5(c)] to generate different forest plot models
according to the defined patterns. The tree height is 8.934 m,
and the crown base height is 1.003 m. The trees within a plot
were completely the same without any scale transformation.
No overlapping among the trees occurs for random and row
patterns, whereas slight overlapping among several tree crowns
is observed for the clumped pattern [Fig. 6(g)–(i)]. The radius–
height profile [Fig. 5(d)] shows that the maximum radius of
the tree crown is almost 1.5 m. Thus, we parameterized the
tree as a circle with a radius of 1.5 m in this data set.

B. TLS Data Simulation With HELIOS

The Heidelberg LiDAR Operations Simulator (HELIOS)
provides a tool for simulating the multipulse data, especially
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TABLE I

OVERVIEW OF DATA SETS WITH FIELD (“EASY,” “MEDIUM,” AND “DIFFICULT”) AND SYNTHETIC
(RANDOM, ROW, AND CLUMPED) PLOT PARAMETER SETTINGS IN THIS STUDY

Fig. 5. Tree models used to generate virtual forest scenarios. (a) Tree model for the field forest plots and (c) tree model for the synthetic forest plots and
(b) and (d) their vertical profiles.

for airborne and terrestrial LiDAR observations [28]. The
HELIOS uses a ray casting method to accurately simulate
the 3-D point clouds without simplifying the multiple scat-
tering mechanisms. It considers most of the actual technical
specifications, such as beam divergence, pulse energy, sensor
area, Gaussian temporal and spatial shapes of the pulse,
optical properties of every element in the scene, and multiple
scattering. The reflectance of every element is assumed to

be Lambertian. Extensible mark-up language (XML) files are
used to define the scanner, platform, and scene models and to
configure the behavior of the modules. A graphical interface of
interactive real-time 3-D visualization of the simulated surveys
is provided in the HELIOS.

For the configuration of the laser scanner in this study,
the parameters of the Riegl VZ-400 model were adapted
(Table II). The scanner was installed at 1.5 m above ground
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Fig. 6. Visualization of the forest plots used in this study. (a)–(f) Simulated TLS point clouds of the field forest plots (“easy,” “medium,” and “difficult”).
(g)–(i) Three examples of the simulated TLS point clouds of the synthetic forest plots (random, row, and clumped distributions).

TABLE II

CONFIGURATION OF THE TLS SIMULATION BY

THE HELIOS IN THIS STUDY

level. The beam divergence was fixed at 0.35 mrad. The scan
line frequency and pulse frequency were adjusted to assure
that both the horizontal and vertical angular increments were
0.036◦ with a field of view of 360◦ × 310◦, which were

consistent with those in the benchmarking project [27]. In each
plot, hemispherical TLS measurements were simulated on the
basis of the iterative- and regular-mode scan designs.

C. Preprocessing of the Simulated TLS Point Clouds

The preprocessing of the simulated TLS point clouds
includes coregistration of multiple scans, extraction of indi-
vidual trees, and voxelization of point clouds. Note that the
voxelization step was applied only for the point clouds of the
synthetic plots because the voxels were used to analyze the
occlusion effect of the tree crown.

After the TLS simulation for a scan design, all the simulated
hemispherical laser measurements were coregistered into a
comprehensive data set of 3-D point clouds for one plot. The
hemispherical scans of a plot have an identical coordinate sys-
tem defined by the HELIOS; thus, the coregistration process
does not induce any error.

The point cloud of each individual tree was extracted from
the comprehensive point clouds according to the property
value of the OBJ_ID field in the output text file of the HELIOS
simulation. The OBJ_ID is the identity of the respective object
in the scene, starting with “0” and corresponding to the order
of objects as stored in the scene XML file. No error exists
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during the extraction process for all the field and synthetic
plots. The extracted point clouds were used to analyze the
completeness of the TLS scan sampling and to estimate the
tree attributes, i.e., DBH, tree height, stem curve, and crown
volume.

Although point clouds can precisely describe the 3-D
structure of trees, they cannot be directly used to assess
the occlusion effect because points have no area or volume.
Comparably, the voxelized point cloud is a suitable data format
for analyzing the vertical distribution of the occlusion effect.
A voxel is defined as a cubic volume that can more homoge-
neously characterize the crown structure than the point cloud.
The reference and simulated point clouds of each tree crown
were voxelized into 3-D voxel arrays. The voxel size was set to
be 10 cm×10 cm×10 cm to ensure a sufficiently detailed level.
This voxel size is reasonable because the footprint of the laser
beam is less than 10 cm within the 50 m × 50 m plot. This
setting is also in line with the recommendations of previous
studies [16], [29]. All the voxels were identical in volume and
shape but different in the number of points that they contained.
To evaluate the vertical distribution of the occlusion effect,
crown voxels were classified into two classes with the “filled”
and “other” attributes based on the beam–voxel interaction [6].
The “filled” attribute was assigned to the voxels that had at
least one point intercepted with a laser beam (nonoccluded).
The “other” attribute was assigned to the voxels, wherein the
laser beams were obstructed before passing these voxels (not
reached by any laser beam, i.e., occluded) and the voxels
without any interaction with beams (the laser beam passed).
This classification was conducted for both the reference and
simulated TLS point clouds.

D. Methods for Tree Attribute Estimation

This section details the algorithms for estimating the tree
attributes from the simulated point clouds and deriving the ref-
erence information from the reference point clouds. As shown
in Table I, the DBH, tree height, and stem curve were extracted
for the field plots, while the crown volume was estimated for
the synthetic plots.

1) DBH and Tree Height: In the DBH calculation, we first
extracted a horizontal slice from 1.25 to 1.35 m above the
calculated tree position. The z-axis information of this slice
was removed; thus, the slice was squeezed into a 2-D point
cloud. The DBH was then computed by a least-squares regres-
sion method with an algebraic estimation of the circle and a
geometric reduction of the squared distances to the computed
circle [30]. The tree height was obtained through the difference
in the z coordinates between the highest point of the tree point
cloud and the tree base position.

2) Stem Curve: The premise of stem curve estimation
is the extraction of a stem point cloud from an individual
tree point cloud. The simulated stem points of each tree
were identified based on the known tree positions and the
convex hull of the corresponding reference stem points. The
obtained points were dominated by the stem component and
mixed by a small portion of branches and foliage points of
neighboring stems. The stems within the tree crowns were

partially missing or blurred because of the occlusion effect.
The severity of this problem varied from plot to plot and from
tree to tree, depending on the stand situations (stem density
and foliage area density) in the plots.

In the stem curve calculation, an open-source forest TLS
data processing tool called 3DForest was applied [31]. It can
derive the central coordinates and diameters of the fitted circles
at different height layers, starting from the lowest height of
the stem points followed by a specific height increment (i.e.,
20 cm in this study) using a Randomized Hough Transform
algorithm [31]. If the number of points found at a particular
height layer is less than three, the diameter at this height
cannot be estimated and was assigned to null in the 3DForest.
To evaluate the completeness of the stem points and the stem
curve estimation accuracy for individual stems, we introduced
a stem completeness index (SC), which is defined as the ratio
of the number of measured diameters to the number of height
layers for a stem [15]. This index was calculated separately
for the part of the stem in the crown (SCB) and the part of
the stem below the crown (SCI), for all the plots.

3) Crown Volume: The crown volume of an individual tree
was calculated using the alpha shape algorithm with an alpha
radius of 0.3 m after removing the stem points below the crown
base height [7]. The alpha shape function provides a concave
hull to capture the exact crown shape. This cube size was
selected according to the point density. The reference crown
volume was 44.466 m3 in synthetic plots.

IV. RESULTS

A. Visualization of the PoTo Index Maps and Optimal TLS
Location

The PoTo index maps of three field plots in the first
and second iterations are shown in Fig. 7. The spatial pattern
of the PoTo index varies with the iterations because the input
trees are different for each iteration (see Section II-A4 and
Fig. 1). For the first iteration [Fig. 7(a), (c), and (e)], the areas
with a relatively high PoTo index (yellow areas) are usually
located in the central and sparse regions. In contrast, the lower
values are mainly distributed at the border and corner regions.
Consequently, the first TLS location tilts to the central and
sparse area of the plot, which is also reflected in the regular-
mode design. For the second iteration [Fig. 7(b), (d), and (f)],
the distribution of high values is spatially dispersed, and high
values can appear in any region. At the same time, the location
of the first TLS location and its adjacent area characterize low
values, which indicates that different TLS locations would not
be overly concentrated. With the integral action of the PoTo
index map and CDRC statistic, the second TLS location was
selected at the position away from the first location, which
usually presented at the border and corner regions, and it
provided optimally complementary sampling to the first TLS
scan. The spatial pattern of the PoTo index also depends on
the stem density, tree size, and tree distribution. A higher stem
density leads to more severe occlusion effect. Note that the
range of the colormap is different for different plots. Therefore,
quantification of the occlusion effect can provide an indicator
for exploring the optimal TLS locations.
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Fig. 7. Maps of the PoTo index for three field plots and visualization of determining the optimal TLS locations (red stars) in the first and second iterations:
(a), (b) plot 1, (c), (d) plot 3, and (e), (f) plot 5.

B. Comparison of the Scan Completeness Between Two Scan
Designs

Fig. 8 shows the variation in the detection rate with the
cumulation of scans for six field plots. In the iterative-mode
design, there are four scans for “easy plots” and five scans for
“medium” and “difficult” plots. In the regular-mode design,
every plot was scanned by five TLS scans. It should be noted
that the meanings of the detection rate for the first scan and
other scans are different. The operator-expected CDRC (TE)
of the first scan and the other scans was set to 120◦ and
200◦, respectively (see Section II-A4). This difference might
explain why the cumulation of more than one scan sometimes
provided a detection rate lower than that provided by the first
scan. In “easy” plots, the iterative-mode design enabled a
better detection rate fewer less scans than the regular-mode

design. In “medium” and “difficult” plots, the iterative-mode
design always performed much better on the detection rate.
The detection rate of all the scans of a plot is expected to
be as close to one as possible in the iterative-mode design,
which intuitively demonstrates that the iterative-mode design
was more suitable for handling the plots that had a higher stem
density (plot 3, plot 5, and plot 6).

To assess the scan completeness for the iterative- and
regular-mode scans, we compared the probability histogram
of the CDRC of the tree circles. As illustrated in Fig. 9,
the CDRCs of the trees were classified into three cate-
gories: 0◦–120◦, 120◦–200◦, and 200◦–360◦, which were
labeled as “insufficient,” “intermediate,” and “fine.” Overall,
the iterative-mode design achieved higher probability for the
“fine” class, especially for the cases with higher stem density
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Fig. 8. Variation in the detection rate with the cumulation of scans for six field plots (a)–(f). In the calculation of the detection rate, the operator-expected
CDRC of the first scan and the other scans were set to 120◦ and 200◦, respectively.

Fig. 9. Comparison of the CDRC of the trees between the iterative- and regular-mode scan designs in six field plots (a)–(f).

(plot 3 and plot 5). In addition, the iterative-mode design
resulted in a lower probability for the “insufficient” class,
approaching zero for the “medium” plots and even for the
“difficult” plots, which implies that almost no trees were
sampled with a CDRC of less than 120◦ in the iterative-mode
design. These findings revealed that the new proposed design

can achieve more complete scanned data and, thus, improve
the quality of the scans. In contrast, the regular-mode design
yielded a larger probability in the case of the “intermediate”
class. Fig. 9 also suggests that the iterative-mode design has
more potential to mitigate the occlusion effect under high-
stem-density conditions (i.e., “medium” and “difficult” plots).
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Fig. 10. Comparison of the DBH derived from scans between the iterative- and regular-mode designs in the field plots (a)–(f). The unit of the DBH is meter.

TABLE III

RMSES OF STEM ATTRIBUTE ESTIMATES DERIVED FROM ITERATIVE- AND REGULAR-MODE SCANS FOR ALL FIELD PLOTS

C. Comparison of Stem Attribute Estimates
The comparisons of the DBH estimates derived from

the iterative- and regular-mode point clouds are presented
in Fig. 10. The estimation accuracy of DBH decreased with the
increase in the complexity (“easy,” “medium,” and “difficult”)
because the completeness of the TLS data decreases with
complexity, as shown in Table III. The estimated DBH values
from both designs are well correlated with the reference values
for the “easy” plots. However, the iterative-mode estimates
have better agreement with the reference values for the
“medium” and “difficult” plots (the mean root-mean-square
error (RMSE) of DBH is 0.57 cm), whereas the regular-
mode design was shown to obviously overestimate the DBH
of several stems (the mean RMSE of DBH is 1.21 cm). In
particular, the regular-mode design produced three severely
underestimated DBH in plot 6 (DBH = 0) due to the full
obstruction for the 1.3-m-height layer of these stems. Accurate
DBH estimation requires a transect that includes points as
much as possible and stems with a CDRC of larger than
200◦, and thus, for the stems from the “insufficient” and

“intermediate” class (see Fig. 9), it is usually difficult to obtain
sufficient intensity transect information for a reliable diameter
estimation.

Fig. 11 shows a comparison of the tree height esti-
mates between the two scan designs. The results show
good correlation with the reference values for both designs
(e.g., RMSE = 20.47 cm for the iterative mode and
RMSE = 21.67 cm for the regular mode in the “medium”
plots, see Table III). Only a small portion of trees was
underestimated with the regular-mode design for the most
“difficult” plot (plot 6) with the highest tree density, due to
the intense occlusion effect of the canopy elements.

The accuracy of the stem curve estimation from the two
scan designs was interpreted from Fig. 12. Additionally,
to measure the effectiveness of the stem diameter estimation
at the part within the crown and the part below crown, two
evaluation factors, i.e., SCI and SCB defined in Section III-D2,
were investigated. Technically, the SCB values were always
higher than the SCI values due to the severe obstruction
problem within the crown [32]. The stem curve estimation
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Fig. 11. Comparison of the tree height derived from scans between the iterative- and regular-mode designs in the field plots (a)–(f). TreeH refers to the tree
height with the unit of meter.

Fig. 12. Comparison of stem curves derived from scans between the iterative- and regular-mode designs in the field plots (a)–(f). The stem diameter estimates
were calculated for the part within the crown and the part below the crown (see Section III-D2). The subscripts i and r of SCI and SCB refer to the iterative-
and regular-mode designs, respectively.

for the stem below the crown is far better than that for
the stem within the crown (Fig. 12). Unexpectedly, similar
estimation accuracies of the stem curves between the stems

below the crown and within the crown were observed for
high-density plots (plots 3, 5, and 6). This phenomenon can
be explained by the lower SCI, which implies that the stems
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TABLE IV

RMSES OF THE STEM DIAMETER ESTIMATES DERIVED FROM ITERATIVE- AND REGULAR-MODE SCANS FOR ALL THE FIELD PLOTS

Fig. 13. Comparison of the vertical profiles of filled voxels derived from iterative- and regular-mode scans in synthetic lots [(a)–(c) are with eight scans and
(d)–(f) are with 16 scans]. STD is the abbreviation of the standard deviation.

within the crown were rarely detected. For example, SCIi was
61.99% for plot 2 but 21.02% for plot 5. In the stem diameter
estimation with the crown, the stem edge points were difficult
to locate when the stem was partly obscured by the canopy
elements, which causes difficulty associated with circle fitting.
In contrast, the extracted stem diameters at different height
slices of the stem below the crown were comparable with
the reference measurements. The scatter points that belong to
the iterative-mode design were more concentrated along the
1:1 line, compared with the regular-mode design. The new

proposed design enabled the robust and accurate estimation
of the stem curve at various tree ages and different stem
densities (RMSE < 1.1 cm, see Table IV), where a sparser
forest led to better results (e.g., lower RMSE for “easy” plots
against “difficult” plots). Comparably, it was pronounced
that many substantially misestimated stem diameters
(±20 cm) were observed for the regular-mode design [see
the blue dots with large bias in Fig. 12(c), (e), and (f)],
especially in the plots with high stem density (the RMSE is
up to 1.65 cm).
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Fig. 14. Comparison of the crown volume derived from the TLS point cloud between the iterative- and regular-mode designs in the synthetic plots [(a)–(c)
are with eight scans and (d)–(f) are with 16 scans].

D. Comparison of Crown Attribute Estimates

Fig. 13 illustrates the comparison of the vertical profiles of
the filled voxels derived from the simulated point cloud of the
tree crown for the iterative- and regular-mode designs. The
occlusion effect caused by the leaves is prominent for the two
designs, and the measured profiles show large underestimation
compared to the reference profile, especially in the upper
layers of the crown. However, this underestimation is larger in
the regular-mode scans than in the iterative-mode scans. The
reason is that the tree model of this study has dense foliage
and branches at the crown outskirt, which causes the laser
beams to hardly pass the crown outskirt and interact with the
interior elements, and thereby, there is a large proportion of
TLS points that are located at a low height level.

Fig. 14 shows a comparison of the crown volume esti-
mates between the iterative- and regular-mode designs with 8
[Fig. 14(a)–(c)] and 16 [Fig. 14(d)–(f)] scans. The violin
plots highlight the difference between the crown volume
estimated from the two modes through probability densities.
For the regular and iterative modes, the estimates usually
underestimated the reference crown volume regardless of the
tree pattern and number of scans. The results show that
the estimates derived from the iterative-mode design are less
erroneous (lower RMSE) than those derived from the regular-
mode design (Table V). For example, the RMSE of the
crown volume estimates is 9.155 m3 for the iterative-mode
design but 15.822 m3 for the regular-mode design in the

row plot [Fig. 14(e)]. A larger proportion of estimates is
close to the reference value for the iterative-mode design,
compared with the regular-mode design. Most of the estimates
are consistent with the reference value in the 16-scan com-
parison, which indicates that the additional scans effectively
improve the accuracy of the crown volume estimation. Table V
shows the RMSE of the crown volume for each type of
pattern. The iterative-mode design made a large improvement
in the accuracy of the crown volume estimation, especially for
random- and row-pattern plots (Table V) with 16 scans. The
ratio of the RMSE to the reference decreased by up to 15%
via the iterative-mode design in the row-pattern plots.

V. DISCUSSION

A. Feasibility of the 2-D Simplification of Trees

The optimization of the iterative-mode scan design is based
on the 2-D simplification of the tree, i.e., a 3-D tree is
represented by a circle. Evidently, the 3-D quantification of
occlusion over forest ecosystems is a highly complex and
time-consuming task [29]; hence, investigating the scan design
with a 3-D realistic structure is impractical. Quantifying the
occlusion effect in 2-D space is more straightforward and less
time consuming than that for a 3-D shape [24], [25], [33], [34].
The 2-D simplification facilitates an appropriate and flexible
computation of visibility analysis and the determination of
TLS locations by using the CDRC. In the input information,
the tree location is considered according to the center of the
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TABLE V

RMSES OF THE CROWN VOLUME ESTIMATES DERIVED FROM ITERATIVE- AND REGULAR-MODE SCANS FOR THE
SYNTHETIC PLOTS. THE 8- AND 16-SCAN DESIGNS WERE ASSESSED. THE PERCENTAGE REFERS TO THE

RATIO OF THE RMSE TO THE REFERENCE VALUE

circle, and the tree size is characterized by the circle diameter.
We suggest that the tree size can be the DBH or crown
diameter depending on different applications. For example,
3-D forest modeling, which is usually one of the main pur-
poses of a TLS campaign, usually focuses on all the tree
elements, including the stem, branches, and leaves, thereby
needing the crown diameter as the tree size to produce a
full plot coverage [4]. Different tree sizes theoretically lead
to different optimal scan locations because the corresponding
visibility maps (or PoTo index maps) would significantly
change even under identical tree locations. A large tree size
induces a strong occlusion effect for a given tree pattern
and changes the spatial distribution of the occlusion effect,
which results in limited areas to place the scanner. Such an
increase in the occlusion effect illustrates the importance and
difficulty of placing the scans when attempting to retrieve
the crown variables or even the DBH in dense forest plots.
In this context, the iterative mode design can be especially
helpful for operators in determining the optimal scan locations.
In practice, the tree sizes input to the iterative scan design are
recommended to be modestly larger than the actual values,
to minimize the uncertainty caused by the inaccurate tree size
measurements.

B. Influences of the Occlusion Effect on the TLS Location,
Scan Completeness, and Tree Attribute Estimation

The PoTo index maps of various plots highlighted that
the occlusion effect is highly related to the spatial pattern,
tree density, and tree sizes (Fig. 7). Quantification of the
occlusion effect offered an insightful way to optimize the TLS
locations. From the perspective of developing a good scan
design, the sampling of multiple scans should have low redun-
dancy and should be complementary to one another. Both the
iterative- and regular-mode designs attempted to achieve this
goal, wherein the former design has the potential to minimize
the redundancy and maximize the complementary sampling.
The iterative-mode scan locations are usually distributed in
sparse regions, which differ from the fixed center and corner
regions in the regular-mode design.

The scan design without considering the exact occlusion
effect might lead to unfavorable sampling (Figs. 8 and 9).

The improvement in the detection rate by using the iterative-
mode design demonstrates that the optimization of the TLS
locations based on the quantification of the occlusion effect
is effective, especially for more complex environments, e.g.,
“medium” and “difficult” plots (Fig. 8). The statistical results
of the CDRC of tree circle explicitly illustrate the differences
in the sampling completeness between the two designs in
ideal situations (Fig. 9). The results shown in Fig. 9 also
validate that the new proposed algorithm can maximize the
complementary sampling among multiple scans. More trees
with “fine” CDRC and less trees with “insufficient” and “inter-
mediate” CDRC would theoretically improve the accuracy of
the tree attribute estimation (Figs. 10–14), thereby indicating
the merit of the new design. However, extremely high-density
stems would buffer the merit (e.g., plot 6).

In stem attribute estimation, both the regular- and iterative-
mode designs yielded good results, although the former caused
low-accuracy estimates of several stems (Figs. 10–12). The
estimation accuracy of the tree height is less influenced by the
obstruction among the stems because the tree height estimation
depends on only the highest and lowest points. Thus, the
estimates of the tree heights by the two designs are almost
identical except for the most “difficult” plot (plot 6, Fig. 11).
The DBH and stem curve estimation are severely affected
by the occlusion effect. Consequently, the better estimates by
the iterative-mode design are observed in all the “medium”
and “difficult” plots. Differing from the regular-mode design,
the new design can capture every stem (Figs. 10 and 12). We,
therefore, believe that the regular-mode design is appropriate
for “easy” plots and some “medium” plots, and the iterative-
mode design should be recommended for “medium” and
“difficult” plots if the surveyors require accurate recognition
for each stem.

For the occlusion effect along the vertical direction
(Fig. 13), both scan designs show an evident negative bias
with a reference profile, especially for the upper layers of
the crown. This result implies that neither the iterative mode
nor the regular mode can achieve a good sample inside the
crown due to the obstruction of the highly dense foliage at
the crown outskirt. Additional scans from different directions,
increasing the possibility of interaction with interior elements,
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TABLE VI

RMSES OF THE STEM ATTRIBUTE ESTIMATES DERIVED FROM THE BIASED ITERATIVE-MODE SCANS
WITH RANDOM ERRORS FOR ALL THE FIELD PLOTS

can effectively reduce the occlusion effect and improve the
data quality. In addition, the negative bias is also determined
by the tree distribution. As the crown base height is almost
1 m and the scanner height is 1.5 m, the number of filled
voxels can approach the reference value at approximately 2 m
(Fig. 13). As expected, the occlusion effect usually increased
with the height because the laser beam could not reach most
of the treetops and the point density in the upper crown was
rather low. This problem might be reduced by using a high-
height multipulse mode LiDAR. In the estimation of crown
attributes, the iterative-mode design obtained more complete
sampling and yielded more accurate results than the regular-
mode design. An important fact is that the iterative-mode
design showed considerably different performances among the
three types of tree patterns (Fig. 14). The crown attribute
estimates are closer to the reference value for the random and
row patterns than for the clumped pattern. Thus, clumped trees
would reduce the sampling capability of the TLS. Nonetheless,
the iterative-mode design greatly improved the scan complete-
ness and the accuracy of the crown attribute estimates for the
nonclumped scenarios.

C. Influence of Inaccurate Recognition of the Scan Location
in the Field

The recognition of scan locations is a challenging work in
the field due to the possibility of inaccurate positioning. The
manner of conveniently recognizing the positions of predeter-
mined iterative-mode scans in the field is a key problem due to
the unstable performance typical of a GPS in forest areas [35].
A possible solution is to use differential GPS to improve
the GPS measurement accuracy or to use a Haglöf PosTex
ultrasound instrument (Långsele, Sweden) for the positioning
of objects in the forest plots. Unmanned aerial vehicles (UAVs)
with high-accuracy real-time kinematic units would guide the
TLS placement. If repeat campaigns (e.g., leaf-on and leaf-off)
are planned, then marking the location of each scan position
(e.g., with a small flag or stake) is beneficial. However, even
with the assistance of these instruments, inaccurate recognition
remains; thus, this problem could lead to modified scan com-
pleteness. Moreover, highly complex forest environments have
obstacles to the practical placement of laser scanners and their
accessories.

Given the above, it is crucial to launch a quantitative
sensitivity analysis of the scan location. A random error that

ranges from 0.5 to 2.5 m [36] at random azimuth directions
was added onto each iterative-mode TLS location of every field
plot. The corresponding point clouds under the biased TLS
scans were simulated by the HELIOS. We derived the stem
attributes from these point clouds according to the methods
described in Section III-D and then compared them with the
results illustrated in Section IV-C. According to the joint
interpretation of Tables III, IV, and VI, the overall estimation
accuracy of the stem attribute is slightly decreased due to the
biased scans (e.g., the RMSE varied within 0.3 cm for the
stem curve). Notwithstanding, the biased iterative-mode scans
still enabled high-accuracy estimation in terms of the DBH,
tree height, and stem curve, which verifies the performance of
the new proposed design, especially for high-density plots.

D. Limitations of the Iterative-Mode Design and Possible
Solutions

Although the iterative-mode scan design proved its advan-
tages in alleviating the occlusion effects in our simulation,
several factors might limit the usage of this design in the
field. The first is the identification of individual trees. Overall,
remote sensing methods are available for detecting individual
trees and generating tree location maps, e.g., using UAV-based
LiDAR/structure-from-motion (SfM) point clouds [22], [23],
thereby efficiently enabling the database to determine the
iterative-mode scans. However, the currently reported methods
that are used to identify individual trees are suboptimal, espe-
cially for highly complex forests with competition among trees
[37], [38]. Missing trees would lead to unfavorable iterative-
mode scans for the plot. An existing accurate tree location
map with a known tree size can be the base data to design
iterative-mode scans since such a map is available in many
fixed experiment sites. The second factor is the understory
vegetation [39], which also causes an occlusion effect in the
field measurement in addition to the overstory elements [3].
Because only the spatial pattern and tree size were considered
in the determination of optimal scans, the applicability of 2-D
simplification must be recognized in various forest understory
conditions. For example, in a dense understory vegetation
area, a clear view of the tree canopy might not always be
possible. A slight shift in the TLS location might reduce
this effect, although it might theoretically cause suboptimal
scans. Parameterizing the understory vegetation with addi-
tional circles might also be a solution. Apart from the above,
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the positions of reflectors (i.e., the coregistration targets for
multiple scans) might need to be calculated in our future
algorithm for facilitating the reflector distribution in the field.
Alternatively, an off-the-shelf automatic registration method
based on a coarse-to-fine strategy is suggested [20].

Nonetheless, the iterative-mode scan design is expected to
be operated and tested in field TLS measurements despite
the existing problems, and many applications have shown
a demand for further effective scan designs [3], [20], e.g.,
repeated campaigns aim to improve the data collection effi-
ciency and data quality.

VI. CONCLUSION

A new iterative-mode scan design for minimizing the
occlusion effect in TLS measurements was developed in this
study. The new scan design used the PoTo index to evaluate
the number of trees scanned from a spatial location using
an efficient visibility analysis algorithm and to select the
effective candidates for the optimal TLS location. The CDRC
index was then used to determine the optimal TLS location
in each iteration. The iterative-mode design was compared
with the regular-mode design, based on the simulated point
cloud data sets of virtual field and synthetic forest plots. The
results revealed that the proposed design can improve the scan
completeness and refine the tree attribute estimation (DBH,
tree height, stem curve, and crown volume). Importantly,
the iterative-mode design highlighted its merit in medium- and
high-density stands, e.g., the RMSE decreased by 38% in the
stem curve estimation in “difficult” plots. It is concluded that
the regular-mode design is suitable for “easy” plots and some
“medium” plots, and the iterative-mode design is valuable for
all plot categories, especially for “medium” and “difficult”
plots if surveyors prefer higher estimation accuracy of the
tree attributes and recognition for each stem. The succeeding
efforts should, therefore, be the validation of the iterative-
mode scan by using field data set and standardization of field
operations.

APPENDIX

COMPUTATION OF VISIBILITY ANALYSIS

Our visibility analysis is based on a 2-D simplification
of a forest using circles. The visible area can, therefore, be
determined by calculating the geometric relationship between
the observation point and the objects (i.e., circles). The com-
putation steps are as follows.

1) Calculation of the tangent vectors. Given an observation
point P and object circle O with a radius r , the tangent
points T1 and T2 can be determined using the geometric
model illustrated in Fig. 15. Points O, P , T1, and T2

are on circle C with radius R. Resolving (A1) provides
the solution of the tangent points T1 and T2 with the
corresponding coordinates. The subscripts x and y refer
to the x-axis and y-axis coordinates, respectively. Subse-
quently, the two tangent vectors (−→PT 1 and −→PT 2)

Fig. 15. Illustration of the calculation of the tangent vector between a given
point and a circle.
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2) Recognition of occlusion situations. Given the possible
occlusion among the object circles, the occlusion sit-
uations must be determined (Fig. 16). The situations
of circles (A and B) can be derived with judgment
conditions⎧⎪⎪⎪⎨
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where a polar coordinate system was created with the
center located at the observation point. θ is the angle of
the tangent vector, where the subscripts max and min
refer to the maximum and minimum polar angles of the
tangent vectors, respectively. Here, sgn is the symbol of
the sign function. This recognition process was repeated
for each tree.

3) Calculation of the endpoints of the visible arc. As illus-
trated in Fig. 16, the endpoints of the visible arc of circle
B (taking circle B as an example) have the following
situations: 1) two tangent points of circle B during no
occlusion [Fig. 16(a)]; 2) a tangent point of circle B
and an intersection point between circle B and a tangent
line of circle A during partial occlusion [Fig. 16(b)];
and 3) no intersection points during full occlusion
[Fig. 16(c)]. In cases 1 and 3, the end intersection points
are the tangent points. In case 2, the x–y coordinates of
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Fig. 16. Illustration of the calculation of visible areas (gray areas) and the determination of occlusion situations. (a) No occlusion. (b) Partial occlusion.
(c) Full occlusion.

Fig. 17. Illustration of visibility analysis based on the 2-D simplification of
trees.

the intersection point of circle B can be derived by

⎧⎪⎪⎨
⎪⎪⎩

(x − Oocx)
2 + (y − Oocy)

2 = r2

x − Oocx

Tx − Oocx
= y − Oocy

Ty − Oocy

argmin((Ix − Oocx)
2 + (Iy − Oocy)

2)

(A4)

where the subscripts ocx and ocy mean the x–y coordi-
nates of the center of the partially occluded circle B. Tx

and Ty refer to the x–y coordinates of a tangent point
of circle A. Ix and Iy represent the x–y coordinates of
the intersection point.

4) Mapping of the visible area. Each group of points (one
observation point and two endpoints of the visible arc;
black dots for a circle in Fig. 16) is connected to create
a visible area (gray areas in Fig. 16). Fig. 17 illustrates
an example of the visible area map (visibility map).
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