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Abstract: Accurate evaluation of start of season (SOS) changes is essential to assess the ecosystem’s
response to climate change. Smoothing method is an understudied factor that can lead to great
uncertainties in SOS extraction, and the applicable situation for different smoothing methods and the
impact of smoothing parameters on SOS extraction accuracy are of critical importance to be clarified.
In this paper, we use MOD13Q1 normalized difference vegetation index (NDVI) data and SOS
observations from eight agrometeorological stations on the Qinghai–Tibetan Plateau (QTP) during
2001–2011 to compare the SOS extraction accuracies of six popular smoothing methods (Changing
Weight (CW), Savitzky-Golay (SG), Asymmetric Gaussian (AG), Double-logistic (DL), Whittaker
Smoother (WS) and Harmonic Analysis of NDVI Time-Series (HANTS)) for two types of different SOS
extraction methods (dynamic threshold (DT) with 9 different thresholds and double logistic (Zhang)).
Furthermore, a parameter sensitivity analysis for each smoothing method is performed to quantify
the impacts of smoothing parameters on SOS extraction. Finally, the suggested smoothing methods
and reference ranges for the parameters of different smoothing methods were given for grassland
phenology extraction on the QTP. The main conclusions are as follows: (1) the smoothing methods
and SOS extraction methods jointly determine the SOS extraction accuracy, and a bad denoising
performance of smoothing method does not necessarily lead to a low SOS extraction accuracy; (2) the
default parameters for most smoothing methods can result in acceptable SOS extraction accuracies,
but for some smoothing methods (e.g., WS) a parameter optimization is necessary, and the optimal
parameters of the smoothing method can increase the R2 and reduce the RMSE of SOS extraction by
up to 25% and 331%; (3) The main influencing factor of the SOS extraction using the DT method is the
stability of the minimum value in the NDVI curve, and for the Zhang method the curve shape before
the peak of the NDVI curve impacts the most; (4) HANTS is the most stable method no matter with
(fitness = 35.05) or without parameter optimization (fitness = 33.52), which is recommended for QTP
grassland SOS extraction. The findings of this study imply that remote sensing-based vegetation
phenology extraction can be highly uncertain, and a careful selection and parameterization of the
time-series smoothing method should be taken to achieve an accurate result.

Keywords: phenology; smoothing methods; Start of season (SOS); Qinghai–Tibetan Plateau
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1. Introduction

As a result of anthropogenic activities, global warming has brought widespread impacts on the
terrestrial ecosystem [1,2]. Vegetation phenology is a sensitive indicator of climate change, and it
has been widely reported that global warming has altered the vegetation phenology in the past few
decades [3–5]. Changes in vegetation phenology can bring changes to the interaction between the
biosphere and the atmosphere, and finally lead to changes in carbon balance [6], water balance [7] and
even vegetation feedback mechanisms towards climate change [8]. Therefore, an accurate assessment
of vegetation phenology is of crucial importance for understanding the impact of global climate change
on terrestrial ecosystem cycle of carbon and for making effective adaptive management decisions [9].

There are two main data sources of vegetation phenology observations, one is from ground
and near-ground measurements, and the other one is generated from remote sensing data [10–12].
Traditional ground and near-ground measurements have the advantage of high accuracy, but they
lack the spatial continuity due to the limited number of observation stations [5]. Remote sensing,
on the contrary, can provide simultaneous and spatial-continuous observations at large scales, and thus
can present more insights at a spatial scale [13]. In recent years, satellite-based remote sensing
technology has been widely used for vegetation phenology extraction and monitoring [9,14–20].
However, the extraction of vegetation phenology using remote sensing technology can have serious
uncertainties due to different data sources, time-series smoothing methods and phenology extraction
methods. These uncertainties may even lead to different conclusions regarding the same question.
For instance, using GIMMS NDVI data, Yu et al. [21] found an advanced followed by a delayed trend
for start of season (SOS) on the Qinghai–Tibetan Plateau (QTP). However, Zhang et al. [22] reported
that the SOS of alpine vegetation on the QTP is continuously advanced from 1982 to 2011. Only a
few studies have been conducted to quantify the uncertainties regarding remote sensing phenology
extraction, and these studies mainly focus on the raw remote sensing data and phenology extraction
methods [23–28]. However, we have not yet acquired an explicit understanding of the impact of
remote sensing time-series smoothing methods as well as the parameters of the smoothing methods on
SOS extraction.

The current remote sensing time-series smoothing methods have large differences in the model
structure [29], which may lead to great differences among smoothed curves and, furthermore,
the extracted vegetation phenology. At present, the research regarding smoothing methods mostly
focuses on the quality of curve reconstruction rather than the extraction of vegetation phenology [30,31].
Although several studies compared the phenology extraction results based on different smoothing
methods [32,33], there is still a lack in quantitative evaluation of the interaction of different smoothing
methods and different phenology extraction methods for grassland phenology extraction. Another
problem regarding the time-series smoothing for phenology extraction is the parameter setting of the
smoothing methods. Most smoothing methods require setting smoothing parameters manually [34–36],
although the default parameter values were suggested for some of the smoothing methods when they
were proposed (e.g., the default values of parameters m and d for Savitzky-Golay filter were suggested
to be 4 and 6, respectively [35]), the optimal parameter values can vary across different study area and
vegetation types due to different vegetation growth trajectories, and improper smoothing parameter
values will lead to great uncertainties for the smoothing results [37–39] and inaccurate phenology
extraction results. The vegetation phenology on the QTP has been widely studied due to its nature of
being vulnerable and sensitive to climate change [21,24,40]. However, to our knowledge, there is still
no comprehensive research of smoothing parameter comparison for grassland phenology extraction
on the QTP; therefore, it is difficult for the users to parameterize the smoothing methods without an
expert knowledge of this region.

In this study, we focus on quantifying the uncertainties arise from remote sensing time-series
smoothing methods as well as the parameters of the smoothing methods for SOS extraction. To solve
this problem, we used MODIS normalized difference vegetation index (NDVI) data and ground
phenology measurement records from eight agrometeorological stations to compare six smoothing
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methods for grassland SOS extraction. The Qinghai–Tibetan Plateau, one of the most sensitive areas to
global climate change, was chosen as the study area to conduct the study. This study aimed to examine
three questions: (1) how do smoothing methods and their parameters impact on phenology extraction?
(2) What are the main factors that bring uncertainties to the phenology extraction using remote sensing
data? (3) What are the applicable conditions for different smoothing methods?

2. Study Area and Data

2.1. Study Area

The Qinghai–Tibetan Plateau stands in the center of Eurasia, spanning 31 longitude degrees
(73◦18′52”E–104◦46′59”E) and 13 latitude degrees (26◦00′12”N–39◦46′50”N), with a total area of almost
2.5 × 106 km2 [41]. The QTP is known as the roof of the world and the third pole (the highest plateau in
the world), with an average altitude of 4000 m. As for the climate, the QTP is the coldest region at the
same latitude due to its high altitude, the average surface temperature of the coldest month is between
−10 to −15 ◦C. The average daily radiation on the QTP is 21 MJ m−2 day−1, which is much higher
than that of other areas at the same altitude [42]. The vegetation type on the QTP varies according to
different temperature and water conditions, presenting a landscape of forests–grassland–desert from
southeast to northwest (Figure 1). The Alpine steppe has the widest distribution and the largest area
among all vegetation types, covering 59.15% of the total area of the QTP [40]. The cold, dry and strong
radiation conditions make the QTP one of the most sensitive areas to global climate change [43], and the
QTP has experienced significant warming with the surface temperature increased by ~1.8 ◦C during
the past five decades [44], making it a hotspot for studying phenology change and its relationship with
climate change [24,40,45].
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2.2. Ground Observation Data

The grassland phenology records for the QTP were collected from the nationwide phenological
observation network established by the China Meteorological Administration, and the dataset involves
observations from eight agrometeorological stations. We excluded data that are not herbal, and the final
dataset includes seven phenological metrics (Green-up date, Tillering data, Heading date, Florescence,
Senescence) for nine herbaceous plants (Elymus nutans Griseb., Poa pratensis, Stipa krylovii Roshev,
Leymus secalinus (Georgi) Tzvel., Agropyron cristatum, Festuca, Kobresia humilis (C. A. Mey ex Trauvt.)
Sergievskaya, Astragalus adsurgen, Artemisia scoparia). We used the green-up date to represent the SOS
date, and if a station recorded more than 1 herbal species then the averaged SOS was used. The spatial
distribution of these eight stations is shown in Figure 1.

2.3. Remote Sensing Data and Processing

In this study, we used MODerate resolution Imaging Spectroradiometer (MODIS) Vegetation
Indices product (MOD13Q1) version 6 during 2001–2011 for remote sensing-based SOS extraction,
MOD13Q1 provides composited vegetation index (NDVI and enhanced vegetation index) time-series
data at a 16-day interval and 250 m resolution, and we used the NDVI data for its wide-usage for SOS
extraction [46–48] and for that most time-series smoothing methods are proposed based on NDVI
data [35,36,49]. MODIS Land Cover Type product (MCD12Q1) version 6 was used for the extraction of
grassland pixels, and the 500 m land cover data was resampled into 250 m resolution using nearest
neighboring to consist with the NDVI data.

We used the grassland NDVI pixels within the 10 km × 10 km (43 pixel × 43 pixel at 250 m
resolution) spatial range around each agrometeorological station to represent the grassland for the
agrometeorological stations. Firstly, MOD13Q1 and MCD12Q1 data within the 10 km × 10 km window
for each station were downloaded from the MODIS/VIIRS Global Subsets (https://modis.ornl.gov/cgi-
bin/MODIS/global/subset.pl). Secondly, the MOD13Q1 NDVI time-series data within the 10 km ×
10 km window for each station were smoothed, and the SOS for each pixel were extracted. Finally,
the grassland pixels in the window were identified according to MCD12Q1 land cover data, and the
averaged SOS of the grassland pixels in the window is used as the final SOS extracted using remote
sensing data of the corresponding station.

3. Methodology

3.1. The Time-Series Smoothing Methods

We chose six popular smoothing methods for the comparison based on previous
studies [25,30–32,50,51], including one empirical method (Changing-weight (CW)), four curve fitting
methods (Savitzky-Golay (SG), Asymmetric Gaussian (AG) and Double-logistic (DL) and Whittaker
Smoother (WS)) and one data transformation methods (Harmonic Analysis of NDVI Time-Series
(HANTS)). Although the parameters of smoothing methods varied for different applications, since there
is no similar work, we test the accuracy of default values (derived from the original or high citation
papers) of each method. The details for each smoothing method and default values are shown in
Table 1.

3.2. The Phenology Extraction Methods

We used two widely-adopted vegetation phenology extraction methods for grassland phenology
extraction, one is the vegetation index ratio threshold method (also known as the dynamic threshold
method), which has received a broad attention and application [23,55,56]; the other phenology extraction
method is the double-logistic method (also known as the Zhang method), which has been reported
to have ecologically meaning [15] and also has been applied in many phenology extraction related
works [18,57,58].

https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl
https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl
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Table 1. Parameters of smoothing methods.

Method Category Parameter Meaning Default
Value Range Step Platform Reference Default Value

Reference

CW empirical
r:radius of sliding window 7 [1, 7] 2

IDL [34] [34]fet: the threshold to determine the local
maximum/minimum points 0.05 [0.01, 0.1] 0.01

imax: the maximum iteration cycle 10 [1, 20] 1

SG curve fitting m: the radius of smoothing window 4 [2, 11] 1
IDL [35] [35]6 [2, 8] 1

d: the degree of the smoothing polynomial
AG curve fitting / / / / TIMESAT [52] /
DL curve fitting / / / / TIMESAT [52] /

WS curve fitting λ: the weight parameter set by the user 15 [1, 30] 1
IDL [53] [32]

d: the order of the difference of sparse matrix 2 [1, 10] 1

HANTS data
transformation

fet: the maximum fit error tolerance of the downward
deviation between the Fourier fit and NDVI

original values
0.05 [0, 0.6] 0.01

IDL [36] [54]

nf : the number of frequencies for the curve fitting 4 [2, 9] 1
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3.2.1. Dynamic Threshold Method

The dynamic threshold method was originally proposed by White et al. [59]. This method
normalizes the NDVI time-series data of a single pixel to 0–1, and uses the percentage of NDVI to
represent the vegetation growth status of the pixel range.

NDVIratio =
NDVIt −NDVImin

NDVImax −NDVImin
(1)

where NDVIt is the NDVI value of t-th year and NDVImax is the maximum NDVI value of NDVIt,
while the NDVImin is the minimum of the left half curve for SOS extraction. When NDVIratio exceeds a
certain threshold, the corresponding day of year (DOY) is determined as the SOS.

Different thresholds represent different phenology phases. The thresholds chosen by previous
studies are mostly 20% and 50% [21,26]. In this paper, we used thresholds ranging from 10% to 50%
with a 5% increment, and there are 9 thresholds in total.

3.2.2. Double-Logistic Method

Double-logistic method is proposed by Zhang et al. [15], and hence the method is also called the
Zhang method. In this method, the logistic curve is used to simulate the vegetation growth curve
by piecewise fitting. After simulating the vegetation growth using the logistic model, the curvature
change rate of the fitted logistic model is used to determine the vegetation phenology. The model’s
rate of change of curvature (RCC) is:

RCC = b3cz× 3z(1− z)(1 + z)3 2(1+z)3+b2c2z[
(1+z)4+(bcz)2

]2.5

−b3cz× (1 + z)2 1+2z+5z2[
(1+z)4+(bcz)2

]1.5

(2)

where z = ea + bz, a and b are the fitting parameters, d is the initial background VI value, and c + d is
the maximum VI value. SOS is the date in which the first local maximum of the curvature change rate
of the model.

3.3. The Evaluation of the Phenology Extraction Accuracy

We evaluated the accuracy of the phenology extraction by comparing the satellite-derived SOS
against the ground observed SOS. A simple linear regression was conducted where the ground
observed SOS was used as the independent variable and the satellite-derived SOS was used as the
predictor. The coefficient of determination (R2) and the root mean square error (RMSE) of the linear
regression were calculated to represent the trend similarity and the numerical closeness between the
satellite-derived SOS and the ground observed SOS, respectively. Moreover, we defined a metric
“fitness” to comprehensively measure the accuracy of the phenology extraction by combining R2 and
RMSE, which is calculated using the following equation:

f itness =
RMSE

R2 (3)

A lower fitness illustrates a smaller phenology extraction error, or a higher phenology extraction
accuracy. Based on the temporal interval of MOD13Q1 (16 days), a fitness equal or less than 64
(corresponding to R2

≥ 0.25 [60] and RMSE ≤ 16 [21]) is defined as a good result.

3.4. Sensitivity Analysis of the Smoothing Parameters

Different parameter values directly affect the smoothing performance and the final SOS extraction
accuracy. In this study, we used the grid search method to test the SOS extraction accuracy under
different smoothing parameters. Each parameter set for different smoothing methods was tested at a
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stepwise according to the parameter ranges and steps in Table 1, and the SOS was extracted based on
the corresponding parameter combination, and a fitness was used as the measure of the SOS extraction
accuracy. The grid search was conducted for the 4 parameterized smoothing methods (CW, SG, WS
and HANTS) combined with the two types of phenology extraction method (9 thresholds of DT and the
Zhang method). For each phenology extraction method, the smoothing methods with the parameter
sets that achieved the lowest fitness were chosen as the optimal smoothing methods, and the four
optimal methods are abbreviated as O-CW, O-SG, O-WS, and O-HANTS.

To further quantify the contribution of each smoothing parameter to the SOS extraction accuracy,
a standardized multi-linear regression was conducted by taking the value of different smoothing
parameters as independent variables and the fitness as the dependent variable. The contribution
of each parameter to the SOS extraction accuracy was characterized with the absolute value of the
corresponding coefficient.

3.5. Statistical Significance Test of the Results

In order to investigate whether the value of SOS extracted by different smoothing methods for the
same extraction method is significantly different, and whether the accuracy of the same smoothing
method for different extraction methods is significantly different, we performed a two-way ANOVA
analysis and least significant difference (LSD) post hoc multiple comparisons using the smoothing
method and extraction method as the factors, and SOS as the dependent.

4. Results

4.1. Performance of the Time-Series Smoothing Results

The main differences among smoothing methods are mainly reflected in the smoothing performance
towards the low value, the ability of keeping the maximum value of the curve and the shape of the
fitted curve. For default parameters of the smoothing methods (including AG and DL), the smoothing
methods managed to eliminate most of the noise in the raw NDVI curves, but different smoothing
methods resulted in smoothed curves with varied maximum and minimum values. In all the smoothing
methods, SG always managed to maintain the annual maximum value, while the annual maximum
value of WS is significantly smaller than that of the other methods (Figure 2a). As for the minimum
values, HANTS with the default parameters has the smoothest effect (Figure 2a), with the highest
minimum values (average minimum NDVI = 0.21) among all the smoothing methods. Generally,
the tendency variation (evaluated using the mean value of the standard deviation (SD) among different
smoothing methods for the standardized maximum/minimum values of the 8 stations during the
11 years) among the smoothed curves are the greatest for the annual minimum values (average
SD = 0.37), while the annual maximum values have much less variation (average SD = 0.06) (Figure 2a).

To further present the performance of different smoothing methods under different noise conditions,
we manually picked three typical cases according to the quality assessment (QA) band of the NDVI data.
The three cases represent conditions with almost no noise (station 1 in the year 2001), discontinuous
noise (station 4 in the year 2002), and continuous noise (station 5 in the year 2011) (for the results of
the smoothed curves at all stations during 2001–2011 see Figures A1 and A2). Overall, the smoothing
methods result in smoothed curved with similar shapes and trends under the condition with almost
no noise. However, as the noise increases, the shapes of the curves smoothed by different methods
starts to differ, and the curves smoothed by WS has the greatest difference compared with other
methods, especially in the first half of the curve, with lower starting values and larger slopes before
DOY 150. It can be easily observed that HANTS is sensitive to small fluctuations in the curve during
the smoothing process, resulting in the presence of multiple peaks in the NDVI curve. Such peaks
usually appear at the beginning of the NDVI curve, but the heights of these peaks are relatively low
(Figure 3a,c). For the case with continuous noise, most methods show good resistance against the



Remote Sens. 2020, 12, 3383 8 of 26

continuous noise, but NDVI curves smoothed by SG and CW show much lower value than the raw
NDVI right after the appearance of the continuous noise (Figure 3c).
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Figure 2. The maximum, minimum normalized difference vegetation index (NDVI) and start of season
(SOS) under the default parameters for different stations from 2001 to 2011. The x-axis is the 11-year
result of eight stations. x = 1~11 represents the result of 11 years of station 1. (a) The maximum and
minimum NDVI; (b) SOS extraction results of each smoothing method for the optimal threshold DT;
(c) SOS extraction results of each smoothing method for Zhang.

As for the optimal parameters, the data range of the parameters is similar for the DT and Zhang
method (Tables 2 and 3). Since we focus on the optimal parameter of the smoothing methods that
achieve the highest accuracy, we only use the DT with the lowest fitness for each smoothing method
from the 9 DTs for further analysis. It can be found that although the tendency variation of the
minimum values among the 4 smoothing methods (AG and DL excluded) (average SD = 0.18 for DT
and 0.16 for Zhang method) are still much greater than that of the maximum values (average SD = 0.04
for DT and 0.03 for Zhang method) after adopting the optimal parameters, the tendency variation of
the minimum values decreases substantially compared with that with the default parameters (decrease
by 51.4% for DT and 56.76% for Zhang method), and there are much fewer points with extremely low
values and fewer fluctuations of the minimum values in the smoothed curves (Figures 2a and 4a,b).
O-HANTS have the smoothest effects for low values in the raw NDVI curve, resulting in an annual
minimum NDVI value (0.23) higher than that of other methods.
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Table 2. Comparison of default parameter and optimal parameter results of each smoothing method
for best threshold of Dynamic Threshold (DT).

Smoothing
Method

Before Optimization After Optimization

RMSE R2 (%) p1 p2 p3 RMSE R2 (%) p1 p2 p3

CW 17.54 11.21 7 0.05 10 17.53 11.45 3 0.02 1
SG 15.53 12.95 4 6 13.91 12.83 7 2
WS 15.40 5.77 15 2 11.58 24.90 1 1

HANTS 13.74 16.29 0.05 4 13.41 27.87 0.01 3

Table 3. Comparison of default parameter and optimal parameter results of each smoothing method
for Zhang method.

Smoothing
Method

Before Optimization After Optimization

RMSE R2 (%) p1 p2 p3 RMSE R2 (%) p1 p2 p3

CW 12.20 22.77 7 0.05 10 12.13 24.63 1 0.09 1
SG 12.34 26.77 4 6 12.22 26.89 9 8
WS 39.42 6.51 15 2 11.61 30.20 1 3

HANTS 11.76 33.55 0.05 4 11.52 34.36 0.06 4
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4.2. Inter-Comparison of SOS Extraction Using Different Smoothing Methods

The default parameters of all the smoothing methods result in an overestimation of SOS regarding
DT in station 1, 2 and 7, which is especially severe for station 1 and 2, with an overestimation of SOS
of ~20 days (Figure 2b). However, for Zhang method, almost all the smoothing methods with the
default parameter result in prediction of SOS close to the observation level except for WS, which shows
a pervasive underestimation of SOS of 35.79 ± 16.51 for all the stations and years (Figure 2c). It is
interesting to note that there are four points (marked with red circles in Figure 2b,c) with large
underestimation (up to ~80 days) of SOS for both DT and Zhang SOS extraction methods, and most of
the smoothing methods show this underestimation with varying degrees, in which AG and DL have
the greatest underestimations. As for the SOS extraction accuracy, most of the smoothing methods
achieve a RMSE less than 16 days for both DT and Zhang methods (Tables 2 and 3), which is acceptable
according to the temporal interval of the NDVI data [21], but WS with default parameters results in a
RMSE that is even larger than 2 times the temporal interval of the NDVI data (Table 3). It is worth
noting that even with the default parameters, all the smoothing methods have different performances
for different SOS extraction methods, and for most of the smoothing methods, the fitness for Zhang is
significantly lower than that for DT, with an average fitness 75.36 lower for Zhang compared with that
for DT. For the two phenology extraction methods, the smoothing methods that lead to the highest
(HANTS) and lowest (WS) accuracy are the same, in which WS has much greater RMSE for Zhang
method, while the R2 of HANTS SOS almost doubled for Zhang method compared with DT.

The optimal parameters improve the SOS extraction accuracies for all the smoothing methods
compared with the default parameters, and the fitness decrease from 84.38–266.68 to 46.51–153.36 for DT
and from 35.05–605.82 to 33.52–49.26 for Zhang after adopting the optimal parameters (Tables 2 and 3),
and the average fitness of the four optimal smoothing methods for DT and Zhang are 89.04 (decreased
by 43.24% compared with the default parameters) and 41.68 (decreased by 77.49% compared with the
default parameters), respectively. WS has the greatest improvement in SOS extraction accuracy for both
DT and Zhang after adopting the optimal parameters, with a RMSE decrease and R2 increase of 27.81
(3.82) and 24% (19%) for Zhang (DT), respectively. Moreover, the underestimation of SOS of WS for
Zhang method has been significantly improved after using the optimal parameters (Figures 2c and 4b).
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For the DT methods with nine thresholds for SOS extraction, O-CW, AG and DL result in similar
fitness that are above 150, while the fitness for O-SG are generally lower than the 3 methods, but the
values are still all over 100 (Figure 5). On the contrary, O-WS and O-HANTS has much smaller
fitness compared with the other 4 smoothing methods for the 9 DTs, with an average fitness value less
than 90 for the 9 DTs (Table A1). The low fitness of O-HANTS and O-WS can be attributed to both
higher R2 and smaller RMSE compared with other smoothing methods (average R2 and RMSE are
0.23 (0.23) and 13.75 (19.30) for O-WS (O-HANTS)). However, O-HANTS has higher R2 compared
with O-WS for the best threshold, while O-WS shows small RMSE (RMSE < 12) with a wide range
of thresholds (15%–40%), leading to a close fitness for these thresholds. The best thresholds of DT
for grassland SOS ranges from 15–25% for different smoothing methods (Figure 5 and Table A1), in
which 15% (averaged fitness is 103.50 for all smoothing methods) and 20% (average fitness is 103.86 for
all smoothing methods) are the two thresholds with the lowest fitness. For all smoothing methods,
the fitness gradually increases as the DT extraction threshold increases and decreases relative to their
corresponding best thresholds, showing a typical ‘U’ shape (Figure 5). However, the fitness variations
among different thresholds for O-WS are the smallest (SD = 17.25), and the smaller fitness variation
compared with other smoothing methods correspond well with the smaller R2 and RMSE variation.
As for the Zhang method for SOS extraction, the fitness for all smoothing methods are significantly
lower than DTs, and the average fitness for Zhang (64.43) is 40.07 lower than that for the best threshold
of DT (Figure 5 and Table A1), with both reduced RMSE and increased R2 (Figure 6). Moreover, the
four smoothing methods with the optimal parameters all achieve a fitness below 50 (R2 > 0.25 and
RMSE < 12.5) (Figure 6 and Table A1). Compared with the best DT, the SOS extracted by Zhang are
closer and more consistent with the observed SOS and less overestimation or underestimation can
be found (Figure 6), illustrating a more stable and accurate SOS extracted by Zhang compared with
DT. O-HANTS and O-WS are the two methods with the lowest fitness for Zhang, and AG and DL are
the two methods with the highest fitness. Taking all the SOS extraction methods (9 DTs and Zhang
method) into account, O-HANTS has the lowest fitness of 33.52, followed by O-WS, which is 4.93
higher than that of O-HANTS (Table A1).
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Figure 6. Scatter plots of SOS and observed SOS of different smoothing methods for DT and Zhang
method. (a) Optimized Changing-weight (O-CW) (b) Optimized Savitzky-Golay (O-SG) (c) Asymmetric
Gaussian (AG) (d) Double-logistic (DL) (e) Optimized Whittaker Smoother (O-WS) (f) Optimized
Harmonic Analysis of NDVI Time-Series (O-HANTS).

Figure 7 shows the difference between the SOS results of the different smoothing methods and the
extraction methods. Statistically significant differences are found for all the smoothing methods except
for AG and DL, and SG and HANTS. However, there are statistically significant differences for different
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extraction methods. Interestingly, the results of F-test of analysis of variance show that the interaction
between the smoothing method and the extraction method is extremely significant (p = 0.000).
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4.3. Parameter Sensitivity of Different Smoothing Methods

The fitness achieved by different smoothing parameters of different smoothing methods for DT
and Zhang SOS extraction methods are presented in Figures 8 and 9. We only present the DT results
with the best thresholds, and for each smoothing methods the threshold achieving the lowest fitness is
used. On general, the changing trends of fitness for different parameters of the smoothing methods are
very similar for DT and Zhang methods (Figures 8 and 9), but Zhang has lower fitness with 94.81% of
the parameter values compared with DT, resulting in the average fitness of Zhang is 5609.66 lower
than DT. As for DT, the fitness of CW and SG with different parameters are all over 100 (equal to the
situation with RMSE = 16 and R2 = 0.16 (R = 0.4)), and although HANTS and WS can achieve fitness
below 100 or even below 50 with the right parameterization, the proportion of such parameters are
less than 30% for HANTS and 8% for WS of all parameters (Figure 8). On the contrary, most of the
smoothing methods (except for WS) can result in a fitness less than 100 for Zhang with most of the
parameter values, especially for CW, the fitness for all parameter values for which are less than 60
(Figure 9). No matter for DT or Zhang methods, the fitness variation of CW and SG with different
parameters are much smaller than HANTS and WS, where the fitness SD for CW is 6.15 and 1.38 for
DT and Zhang, respectively, which is the smallest among all methods. Oppositely, HANTS has the
largest fitness range, with a fitness SD of 3142.98 for DT and 6697.88 for Zhang method, followed by
WS with a fitness SD of 3126.62 and 208.71 for DT and Zhang method, respectively.
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Although the parameters have different effects for different phenology extraction methods
(Figures 8–10), they show some regular patterns in common. As for CW, different parameter values
show small fitness variation for both DT and Zhang, and a lower fitness can be achieve with larger r
and smaller fet (Figure 8), which also correspond well with the fact that r and fet are the two dominant
factors for SOS extraction accuracy, and r has the most dominant impact for most cases (Figure 9).
The two parameters (m and d) of SG have roughly the same contribution (45.48% from m vs. 54.52%
from d on average) for the fitness value of SOS extraction (Figure 10b), and a lower fitness appears
in the regions with lower m and larger d (Figures 8 and 9). WS and HANTS can have lower fitness
compared with CW and SG, but only within a narrow parameter range (Figures 8 and 9). Furthermore,
the parameter ranges of HANTS and WS that can result in high SOS extraction accuracy are very close
for DT and Zhang method. Regarding WS, a low fitness can be achieved with parameter d set to 3 for
DT or parameter d set to 3 or 4 for Zhang method, and generally as parameter λ decreases the fitness
decrease. It is surprising to find that the WS parameter contribution to the fitness varies much for
different thresholds of DT, and as the threshold increases the contribution of parameter d increases
(from 15.75 to 94.81) (Figure 10c). In terms of HANTS, a nf set to 3 or 4 can lead to lower fitness, and a
lower fet can bring lower fitness (Figures 8 and 9). It should be noticed that when nf is set to 2, the
fitness increases dramatically for both DT and Zhang (increases by 49 times for DT and 529 times for
Zhang method), suggesting that nf = 2 is a bad option for vegetation growth smoothing.
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5. Discussion

5.1. The Impact of the Choice of Smoothing Methods on the Accuracy of SOS Extraction

In this paper, it was found that for a certain SOS extraction method, different choices of smoothing
methods can lead to large differences in phenology extraction accuracy, which is consistent with the
conclusion of Atkinson et al. [32] that is based on four smoothing methods for the phenology extraction
of the major vegetation types in India. This phenomenon also emphasizes that different combinations
of phenology extraction methods and smoothing methods will lead to different accuracies of phenology
extraction, but previous phenology extraction researches applied the ensemble mean of several methods
as the main conclusion, and the individual method as the complementary analysis [61,62], which barely
consider the impact of the interaction of phenology extraction methods and smoothing methods.
We found that the values of smoothing parameters have a great impact on the phenology extraction
results, which is similar to the results of Cai et al. [63] who found that smoothing methods can have
different curve smoothing performances and curve shapes with different parameters, which can be
explained that the valuing of the smoothing parameters affects the curve smoothness as well as the
value ranges of the smoothed curves (Figures 2 and 4).

Our study showed that for most of the smoothing methods, the default parameters can bring
acceptable SOS extraction results, while the default parameters for WS showed poor SOS extraction
performance regarding both DT and Zhang methods, which may be because the default parameters
of WS in Atkinson et al. [32] are set oriented for multiple vegetation types rather than for grassland.
Besides, our results showed that WS can have high SOS extraction accuracy for a large range (10% to
45%) of the threshold of DT method (Figure 5) with specific parameter optimizations, although a high
SOS extraction accuracy is preferable, a high accuracy achieved at an unsuitable threshold suggests
that the shape of WS may be unstable and can change dramatically with different parameters, which
can also be confirmed that the contributions of the WS parameters vary across different DT thresholds
(Figure 10c). The findings in our study suggest that when using WS to extract vegetation phenology,
careful attention should be paid to its parameters, and a parameter optimization may be required to
achieve a satisfactory result. The two non-parameter smoothing method (AG and DL) have always
resulted in lower SOS extraction accuracies than other methods, which is because AG and DL adopt
Gaussian and Logistic function to fit the NDVI curve, and the fitted curves are susceptible to low-value
noise, resulting in changing curve shape (Figure 11b–d) and leading to a lower SOS extraction fitness.
HANTS was found to have the highest SOS extraction accuracy no matter with the optimal parameters
or the default parameters, which is because HANTS can maintain the annual minimum (Figures 2a
and 4a), and the slope of the curve around SOS is stable (Figure 3). The default parameter set and
the optimal parameter sets for HANTS are very close (Table 2), suggest the default parameter set for
HANTS is a good choice for grassland SOS extraction.

Previous studies evaluate the performances of smoothing methods mostly aiming at their denoising
effect against the simulated noise [54,64]. However, by comparing different smoothing methods and
their SOS extraction accuracy, we found that the performance of curve denoising does not definitely
match the accuracy of SOS extraction. For example, the errors introduced by CW and SG during their
preprocessing of the continuous noise destroy the correct shape of the curve and cause new noise
in some cases, reducing the accuracy of DT-based SOS extraction (Figure 3c). On the other hand,
the smoothing result of the O-WS introduces many extreme low values in the right half curve using
the Zhang method (Figure A2), but the growth rate of the grassland is maintained well in the first
half of the smoothed curves, leading to a high SOS extraction accuracy (Figure A2). Overall, based
on our findings, the recommended smoothing method for grassland SOS extraction is HANTS, not
only for its highest SOS extraction accuracies with both default and optimal parameters, but its stable
performance for different SOS extraction methods as well. Although HANTS has the large variation of
SOS extraction accuracy with different parameters, it is mainly due to the magnificent fitness values
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when parameter nf is set to 2, and after excluding value 2 from the nf value range, the fitness variation
of HANTS (SD = 64.00) drops dramatically to the CW and SG level.
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5.2. The Impact of Smoothing Method Parameters on the Accuracy of SOS Extraction

Different smoothing methods show different parameter sensitivities, and CW was found to have
a lesser impact on parameters than the other methods. It can be explained that parameter r is the
dominant parameter impacting the SOS extraction accuracy of CW (Figure 10a), and as the searching
radius of the local maximum and minimum, parameter r is the important parameter of preserving
original maximum and minimum. However, the variation of the minima in left half of the curve
with different r is small for single growing season vegetation (e.g., grassland). Furthermore, the
three-point weight strategy that CW adopts can preserve the whole shape of the original curve with
different local minimum and maximum [34]. Therefore, no matter for DT and Zhang, the SD of
O-CW with different parameters is far smaller than others. As for SG, our results are consistent with
Chen et al.’s [35] findings that smaller value m and a larger d leading to a better smoothing time-series.
Atkinson et al. [32] concluded that the use of a smaller parameter λ of WS will produce larger errors,
a λ = 15 is suitable for vegetation phenology extraction. However, in this paper, the SOS extraction
accuracy with a λ = 15 is much lower than with a smaller λ (e.g., λ = 2). It may be because that
Atkinson et al. [32] carried out their study based on a variety of vegetation, and since the growth
curves of different vegetation differ greatly [65], a smoother curve can to blur the differences among
vegetation to obtain an overall high accuracy of SOS extraction. For the SOS extraction of grassland
in our study, more accurate characterization may be required, and when the smoothed curves are
too smooth, the under-fitted results may lead to errors. There are no objective rules for determining
parameters for HANTS [36], and the nf is believed as a key parameter for HANTS [54]. Based on
our findings, parameter nf of HANTS was recommended to set between 3–4, which is close to the
optimizations of previous studies [36,54,66]. As parameter nf represents the number of frequencies of
the Fourier components in HANTS [36], a large value nf makes HANTS easily affected by noise and
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prone to have multi-peaks in the smoothed curves. Besides, we found a large nf can result in a failure
of smoothing under some of the condition with a large number of noise during the simulations, so a
smaller nf is more preferable for vegetation indices time-series smoothing, especially at large scales.

Here, suggestions about the parameter optimizations of different smoothing methods for grassland
SOS extraction are drawn based on our findings. As for CW, parameter setting has little impact on
the SOS extraction accuracy, the default parameter setting is good enough to achieve an acceptable
or good SOS extraction result. However, if a parameter optimization is required, parameter r is the
key parameter that need to be taken into consideration first, followed by parameter fet. Generally, a
smaller r and fet is recommended for grassland SOS extraction; the two parameters of SG have the
same influence on SOS extraction, where parameter d is not suggested to be set to a too small value; for
WS method, parameter d is recommended to set between 3 and 4, and a smaller λ can bring higher
SOS extraction accuracy; Similar to WS, parameter nf of HANTS is suggested to set between 3 and 4
for a higher SOS extraction accuracy, and a smaller fet is also suggested.

5.3. The Impacting Factors on SOS Extraction Accuracies for Phenology Extraction Methods

In this study, the best threshold of DT for grassland SOS extraction was found to be between
15–25%, which is in line with the widely adopted 20% threshold in previous studies [21,26]. However,
the best thresholds vary cross different smoothing methods, and even with the best threshold, the SOS
extraction accuracy of DT is commonly lower than Zhang method. According to Sections 4.1 and 4.2,
we attribute the varied thresholds and low accuracy of DT to the fact that the performance of DT is
greatly affected by the fluctuations of the minimum value in the NDVI curves (Figures 2a and 4a).
To solve this problem, Yu et al. [21] manually fixed the minimum value of NDVI, and the DT with a
fixed minimum value (hereinafter referred to as DT-fix) was used for grassland SOS extraction. To
further validate the effects of low-value noise on DT SOS extraction, we followed the concept of Yu et
al. [21] to fix the NDVI minimum value, and to simplify the simulating process, the minimum NDVI
value was fixed to 0.05 to represent a bare soil condition according to Hird and McDermid [67], and the
result from DT-fix were compared with that from DT and Zhang methods. It is easy to find that DT-fix
substantially improves SOS extraction accuracy from DT, with both reduced RMSE (decreased by 3.13
for default parameter and 2.44 for optimal parameter on average) and increased R2 (increased by 12.97
for default parameter and 11.79 for optimal parameter on average) (Tables 2 and 4), resulting in 49.72%
and 23.70% fitness reduction for default parameters and optimal parameters, respectively. Moreover,
for the most cases, DT-fix has even achieved a lower fitness (higher SOS extraction accuracy) compared
with Zhang method for both default parameters and optimal parameters, with a fitness 71.65% and
7.54% lower on average (Tables 3–5). The best thresholds of DT-fix for different smoothing methods
are all 35%, and the higher threshold compared with 20% may be due to that 0.05 is much lower than
annual NDVI minimum of grassland on QTP. However, the uniform threshold highlighted that DT-fix
indeed suffer less from the adverse effects from the fluctuations of NDVI minima. The DT-fix results
showed that with the fixed NDVI minimum, the negative effects from NDVI minima fluctuations are
mitigated to a great extent, and DT-fix has higher accuracy for SOS extraction compared with DT and
Zhang methods.

Table 4. Comparison of default parameter and optimal parameter results of each smoothing method
for best threshold DT-fix.

Smoothing
Method

Before Optimization After Optimization

RMSE R2 (%) p1 p2 p3 RMSE R2 (%) p1 p2 p3

cw 12.06 24.54 7 0.05 10 12.02 25.22 3 0.04 1
sg 12.67 29.23 4 6 12.25 29.58 7 6
ws 10.64 31.04 15 2 10.56 37.03 6 3

hants 12.96 27.05 0.05 4 11.31 37.80 0.36 3
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Table 5. Fitness for different smoothing methods and extraction methods (The numbers in bold indicate
the lowest fitness).

O-CW O-SG AG DL O-WS O-HANTS Mean SD

DT-fix 10 1149.55 262.28 279.80 340.70 143.06 117.58 382.16 351.81
DT-fix 15 993.49 260.06 249.89 293.73 145.82 117.18 343.36 297.48
DT-fix20 756.71 274.98 191.61 219.83 138.31 115.03 282.74 218.31
DT-fix25 494.03 285.51 102.39 115.69 101.27 92.19 198.51 148.19
DT-fix30 116.22 75.77 59.01 62.85 50.15 48.86 68.81 23.00
DT-fix35 47.67 41.39 52.14 54.55 35.17 29.91 43.47 8.88
DT-fix40 59.32 51.01 62.25 62.72 42.29 33.63 51.87 10.85
DT-fix45 81.26 61.91 78.30 77.08 56.04 40.41 65.83 14.59
DT-fix50 107.54 74.26 100.50 97.63 73.07 55.74 84.79 18.36
Zhang 49.26 45.46 104.75 109.15 38.45 33.52 63.43 31.20
Mean 385.51 143.26 128.06 143.39 82.36 68.41 / /

SD 409.75 104.78 78.23 98.33 43.33 35.74 / /

In our study, the Zhang method showed superior SOS extraction accuracies for grasslands
compared with DT, which is consistent with a previous study that based on winter wheat [57].
This could be explained by the idea that the Zhang method is to fit the curve with the DL function and
calculate the local maximum value of the curvature transformation rate of the fitted curve [15], so the
shape of the first half of the curve, especially the shape of the first half curve around SOS, is the main
factor affecting the extraction accuracy of SOS, while the fluctuations of NDVI minimum values have
less impact on the Zhang method compared with DT [68], and the better performance of Zhang may
be due to that the minimum of first half of the curve is more susceptible by noise than shape of the first
half curve around SOS after smoothing in the most instances. This can also be confirmed by the curves
of the four red-circled points in Figure 2c, and the NDVI curves smoothed by different smoothing
methods of the 4 points are shown in Figure 11. In point 1, the curve shapes of CW and SG deviates
farther from those of other methods (Figure 11a), while at the remaining three points (Figure 11b–d),
similar deviations can be found for AG and DL, and these deviations of the curve shapes correspond
well with the differences in the SOS extraction accuracies.

5.4. Applicability of Different Smoothing Methods

In this study, the grassland SOS extracted using different smoothing methods and different
phenology extraction methods were compared, and the results can provide some guiding insights
for the choice of smoothing methods and phenology extraction methods under different scenarios.
Firstly, when there are no available observed data to optimize smoothing parameters, HANTS is the
most recommended method due to its high SOS extraction accuracies for both DT and Zhang with the
default parameters. Besides, CW and SG are also recommended because of their acceptable (for DT)
and good (for Zhang) accuracies of SOS extraction and stable performance (less sensitive to parameter
settings). AG, DL and WS with the default parameters is not suggested for grassland SOS extraction,
mainly due to their low accuracies of SOS extraction. Secondly, if there are abundant phenology
observations to optimize the smoothing parameters, HANTS and WS are more recommended due to
their excellent for both DT and Zhang performance after adopting the optimal parameters.

As for the phenology extraction methods, the Zhang method has obvious advantages over DT,
and is more suggested for grassland SOS extraction. However, DT can have a robust and accurate
performance of SOS extraction by fixing the minimum value, with a SOS extraction accuracy even
higher than the Zhang method. The threshold of DT-fix in suggestion for grassland SOS extraction is
35% based on our results.

6. Conclusions

In this paper, based on MOD13Q1 NDVI time-series and observed SOS records of 8
agrometeorological stations, we compared six smoothing methods for grassland SOS extraction
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on the Qinghai–Tibetan Plateau during 2001–2011. We found that the bad denoising performance is
not in line with the low SOS extraction accuracy (e.g., O-WS achieved a low fitness for Zhang method
even with extremely low values in the smoothed curve). Different smoothing methods show different
parameter sensitivities, and the optimal parameters can improve the accuracy of SOS extraction.
In addition, the optimal parameters are different for different extraction methods, the average fitness of
the four optimal smoothing methods for DT and Zhang are decreased by 43.24% and 77.49% compared
with the default parameters, respectively. For the 6 smoothing methods, HANTS has lowest fitness for
Zhang (fitness = 33.52 with parameter optimization and fitness = 35.05 without parameter optimization)
and the denoising ability of HANTS are all better than other methods. The phenology extraction method
has a greater impact on accuracy than the smoothing method and the main influencing factor of DT and
Zhang are the stability of the annual minimum and curve shape near SOS, respectively. Zhang is better
and more stable than DT method for all smoothing methods. However, after setting the minimum
value of the NDVI curve to eliminate the fluctuation error of the annual NDVI minimum value, with a
suitable threshold, the DT-fix method has less difference in fitness for the default parameters or optimal
parameters for all smoothing methods and can achieve better SOS extraction results than Zhang, with
a fitness decreased by 71.65% for default parameters and 7.54% for optimal parameters on average.
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Appendix A
Table A1. Fitness for different smoothing methods and extraction methods (The numbers in bold
indicate the lowest fitness).

O-CW O-SG AG DL O-WS O-HANTS Mean SD

DT10 207.67 243.26 132.89 115.75 65.27 56.39 136.87 68.80
DT15 157.77 130.56 124.15 113.63 46.51 48.38 103.50 41.82
DT20 153.16 108.57 138.11 127.68 47.52 48.10 103.86 41.79
DT25 159.73 108.38 159.07 146.66 50.83 52.19 112.81 46.59
DT30 168.76 119.56 182.08 166.58 50.03 66.59 125.60 51.58
DT35 181.11 130.91 206.26 187.26 50.09 87.39 140.50 56.64
DT40 200.31 163.31 231.97 208.82 58.25 112.83 162.58 60.19
DT45 225.27 212.53 260.24 232.62 76.95 143.30 191.82 62.51
DT50 258.02 256.32 293.48 258.99 101.78 178.68 224.54 64.86

Zhang 49.26 45.46 104.75 109.15 38.45 33.52 63.43 31.20
Mean 176.11 151.89 183.30 166.71 58.57 82.74 / /

SD 52.92 63.32 59.83 50.70 17.68 45.27 / /
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Figure A2. Smoothed results of each smoothing method for Zhang method for eight stations from 2001 to 2011.The x-axis is the 11-year result of 8 stations. x = 1~23
represents the result of station 1 in the year 2001.
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