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A B S T R A C T   

Remotely sensed solar-induced chlorophyll fluorescence (SIF) has been increasingly used to probe photo
synthesis and model the gross primary productivity (GPP). Although SIF at the top of canopy (TOC) can be 
simulated using the coupled photosynthesis-fluorescence model SCOPE (Soil Canopy Observation, 
Photochemistry and Energy fluxes), simulating spatially distributed TOC SIF usually requires extensive calcu
lations, entailing some challenges when applying the model to the regional and the global scales. This study puts 
forward a coupling framework that combines SIF and global terrestrial biosphere models (TBMs). The theory for 
fluorescence emissions and the fluorescence radiative transfer algorithm described in the SCOPE model were 
integrated with the “two-leaf”-based BEPS (Boreal Ecosystem Productivity Simulator) model. To simplify the 
fluorescence radiative transfer physics, we put forward a canopy-averaged leaf-level fluorescence to represent 
the fluorescence emitted from sunlit and shaded leaf groups and performed a sensitivity analysis to assess the 
determining factors in upscaling fluorescence from leaf scale to canopy scale. We found that the relationship 
between the leaf and canopy fluorescence at 740 nm was mainly affected by LAI. Although brown pigments and 
leaf inclination angle demonstrate some impacts on the scaling process, an LAI-based coefficient can well 
characterize the upscaling from leaf to canopy scale. Since our BEPS-SCOPE coupling model deploys the sunlit- 
shaded leaf separation strategy, we expect that it can efficiently characterize the nonlinear responses of pho
tosynthesis and the associated fluorescence to environmental factors. The performance of our model was eval
uated at both site and global scales, which demonstrated a good performance for most plant functional types 
(PFTs) except for needleleaf types that have a more clumped nature. Apart from these limitations, the presented 
model can contribute to efficiently simulating SIF at regional and global scales, and has the potential to reduce 
uncertainties in GPP estimation.   

1. Introduction 

Plant photosynthesis is an important process that assimilates CO2 

and mediates most of the carbon and water fluxes in the biosphere- 
atmosphere system. Spatially simulating photosynthesis at the eco
system scale (Gross Primary Productivity, GPP) can therefore provide 
essential insights for understanding terrestrial ecosystem functions, 
carbon and water cycling, and climate change (Thurner et al., 2014). In 
the past decades, solar-induced chlorophyll fluorescence (SIF) has been 
increasingly used to probe photosynthesis and estimate GPP as it is 
directly linked to the photosynthetic process. It is sensitive in tracking 
the regulatory processes in photosynthesis under variable environ
mental conditions such as light, water, heat and nutrition stresses, 

making it more effective in tracking the actual photosynthetic rates 
than the reflectance-based data as reflectance-based data are generally 
used to estimate plant potential photosynthetic rates (Guanter et al., 
2014; Damm et al., 2015; Porcar-Castell et al., 2014). 

SIF is energy emitted as one dissipative pathway that competes with 
photochemistry and heat dissipation (non-photochemical quenching, 
NPQ) after chlorophyll molecules absorb the photosynthetically active 
radiation (PAR) (Baker, 2008). Due to the competitive relationship 
among SIF, photosynthesis, and NPQ, the recent development of pas
sively measuring SIF has created a novel method for spatially mon
itoring GPP (Porcar-Castell et al., 2014; Zarco-Tejada et al., 2013). 
Currently, globally SIF can be generated using satellite-based sensors 
such as GOSAT TANSO-FTS, ENVISAT SCIAMACHY, MetOp-A/B 
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GOME-2, OCO-2, TanSat ACGS, and Sentinel-5P TROPOMI 
(Joiner et al., 2011, 2013, 2016; Frankenberg et al., 2011, 2014;  
Du et al., 2018; Liu et al., 2018b; Guanter et al., 2015; Köhler et al., 
2018). Although none of these sensors were initially planned for SIF 
monitoring, strong linear relationships between satellite-based SIF and 
remotely-sensed GPP products or GPP derived from EC (Eddy Covar
iance) towers have been discovered (Frankenberg et al., 2011;  
Guanter et al., 2014; Sun et al., 2017, 2018; Yang et al., 2015). Ad
ditionally, former studies have also shown that SIF performs well in 
capturing plant phenology (Jeong et al., 2017; Joiner et al., 2014). 
Recent literature has even suggested that the SIF-GPP relationship is 
consistent under different vegetation types (Sun et al., 2017; Li et al., 
2018b). Despite these promising insights, the underlying mechanism of 
these correlations has not yet been well-established (Porcar- 
Castell et al., 2014; Mohammed et al., 2019). For instance, it is well 
accepted in recent literature that the SIF-GPP relationship is influenced 
by observational wavelength (Verrelst et al., 2016), temporal scaling 
(Zhang et al., 2016b, 2018a), chlorophyll content (Liu et al., 2016a;  
Liu et al., 2017b), canopy structure (Damm et al., 2015), light condition 
(Damm et al., 2015; van der Tol et al., 2014; He et al., 2017), stress 
status (van der Tol et al., 2014), and orbital geometry (Joiner et al., 
2020). We expect that these various factors can lead to complex SIF- 
GPP relationships. Thus, to properly utilize remotely sensed SIF ob
servations in tracking terrestrial GPP, physiological theories need to be 
considered together with SIF observations. 

SIF can be simulated with the Soil Canopy Observation, 
Photochemistry and Energy fluxes (SCOPE) model (van der Tol et al., 
2009). SCOPE deploys the typical FvCB biochemical model 
(Farquhar et al., 1980) when modeling photosynthesis for C3 and C4 
species. The fluorescence emission theory used in the model is based on 
the work of Lee et al. (2013, 2015) and van der Tol et al. (2014), in 
which the relationship between leaf photosynthesis and chlorophyll 
fluorescence was described using an empirical approach. SCOPE also 
adopts the FluorSAIL theory (van der Tol et al., 2019) to describe the 
fluorescence radiative transfer process. A complete run of SCOPE esti
mates the carbon, water and energy fluxes, as well as canopy optical, 
thermal, and fluorescence spectra. Due to its high computational de
mand, SCOPE is not suitable for regional and global SIF simulations. In 
recent years, SIF has been integrated with global terrestrial biosphere 
models (TBMs), such as CLM4 (Community Land Model Version 4), 
SSiB2 (Simplified Simple Biosphere Model version 2), BEPS (Boreal 
Ecosystem Productivity Simulator), ORCHIDEE (Organizing Carbon and 
Hydrology In Dynamic Ecosystems), BETHY (Biosphere Energy Transfer 
Hydrology), and JSBACH (Jena Scheme for Biosphere-Atmosphere 
Coupling in Hamburg) (Lee et al., 2015; Raczka et al., 2019; Qiu et al., 
2018, 2019; Bacour et al., 2019; Norton et al., 2019; Thum et al., 2017). 
These studies enable spatially explicit, plant functional type (PFT) de
pendent global simulations of GPP and SIF, which also laid the basis for 
evaluating and improving our understanding of global carbon cycle 
(Koffi et al., 2015; Norton et al., 2019). The general ideas of these SIF- 
TBMs are: (1) to integrate a model that describes the relationship be
tween fluorescence and photosynthesis at leaf scale, (2) to deploy a 
canopy radiative transfer model to upscale fluorescence from leaf scale 
to canopy scale (Parazoo et al., 2020). Thus, accurately estimating 
photosynthesis and the coupled energy exchange, evapotranspiration is 
the prerequisite and basis for the SIF-TBMs. Additionally, simplifying 
the fluorescence radiative transfer process is necessary for improving 
the computational efficiency in regional and global simulations. 

In general, TBMs can be categorized as big-leaf, two-leaf, and 
multilayer models. Compared with the two-leaf model that treats ve
getation canopy as two groups of leaves, sunlit and shaded ones, the 
big-leaf approach has been proven to lead to underestimated results in 
modeling canopy GPP as it excludes the photosynthetic contributions of 
shaded leaf groups (Chen et al., 1999). Additionally, some studies have 
noted that SIF is more related to sunlit-leaf GPP than total or shaded 
GPP because the fluorescence yield and photosynthetic efficiency are 

positively related at stressed or high-light conditions, while under low- 
light unstressed situations, their relationship becomes competitive 
(Damm et al., 2015; Wang 2014). These existing studies suggest the 
necessity of separating canopy leaves into sunlit and shaded groups 
when using SIF to model the canopy photosynthesis process or vice 
versa. Although the multilayer model is more adequate in simulating 
GPP (De Pury and Farquhar, 1997; Reick et al., 2013), the two-leaf 
model has been proven to be more computationally effective when 
compared with the multilayer theory (Wang and Leuning, 1998) and 
can adequately capture the variations in the leaf biochemical char
acteristics within the entire canopy (Chen et al., 2012; Zhang et al., 
2012; Wang and Leuning, 1998). In fact, apart from ORCHIDEE deploys 
the big-leaf model, BETHY and JSBACH adopt the multilayer model, 
most of the existing SIF-TBMs (CLM4, SSiB2, BEPS) employ the two-leaf 
approach in modelling canopy SIF and GPP. 

The fluorescence model described in the SIF-TBMs typically adopts 
the theories of Lee et al. (2013, 2015) and van der Tol et al. (2014) in 
which the relationship between fluorescence and photosynthesis at leaf 
scale is described as a function of environment conditions. Although SIF 
emission is directly linked with photosynthesis at leaf scale, the TOC SIF 
is affected by the leaf optical properties and the canopy structural 
variables (Verrelst et al., 2015). Therefore, studies of scaling processes 
between leaf and canopy fluorescence are essential in characterizing the 
relationship between GPP and remotely sensed wavelength-dependent 
TOC SIF (Liu et al., 2020). Recently, Yang and van der Tol (2018) noted 
that the canopy scattering of red TOC SIF is more affected by leaf 
pigments while the far-red TOC SIF is more sensitive to canopy LAI. A 
further study conducted by van der Tol et al. (2019) suggested that leaf 
brown material and dry matter affect the escape probability of fluor
escence from canopy at far-red region. To characterize the scaling 
process between leaf and canopy fluorescence, Zeng et al. (2019) de
ployed the near-infrared reflectance of vegetation (NIRv) and FPAR 
(fraction of absorbed photosynthetically active radiation) to estimate 
the escape ratio of far-red SIF. Qiu et al. (2019) put forward a fluor
escence upscaling approach that considered canopy extinction and 
scattering. These studies have simplified the fluorescence radiative 
transfer process and shown enormous potentials in efficiently upscaling 
fluorescence from leaf to canopy scale. Apart from these studies, other 
studies have put forward an upscaling factor to describes the relation
ship between leaf and canopy fluorescence (Lee et al., 2015;  
Thum et al., 2017; Raczka et al., 2019; Qiu et al., 2019; Parazoo et al., 
2020). In the reported literature, the upscaling factor is commonly re
lated to the maximum carboxylation capacity (Vcmax) (Lee et al., 2015;  
Raczka et al., 2019), LAI (Qiu et al., 2019; Thum et al., 2017) or solar 
zenith angle (SZA) (Qiu et al., 2019). As the upscaling factor occupies 
various forms, it is still necessary to assess the factors that mostly affect 
the fluorescence upscaling process from leaf to canopy in the SIF-TBMs, 
especially for a two-leaf based model that is more efficient in regional 
and global simulations. 

In this study, we propose an approach for coupling fluorescence to 
photosynthesis in the two-leaf based BEPS model. The coupling model 
incorporates the theories of both BEPS and SCOPE. The fluorescence 
model proposed by Lee et al. (2013, 2015) and van der Tol et al. (2014) 
is integrated, and simplified upscaling factor is then introduced after 
performing a series of sensitivity analyses. Our model was evaluated at 
both the site and global scales. The presented model serves to efficiently 
simulate SIF at regional and global scales, and can be applied to assess 
the performance of BEPS in modeling GPP and the coupling processes 
by comparing the simulated SIF with the observed SIF. In recent stu
dies, Koffi et al. (2015) and Norton et al. (2019) discussed the possi
bility of combining the observed SIF with process-based models to 
improve the estimation of GPP using data assimilation techniques. In 
this context, the presented model can also serve to potentially reduce 
uncertainties in GPP by optimizing model parameters. 
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2. Materials 

2.1. Datasets for site-scale simulation 

2.1.1. Meteorological data 
We used ten flux tower sites belonging to the FLUXNET 2015 da

taset in this study. FLUXNET provides site-scale measurements of 
carbon, water and energy fluxes using the eddy covariance (EC) tech
nique (Baldocchi et al., 2001), as well as measurements of the me
teorological data. The FLUXNET 2015 dataset contains 212 sites dis
tributed around the world with most of the world's climate types and 
representative biomes. The EC fluxes data are provided with five tem
poral aggregations of half-hourly or hourly, daily, weekly, monthly and 
yearly (Pastorello et al., 2017). For our study, seven types of biomes 
located around the world containing evergreen broadleaf forest (EBF), 
evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), 
deciduous needleleaf forest (DNF), mixed forest (MF), cropland (CRO) 
and savanna (SAV) were included in the ten selected EC flux tower sites 
(Fig. 1). To ensure land surface uniformity around each site, the MODIS 
product for land-cover types (MCD12Q1) (Friedl et al., 2010) was used 
to investigate the spatial homogeneity within the GOME-2 footprint. 
For each selected site in our study, the dominant vegetation-cover type 

at the flux site exceed 60% of the GOME-2 grid cell (Table 1). To per
form our simulation, the measured hourly meteorological factors in
cluding incoming shortwave radiation, air temperature, precipitation, 
and wind speed were extracted. 

2.1.2. Leaf area index (LAI) data 
For our site-scale simulation, we employed the Global LAnd Surface 

Satellite (GLASS) product for LAI to derive LAI for each site. GLASS LAI 
is generated based on the General Regression Neural Networks 
(GRNNs) with land surface reflectance data obtained by MODIS and 
Advanced Very High Resolution Radiometer (AVHRR) (Xiao et al., 
2014, 2016). In former evaluations, the GLASS LAI was temporally 
smoother and perceived as having a higher quality and accuracy than 
both the MODIS LAI product (MOD15) and the Geoland2/BioPar ver
sion 1 (GEOV1) LAI product (Xiao et al., 2016). By considering data 
availability, the retrieval of the 8-day GLASS LAI deploys the AVHRR 
and the MODIS reflectance data to generate LAI at spatial resolutions of 
0.05° and 1 km, respectively. The 0.05° version spans from 1982 to 
2017, and the 1 km version covers 2000 to 2017. In our study, LAI 
values at the site-scale were obtained using the 1 km version. 

As the GLASS LAI might be contaminated by clouds, a temporal gap- 
filling algorithm was performed for the original time-series LAI. First, 

Fig. 1. Spatial distribution of the selected sites.  

Table 1 
Details of the selected EC sites in this study.         

Site ID Lat. Lon. IGBP class Study period max(LC) (%) Reference  

AU-Tum -35.657 148.152 EBF 2007~2013 0.6092 Leuning et al. (2005) 
BE-Vie 50.305 5.998 MF 2007~2014 0.9448 Aubinet et al. (2001) 
DE-Geb 51.100 10.914 CRO 2007~2014 0.8380 Anthoni et al. (2004) 
RU-SkP 62.255 129.168 DNF 2012~2014 0.6181 - 
US-Me2 44.452 -121.557 ENF 2007~2014 0.6914 Campbell and Law (2005) 
US-MMS 39.323 -86.413 DBF 2007~2014 0.5066 Sims et al. (2005) 
US-Ne1 41.165 -96.477 CRO 2007~2012 0.9584 Suyker et al. (2005) 
US-Ne2 41.165 -96.470 CRO 2007~2012 0.9574 Suyker et al. (2005) 
US-Ne3 41.180 -96.440 CRO 2007~2012 0.9377 Suyker et al. (2005) 
ZA-Kru -25.020 31.494 SAV 2009~2013 0.9490 Archibald et al. (2009) 
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we performed a data quality check with the quality flag layer of the 
product, and observations not influenced by clouds were treated as high 
quality (cloud state is clear). A linear interpolation algorithm was then 
applied to generate temporally continuous daily LAI values using only 
high-quality data. Finally, a Savitzky-Golay filter was used to smooth 
the data and eliminate high-frequency noise (Zhang et al., 2016a). 

2.2. Datasets for the global simulation 

2.2.1. Global leaf area index (LAI) data 
The GLASS LAI dataset from 2012 at a 0.05° spatial resolution was 

selected to perform our global simulation. The formerly mentioned 
temporal gap-filling algorithm was also performed on the original data 
to generate the daily globally distributed LAI. Notably, some pixels had 
less than 3 out of 46 good retrievals for one year globally. As these 
pixels only occupied a small percentage of the total pixels (< 0.5%), we 
kept their original values in the research. The gap-filled LAI was then 
aggregated to a 0.5° spatial resolution as inputs to our model. 

2.2.2. Global land-cover data 
We used the MODIS land-cover type climate modeling grid product 

(MCD12C1) version 6 in the study (Sulla-Menashe and Friedl, 2018). 
Each MCD12C1 pixel represents the annually dominant land-cover type 
within a 0.05° × 0.05° grid cell. The MCD12C1 was derived based on a 
decision-tree classification algorithm using MODIS data acquired with 
both Terra and Aqua (Friedl et al., 2010). In our study, the 2013 
MCD12C1 data was used to represent the land-cover situation in 2012. 
The IGBP land-cover classification scheme in the dataset was obtained 
to provide biome-specific information for our coupling model. 

To perform our simulation at a 0.5° resolution, the 0.05° MCD12C1- 
based IGBP land-cover type data were spatially aggregated to a 0.5° 
resolution based on the maximum area rule. Specifically, the frequency 
of individual land-cover type within a 0.5° × 0.5° area was calculated, 
and the dominant type was assigned as the cell value. 

2.2.3. Global meteorological data 
Globally distributed meteorological data were obtained from Global 

Land Data Assimilation System (GLDAS) products (Rodell et al., 2004). 
By deploying land surface process models and data assimilation algo
rithms, GLDAS provides meteorological information of land surface for 
the entire globe with both 3-hourly and monthly temporal resolutions. 
The spatial resolutions of this meteorological dataset contain both the 
0.25° and 1.0° versions. For our global simulation, we used the 3-hourly 
0.25° dataset (GLDAS-2.1 Noah 0.25° 3-hourly), which was generated 
using the Noah model 3.3 in Land Information System (LIS) Version 7 
(Rodell et al., 2004). The incoming shortwave radiation, air tempera
ture, specific humility, precipitation and wind speed were extracted. 
These GLDAS-based meteorological data were all spatially aggregated 
to a 0.5° resolution to match our simulation. 

We also obtained the GLDAS-based soil temperature, soil moisture 
and snow depth to drive our model. For soil temperature and soil 
moisture, the GLDAS product provides four vertical levels, including 
1–10, 10–40, 40–100, and 100–200 cm. Notably, the soil moisture data 
defined in the GLDAS product were the average layer soil moisture (kg/ 
m2) rather than the volumetric soil moisture (m3/m3). To match the 
model inputs, we selected the soil temperature and soil moisture at the 
top layer (0-10 cm) for our research. The GLDAS-based top layer soil 
moisture (kg/m2) was used to convert to a volumetric soil moisture 
(m3/m3). 

2.2.4. Global soil texture data 
For global simulation, we used the soil texture data of the 

Harmonized World Soil Database (HWSD) v1.2. This dataset was pro
vided at spatial resolution of 30 arc-second (or ~1 km) 
(Nachtergaele et al., 2010). We regridded the HWSD soil texture data 
from their native grid resolution to 0.5° by assigning the dominant soil 

texture type to the grid cell within a 0.5° × 0.5° area. 

2.3. Datasets used to evaluate and compare simulations 

2.3.1. EC data from FLUXNET tower sites 
The EC data of the selected FLUXNET tower sites were used to 

evaluate our site-scale simulation. As the FLUXNET 2015 dataset pro
vided two types of GPP estimations, the daytime method (Lasslop et al., 
2010) and the nighttime method (Reichstein et al. 2003), we first 
performed a simple comparison between these two methods. For our 
selected sites, the monthly averaged daily GPP based on the nighttime 
partitioning was strongly correlated with that based on the daytime 
partitioning (R2 = 0.968, Fig. S1). Thus, we considered both methods 
to have small differences in GPP estimation and used the monthly GPP 
generated with the nighttime partitioning methods in our research. 

2.3.2. GOME-2 SIF product 
The SIF product retrieved with the Global Ozone Monitoring 

Experiment 2 (GOME-2) spectrometer onboard the EUMETSAT's 
MetOp-A was deployed for a comparison with the simulated SIF in our 
study (Joiner et al., 2013, 2016). The MetOp-A runs in a polar sun- 
synchronous orbit, crossing the equator southbound at approximately 
9:30 am. The nadir footprint of GOME-2 onboard MetOp-A was initially 
80 km × 40 km, and was reduced to 40 km × 40 km after July 2013. 
GOME-2 measures the radiance at the top-of-atmosphere between 240 
and 790 nm with a spectral resolution of 0.2-0.4 nm. The Channel 4 
covers wavelengths between 734 and 758 nm with an approximately 
0.5 nm spectral resolution was used to retrieve far-red SIF at approxi
mately 740 nm (Joiner et al., 2011, 2013, 2016). Compared with the 
GOME-2 daily product (Level 2) that is generally contaminated by an 
inherent noise due to low SNR (Joiner et al., 2013, 2016), the 0.5° Level 
3 monthly SIF product (v27) has been quality-filtered and monthly 
averaged, which increases the SNR and enables effective model eva
luation. We used the instantaneous monthly SIF data from 2007 to 2015 
in the study. The daily averaged SIF in 2012 that corrected the varia
bility of photosynthetically active radiation (PAR) in the Level 3 
monthly product was also extracted. 

2.3.3. SCOPE simulated SIF 
As the SCOPE model is too computationally expensive for global 

applications, we only performed site-scale simulation with SCOPE to 
assess our model. Apart from the meteorological data provided by 
FLUXNET and the GLASS LAI, we also adopted PFT-specific Vcmax 

(maximum carboxylation capacity) and Cab (chlorophyll content) in the 
site-scale SCOPE simulations by referring to Chen et al. (2012),  
Zhang et al. (2014), and Koffi et al. (2015). The main input parameters 
for the simulations are listed in Table S1. 

3. Methodology 

3.1. BEPS model 

The BEPS model is a process-based model that deploys the two-leaf 
upscaling strategy in generating the canopy-level GPP. It adopts the 
FvCB photosynthesis model (Farquhar et al., 1980) in estimating leaf- 
level photosynthesis, and calculates the canopy-level GPP by adding the 
photosynthesis rates of sunlit and shaded leaves. This model has been 
deployed to estimate GPP/NPP for different PFTs across regional and 
global and demonstrated reasonable performance (Chen et al., 2012;  
Feng et al., 2007; Matsushita and Tamura, 2002; Zhang et al., 2012). 
The BEPS model can be run at both daily and hourly scale. In com
parison with the daily version which treats leaf temperature as air 
temperature, the hourly version, by contrast, generates leaf tempera
ture using an iterative algorithm that deploys the canopy energy bal
ance theory (Ju et al., 2006). Despite its intense computational re
quirements, we used the hourly version of BEPS in the study to generate 
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SIF signal at the MetOp-A satellite overpass time (~ 9:30 am) as SIF 
demonstrates significant diurnal variation characteristics (Cui et al., 
2017; Liu et al., 2017a; Zhang et al., 2018a). 

By adopting the two-leaf theory, the BEPS model is more effective in 
generating canopy photosynthesis than the conventional big-leaf model 
because it can more adequately capture the nonlinear responses of 
water, heat, and CO2 fluxes to environmental factors (Chen et al., 
1999). Canopy photosynthetic rate can be modeled using: 

= +A A LAI A LAIcanopy su su sh sh (1) 

where the subscripts su and sh indicate the sunlit and shaded leaf 
groups, respectively. 

The photosynthetic rates for these two leaf groups are calculated 
with the FvCB photosynthesis model (Farquhar et al., 1980) and the 
theory of Collatz et al. (1992) for C3 and C4 species, respectively: 
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where the terms wc, we and ws represent the photosynthetic rates under 
different limited cases (wc, carboxylation rate limited case; we, electron 
transport or RuBP regeneration limited case; ws, phosphate limited or 
export of the photosynthetic products limited case). The net photo
synthetic assimilation rate, A, is treated as the minimum of these three 
rates minus the dark respiration rate, Rd. The terms wc, we and ws are 
expressed as functions of the kinetic constraints, irradiation conditions, 
and CO2 partial pressure with Ci, Γ, K, Vm, J and P representing the CO2 

concentration in the intercellular airspace, the CO2 compensation point, 
the Michaelis-Menten coefficient, the maximum Rubisco activity rate, 
the electron transport rate and the atmospheric pressure, respectively. 

In practice, the photosynthetic model is used in combination with 
the physical stomatal conductance model that describes the rate of CO2 

passing through leaf stomata. The stomatal conductance, g, in the BEPS 
model is described with a modified Ball-Berry equation that considers 
the influence of soil water (Ju et al., 2006): 

= +g f m Ah
C

p bw
s

s (6) 

where m is a biome-specific coefficient, hs, p, and Cs are the leaf surface 
relative humidity, the atmospheric pressure, and the leaf surface CO2 

concentration, respectively. b represents the minimum stomatal con
ductance when leaf photosynthesis is zero and can thus be generated by 
leaf dark respiration. The term fw describes the impact of soil moisture 
on stomatal conductance by using the root-water uptake model pro
posed by Ju et al. (2006). 

In the BEPS model, the LAI for sunlit and shaded leaf groups are 
calculated by extending Norman's method (1982) by considering the 
effect of foliage clumping. The incident radiations reaching these two 
types of leaf groups are generated by reducing the radiative transfer 
physics into simple equations. More details are provided in Chen et al. 
(1999, 2012). 

3.2. SCOPE model 

The SCOPE model links the radiative transfer, micrometeorological 
and biochemical processes to generate both canopy spectra (reflectance 
and SIF spectra) and energy balance fluxes (heat, water, and CO2 fluxes) 
(van der Tol et al., 2009). We used the latest version (v1.70) to conduct 

our research. SCOPE deploys an extended PROSPECT model, Fluspect 
(Verhoef, 2011; Vilfan et al., 2016), in order to simulate the spectra of 
leaf reflectance, transmittance and fluorescence. The incident radia
tions that fall on leaves are generated by considering their position and 
orientation using the SAIL theory (Verhoef and Bach, 2007). Then, the 
incident radiation that reaches each canopy element is used to calculate 
the thermal radiation, energy balance fluxes and chlorophyll fluores
cence. After obtaining the leaf-level thermal radiation and fluorescence, 
the TOC spectra of thermal and fluorescence radiations are derived 
based on the theory of Verhoef et al. (2007) and the FluoSAIL model 
(van der Tol et al., 2019), respectively. 

Consistent with the BEPS model, SCOPE deploys the FvCB model 
and the theory of Collatz et al. (1992) in generating photosynthesis, 
which improves but does not guarantee consistency in predicted 
carbon, water, and energy fluxes between the two models (Dutta et al., 
2019; Parazoo et al., 2020). 

3.3. Model integration 

3.3.1. Incorporation of photosynthesis and fluorescence 
The SCOPE model uses the fluorescence emission efficiency (ε) to 

characterize the relationship between photosynthesis and fluorescence 
(Lee et al., 2013, 2015; van der Tol et al., 2014). Fluorescence emissions 
efficiency indicates the probability of fluorescence emission after ab
sorbing PAR (Verrelst et al., 2015; Zhang et al., 2016b). In the SCOPE 
model, fluorescence generated by photosystem Ⅰ (PS-Ⅰ) is proportional 
to the absorbed photosynthetically active radiation (APAR), and ε is 
assumed to be constant. In contrast, the emissions efficiency of PS-Ⅱ is 
treated as variable and is calculated using the semiempirical model 
proposed by Lee et al. (2013, 2015) and van der Tol et al. (2014). In 
their study, steady state fluorescence yield (ΦF), electron transport rate 
and photosynthesis rate were linked by using numerical analysis based 
on the leaf-level gas exchange measurements and the corresponding 
active fluorescence data under various environmental situations. Since 
ε is directly proportional to ΦF, the model allows us to generate the 
fluorescence emissions efficiency (ε) using the photochemical yield (ΦP) 
at the leaf-level (Lee et al., 2013, 2015; van der Tol et al., 2014): 

= (1 )F Fm P (7) 

where ΦFm represents the fluorescence yield at saturating irradiance for 
a light-adapted leaf. This can be generated using: 

=
+ +

k
k k kFm

F

F D N (8) 

where k represents the quenching rate coefficient. Specifically, kF in
dicates the rate coefficient for fluorescence, where kD and kN both re
present heat dissipation with the former representing the constitutive 
one and the latter indicating the energy-dependent one that is de
termined by the electron transport rate. 

By referring to van der Tol et al. (2014), kF can be treated as a 
constant, kD is modeled using a linear regression of temperature when 
temperature exceeds 26°C, and kN is quantified using an empirical 
nonlinear relationship with a factor, x, that represents the light sa
turation degree of photosynthesis: 

=k 0.05F (9)  

= +k Tmax(0.03 0.0773, 0.87)D (10)  

= +
+

k k x
x

(1 )
N N

0
(11) 

where kN
0 , α, and β are coefficients derived with experimental data. Two 

empirical calibrations for kN are available according to van der Tol 
et al. (2014). For our study, we used the group of parameters calibrated 
with Flexas et al.’s (2002) experiment that was conducted on several 
plant species under different drought conditions with values 5.01, 1.93, 
and 10 for kN

0 , α, and β, respectively. The variable x is defined as: 
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=x 1 P

P0 (12) 

with ΦP and ΦP0 indicating the actual and potential photochemistry 
yields, respectively. ΦP can be generated using: 

= J
JP P0
a

e (13) 

where Ja is the actual electron transport rate that can be calculated 
using the rate of gross CO2 assimilation A (Eq. (5)), and Je is the po
tential electron transport rate that is generated with APAR: 

=
+

J
A

A

forC3

forC4
Eff

C
C

Eff

a

1 2

1
C

C

3
i
i

4 (14)  

=J 0.5·APAR·e P0 (15)  

=
+ +

k
k k kP0

P

P F D (16) 

where EffC3 = 0.25, EffC4 = 0.17, and kP = 4.0 (van der Tol et al., 
2014). 

Eq. (14) makes it possible to obtain Ja using the actual photo
synthesis rate A. Consequently, the steady state fluorescence yield ΦF at 
the leaf-level can be obtained using the BEPS-simulated leaf-level 
photosynthesis rate. In this way, the photosynthesis module of the BEPS 
and the fluorescence-photosynthesis model in the SCOPE model are 
incorporated. 

Since the fluorescence emission efficiency is directly proportional to 
the fluorescence yield, multiplying APAR and ΦF can be seen as an 
equivalent of leaf fluorescence (Lee et al., 2015). Considering that the 
total canopy is separated into sunlit and shaded leaves in the BEPS, the 
emitted fluorescence for the sunlit- and shaded-leaf groups were re
spectively generated in our study: 

=F APAR ·su su Fsu (17)  

=F APAR ·sh sh Fsh (18) 

where su and sh represent the sunlit and shaded leaves, respectively. 

3.3.2. Upscaling fluorescence from leaf to canopy 
In the SCOPE model, the TOC SIF is simulated by modeling the 

fluorescence radiative transfer process in a multilayer canopy (60- 
layer) as a function of the solar zenith angle and leaf orientation 
(van der Tol et al., 2009). Since a complete run of this multilayer ca
nopy radiative transfer model is too computationally expensive and not 
suitable for regional and global simulations. In a recent study con
ducted by Qiu et al. (2019), a simplified canopy fluorescence model was 
introduced to characterize the extinction and scattering effects of both 
sunlit and shaded leaves in the two-leaf based BEPS model. As described 
by Qiu et al. (2019), the fluorescence flux at canopy scale was separated 
as those came from sunlit and shaded leaves, which could be generated 
using simplified radiative transfer processes that consider canopy ex
tinction and scattering for both sunlit and shaded leaf groups. After 
obtaining canopy fluorescence flux, Qiu et al. (2019) deployed a con
version factor to derive directional- and wavelength-dependent TOC SIF 
that corresponded with the remotely sensed one. Specifically, the up
scaling process from leaf to canopy scale was mainly determined by LAI 
and SZA in Qiu et al.’s research (2019). Considering there are also 
studies that highlight the impact of Vcmax (Lee et al., 2015;  
Raczka et al., 2019) and brown material (van der Tol et al., 2019) in the 
leaf to canopy fluorescence upscaling process, it is still necessary to 
assess the factors that mostly affect the fluorescence upscaling process 
from leaf to canopy for a two-leaf based model. In this study, we in
troduced a canopy-averaged leaf-level fluorescence to derive TOC SIF. 
The canopy-averaged leaf-level fluorescence accounts for the con
tributions of both the sunlit and shaded leaf groups. A series of 

sensitivity analyses were conducted to assess the factors affecting the 
leaf to canopy upscaling process, which may also serve for further 
scaling studies between leaf and canopy fluorescence. 

We focus on the TOC SIF at 740 nm, which corresponds with the 
GOME-2 SIF product, and only the nadir viewing direction was con
sidered as the effect of viewing geometries is reduced by performing 
monthly averaging across all angles (Norton et al., 2019; Li et al., 
2018a). In our study, the canopy-averaged leaf-level fluorescence was 
defined as a weighted summation of the sunlit- and shaded-leaf emitted 
fluorescence: 

= +F F LAI F LAI LAI( · · )/sun sun sh sh (19)  

The TOC SIF at 740 nm in the vertical viewing direction was gen
erated using: 

=F k F·740 (20) 

where k is the upscaling factor related to leaf scattering, canopy 
structure, incident-observation geometry, and wavelengths. 

In our study, we run the SCOPE model under various situations to 
assess the factors that determine the upscaling factor k. Although the 
upscaling factor has been reported to be related to Vcmax (Lee et al., 
2015; Raczka et al., 2019) or LAI (Qiu et al., 2019; Thum et al., 2017), 
we also consider incoming shortwave radiation (Rin), air temperature 
(Ta) and Cab in this study as these variables have a key influence on the 
simulated canopy-level fluorescence (Verrelst et al., 2015). The ranges 
of the input variables used for the SCOPE simulation are listed in  
Table 2. 

By running the SCOPE model with varying input parameters, both 
F740 and F were obtained. Then, the relationship between leaf and ca
nopy fluorescence was investigated. 

We found that the slope of the leaf-canopy fluorescence relationship 
is mainly affected by LAI (Fig. S2). By contrast, Vcmax, Cab, Rin and Ta 

have little contributions on the variation of the slope. Apparently, Rin 

affects the intensities of both leaf and canopy fluorescence but has no 
obvious impact on their relationship. Both Cab and Ta slightly affect leaf 
and canopy fluorescence, which may be attributed to their connections 
with APAR and NPQ, respectively. 

As shown in Fig. 2, the relationship between the leaf and canopy 
fluorescence can be characterized as linear, and the slope of this linear 
relationship (k) can be determined by LAI (Fig. 2a). We derived k using 
an empirical exponential equation that is related to LAI (Fig. 2b) as: 

= +k e0.9507 LAI0.1270· (21)  

It should be noted that all the simulations were conducted by as
suming the leaf-inclination distribution factor (LIDF) was spherical 
(LIDFa = -0.35 and LIDFb = -0.15), which has been proven to be 
suitable for most types of forests and crops (Wang and Jarvis 1990). 

3.4. SIF simulations and evaluations 

We ran the BEPS-SCOPE coupling model at both site-scale and 
global-scale. The GOME-2 monthly SIF product was used to evaluate 
our simulations. For site-scale simulation, our model was run at hourly 
interval, while for global simulation, the running was conducted at 3- 
hourly intervals to reduce the computational complexity and improve 
the simulation efficiency. We also deployed the SCOPE model to assess 

Table 2 
Ranges of variables used for SCOPE running.    

Variables Values (min/max/interval)  

Vcmax (μmol/m2/s) 10/110/10 
LAI 0.5/5.5/0.5 
Cab (μg/cm2) 5/20/5, 20/70/10 
Rin (W/m2) 100/1200/100 
Ta (°C) -10/40/5 
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the performance of our model. To match with the GOME-2 monthly SIF 
product, all simulations were aggregated to a monthly scale. 

In the photosynthesis module of BEPS, a PFT-specific canopy albedo 
was introduced to generate the leaf APAR. Considering that using a 
temporally consistent canopy albedo can inevitably lead to some un
certainties. For our site-scale simulation, we adopted the MODIS pro
duct for fraction of photosynthetically active radiation (FPAR) 
(MCD15A2H) (Myneni et al., 2015) to derive APAR. However, in our 
global-scale simulation, the PFT-specific canopy albedo was used to 
obtain APAR. 

As SIF demonstrated a significant diurnal variation schema that 
corresponded with APAR (Cui et al., 2017; Liu et al., 2017a;  
Zhang et al., 2018a), the instantaneous daily SIF value at 9:30 am local 
time (LT), which is in consistent with the MetOp-A overpass time was 
obtained by calculating the averaged value of the retrievals of 9:00 am 
LT and 10:00 am LT or by interpolating the retrievals between 6:00 am 
LT and 12:00 am LT for the site-scale simulation and global simulation, 
respectively. Compared with the GOME-2 daily SIF product, the 
monthly SIF product excluded retrievals that were significantly con
taminated by clouds (cloud fraction above 30%) (Joiner et al., 2013). 
Thus, we only considered the simulations under “clear-sky” conditions 
in generating monthly averaged SIF to match the GOME-2 monthly 
product. For our research, the clear-sky condition was defined as si
mulations when incoming shortwave radiation was above 80% of the 
monthly maximum incoming shortwave radiation. Likewise, the SCOPE 
based monthly SIF was also obtained using the “clear-sky” simulations. 

To assess the performance of the BEPS-SCOPE coupling model, we 
adopt the coefficient of determination (R2) and the root mean square 
error (RMSE) to quantify its ability in simulating SIF and GPP. 

4. Results 

4.1. Relationships between photochemistry, fluorescence, and heat 
dissipation 

To assess our coupling framework, we explored the relationships 
between photochemistry, fluorescence, and heat dissipation using our 
model. By varying the incoming shortwave radiation, APAR, ΦF, ΦP, 
and kN were obtained with our model. As shown in Fig. 3, the re
lationships between ΦF, ΦP, and kN were found to be related with 
APAR. Specifically, ΦF was positively related with kN and negatively 
related with ΦP when APAR was lower and turned to inverse re
lationships when APAR was higher. It suggested that our coupling 
framework can well characterize the relationships between ΦF, ΦP, and 

kN under different APAR. According to the existing literature, under 
lower light conditions, more photosynthetic reaction centers are closed 
when APAR increases because the reduced quinone acceptor of PSII 
(QA) cannot be reoxidized in time (Baker, 2008), which results in a 
decreased ΦP. In this case, since NPQ is inhibited by the proton gradient 
under low light intensity (Porcar-Castell et al., 2014), kN increases 
slowly and ΦF increases rapidly. Consequently, ΦF is positively related 
with kN and negatively related with ΦP. By contrast, under higher light 
conditions, NPQ increases and dominates as protons are accumulated, 
thylakoid lumen pH is decreased when the light density increases, and 
both fluorescence and photochemistry are inhibited, resulting in a ne
gative relationship between ΦF and kN and a positive relationship be
tween ΦF and ΦP. 

We also analyzed the temporal changes of kN and ΦP for all the 
selected sites. As the presented model deploys the sunlit-shaded leaf 
stratification strategy, we generated kN and ΦP for both sunlit (Figs. S3 
and S4) and shaded leaf groups (Figs. S5 and S6) in this study. On a 
monthly scale, as shown in Figs. S3 and S5, kN increases when APAR 
raises, while ΦP decreases as APAR increases (Figs. S4 and S6). We 
found the seasonal changes of kN and SIF seemed to change in opposite 
directions and tended to be negatively related (Figs. S3 and S5). 
Specifically, kN demonstrates higher values in non-growing season and 
declines when SIF increases. During non-growing season, plants remain 
dormant, with lower temperature and less useful water inhibit photo
synthesis, thereby resulting in a reduced ΦP even under lower light 
conditions (Figs. S4 and S6). As photochemistry, NPQ, and fluorescence 
compete with each other, a reduced ΦP leads to higher values of kN. A 
further analysis on the seasonal dynamics of kN for US-Ne1 (CRO), US- 
Ne2 (CRO), and US-Ne3 (CRO) indicated that C4 species exhibit higher 
kN than C3 species, a result that was consistent with the observations 
conducted by Killi et al. (2017), suggesting a higher level of NPQ in the 
C4 species. We also noticed that the seasonal dynamics of kN and ΦP for 
evergreen species are smaller than those of deciduous species. A recent 
study conducted by Raczka et al. (2019) highlighted the necessity of 
separating kN into sustained and reversible NPQ when modeling SIF for 
cold climate evergreen species, which lead to larger seasonal changes in 
kN and SIF when compared to the fluorescence model used in our study. 
The method proposed by Raczka et al. (2019) can be adopted in further 
studies to test its applicability in various PFTs. 

4.2. Site-scale SIF simulations 

We tested the BEPS-SCOPE coupling model at site-scale. The com
parisons among BEPS-SCOPE based, SCOPE based and GOME-2 SIF for 

Fig. 2. The leaf-canopy fluorescence relationship under various LAI (a) and the relationship between k and LAI (b).  
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four cropland sites (DE-Geb, US-Ne1, US-Ne2, US-Ne3) are presented in  
Fig. 4. We found that the monthly SIF simulated by BEPS-SCOPE were 
well correlated with the GOME-2 SIF product for all cropland sites (R2 

> 0.92, RMSE < 0.20 mW/m2/sr/nm). Among these sites, DE-Geb was 
dominated by winter wheat (Revill et al., 2013), US-Ne1 was planted 
with maize. For US-Ne2 and US-Ne3, maize and soybean were planted 
as a rotation system. Specifically, US-Ne2 was planted with maize with 
the exception of 2008, and US-Ne3 was characterized by maize in odd 
years and turned to soybean in even years (Suyker et al., 2005). As 
winter wheat and soybean exhibit the C3 photosynthetic pathway and 
maize exploits the C4 photosynthetic pathway, we considered that our 
model can generate TOC SIF properly for both C3 and C4 species. The 
result was also consistent with earlier studies conducted by  
Zhang et al. (2014), van der Tol et al. (2014) and Guan et al. (2016). In 
these studies, the relationship between fluorescence and actual elec
tron-transport rate was similar for both C3 and C4 species, which 
suggested our coupling schema in the model was irrelevant to photo
synthesis type. 

We also noted that the monthly SIF simulated by BEPS-SCOPE and 
SCOPE demonstrate similar distributions and contiguous numerical 
values (Fig. S7). However, the SCOPE based SIF was slightly higher 
than the BEPS-SCOPE based one, especially at the beginning and ending 
of growing season. This might be attributed to the constant leaf optical 
parameters used in our SCOPE simulation. In this study, we deployed 
PFT-specific Cab and Cca (carotenoid content) and assumed they re
mained constant. We also adopted constant values for Cw (leaf water 
equivalent layer), Cdm (dry matter content), and Cs (brown pigment 
fraction). These leaf optical parameters, however, have been proven to 
vary over time, especially for Cab that affects both the absorption of 
photons and the production of fluorescence, which may result in some 
deviations. Compared with the SCOPE model, the BEPS-SCOPE has no 
module to deal with leaf optical characteristics and adopts a PFT-spe
cific canopy albedo to generate APAR. We adopted the MODIS product 
for FPAR in generating leaf APAR in the BEPS-SCOPE, which may 
capture the seasonal variations of SIF more properly. 

The monthly SIF values for five types of forests (DBF, EBF, DNF, 
ENF, and MF) simulated with our coupling model were also compared 
with those of the SCOPE based SIF and the GOME-2 SIF product (Fig. 5). 
In general, our simulated SIF was in close agreement with the SCOPE 
based one (Fig. S7). When compared with the GOME-2 SIF product, our 
model exhibited different performances for different forest types. For 
US-MMS and BE-Vie, which were planted with DBF and MF, respec
tively, the modeled and GOME-2 based SIF values were highly corre
lated (R2 > 0.80, RMSE < 0.26 mW/m2/sr/nm). However, the mod
eled SIF were significantly higher than the GOME-2 SIF values at both 
RU-SkP and US-Me2, which were characterized by DNF and ENF, re
spectively. 

The deviations in simulating needleleaf species might be attributed 
to the radiative transfer theory used in the presented model. For 
broadleaf species, the thickness of the broadleaf is much smaller than 
the leaf width. The light transmitted through leaf edges is negligible 
compared to that exits the leaf outer layers. Compared with broadleaf 
species, needleleaf species are generally narrow and thick. Although 
needleleaf length can be assumed to be infinite relative to the leaf 
thickness and width, the leaf width can significantly affect leaf re
flectance and transmittance. As leaf width is close to leaf thickness for 
most needleleaf species, the amount of light that escapes from needle
leaf edge cannot be neglected. In our study, the radiative transfer 
theory of the SCOPE model was reduced into simple equations to im
prove the computational efficiency of the BEPS-SCOPE integrated 
model. The SCOPE model deploys the Fluspect theory in modeling leaf 
fluorescence, reflectance and transmittance. As Fluspect is established 
based on the PROSPECT model that is particularly suitable for broad
leaf species, it may not be adequate to quantify the optical properties of 
needleleaf species due to “edge effects” (Zhang et al., 2008). Moreover, 
needleleaf species generally exhibit a complex canopy structure which 
demonstrate high clumping at both shoot and crown level 
(Rochdi et al., 2006), using the same setups as broadleaf species may 
lead to some deviations. Additionally, the semiempirical fluorescence- 
photosynthesis relating theory (van der Tol et al., 2014) deployed in 
our model was established without considering needleleaf species. The 
applicability of this theory to needleleaf species still requires further 
experiments and validation (van der Tol et al., 2019). 

We also noted that the SIF values for the AU-Tum site (EBF) were 
overestimated when compared with the GOME-2 based SIF. This site is 
located in a warm temperate, fully humid area with a warm summer 
climate (Köppen climate classification Cfb) (Leuning et al., 2005). It 
occupies abundant precipitation throughout the year, which makes the 
area around the site more likely be contaminated by clouds. Although 
the monthly GOME-2 SIF product filters the retrievals when cloud 
fractions are above 30%, clouds are present in nearly every observation 
of GOME-2’s large footprint (Joiner et al., 2013). By contrast, in our 
site-scale simulation, we first used a temporal gap-filling algorithm to 
derive continuous LAI values using clear-state retrievals. Then, a 
monthly averaging performance was conducted using only simulations 
under clear-sky conditions. These processes could handle the cloud- 
contaminated data more properly, which resulted in mismatches be
tween the GOME-2 SIF values and simulated SIF values. 

For the ZA-Kru site covered mainly by savanna, both the BEPS- 
SCOPE coupling model simulated and the SCOPE model simulated SIF 
were overestimated when compared with the GOME-2 SIF product 
(Fig. 6). We also noticed the simulated SIF has a systematic bias and 
exhibits double-peak in the seasonal cycle. This site is located on a 
broad-leaved and fine-leaved ecotone between Combretum savanna and 

Fig. 3. Relationships between ΦF, ΦP, and kN under various APAR.  
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Acacia savanna planted on sandy soil and clayey soil, respectively. 
Various plants, including trees, shrubs, and grasslands, are distributed 
in a 300 m × 300 m area around the tower site (Scholes et al., 2001). In 
this case, we assumed the simulated SIF may deviate when using one set 

of parameters that were applicable for savanna. According to the 
MODIS product for land-cover types (MCD12Q1), 94.90%, 2.49%, 
1.51%, 0.57%, and 0.53% of pixels within the GOME-2 grid cell belong 
to savanna, cropland, closed shrubland, open shrubland and urban and 

Fig. 4. Comparisons among our simulated SIF, SCOPE SIF, and the GOME-2 SIF product for four cropland sites. DE-Geb (a), US-Ne1 (b), US-Ne2 (c), US-Ne3 (d). The 
individual points in the left subplots represent the simulated SIF values at 9:30 am LT for each day. The monthly SIF were generated using only “clear-sky” 
simulations. 
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build-up, respectively. Except for the urban and build-up, we obtained 
the GLASS LAI and the MODIS FPAR for each land-cover and simulated 
monthly SIF using our coupling model. As shown in Fig. S8, the simu
lated monthly SIF for all land-cover types demonstrated double-peak in 

the seasonal cycle, which is consistent with the EC-based GPP. By 
contrast, the GOME-2 SIF product exhibited an earlier decline and 
showed a one-peak seasonality when compared with the EC-based GPP. 
Although a recent study reported that the TROPOMI SIF can well 

Fig. 5. Comparisons among our simulated SIF, SCOPE SIF, and the GOME-2 SIF product for five types of forest sites. US-MMS (a), AU-Tum (b), RU-SkP (c), US-Me2 
(d), BE-Vie (e). The individual points in the left subplots represent the simulated SIF values at 9:30 am LT for each day. The monthly SIF were generated using only 
“clear-sky” simulations. 
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capture the double-peak seasonality of photosynthesis (Turner et al., 
2020), monthly averaging of GOME-2 SIF likely masks out the higher 
frequency modes of variability. Additionally, the BEPS-SCOPE coupling 
model is applicable for structurally homogeneous canopies as the leaf to 
canopy upscaling factor is derived from the 1-D SCOPE model, there are 
some limitations when applied to complex canopies. This may be an
other reason for the deviations between the simulated and GOME-2 SIF. 

4.3. Global SIF simulation 

For global simulation, the coupling model was run at 3-hour inter
vals to reduce computational complexity and improve simulation effi
ciency. To match with the GOME-2 instantaneous monthly SIF data, we 
generated the daily instantaneous SIF values at 9:30 am LT by inter
polating the retrievals between 6:00 am LT and 12:00 am LT. Consistent 
with the site-scale simulation, only the clear-sky daily SIF retrievals 
were used to obtain the instantaneous monthly averaged SIF. 

The comparisons between the simulated SIF and GOME-2 SIF pro
ducts in January, April, July and October 2012 are shown in Fig. 7 
(globally distributed monthly SIF values throughout the year are pro
vided in Fig. S9). We found that the simulated and GOME-2 SIF values 
were spatially and temporally well correlated. However, the simulated 
SIF demonstrated significant deviations in areas that were mainly 
covered with needleleaf canopies (black rectangles in Fig. 7). This 
finding was consistent with that of the site-scale simulation and re
confirmed that our model was limited when applied to the needleleaf 
land-use type. We also observed that the simulated SIF in tropical 
rainforest regions distributed near the equator were overestimated in 
comparison with the GOME-2 SIF. Due to the continuous periods of 
overcast sky or rainy weather in this region, the observations in the 
large footprints of GOME-2 were generally contaminated by clouds. 
Although the monthly SIF product excludes the retrievals with cloud 
fractions above 30%, the influence of cloud cannot be neglected in 
GOME-2’s large footprint (Joiner et al., 2013). In contrast, the 0.05° 
GLASS LAI were first processed to exclude the retrievals that were in
fluenced by clouds and then aggregated to a 0.5° resolution. These 
processes, in addition to the “clear-sky” aggregation method, sig
nificantly reduced the cloud contamination in a 0.5° × 0.5° grid. In 
addition, Fig. 7 also indicated that the modeled SIF generally over
estimated in high-latitude regions in the northern hemisphere, a result 
that could be attributed to the satellite's overpass time used in our re
search. As the satellite's overpass time represents the local crossing time 
of the ascending node and only applies to the equator, high latitudes 
may have some differences. At high latitudes regions in the northern 

hemisphere, the irradiance may be lower than that at 9:30 am LT, 
which may lead to some deviations as SIF is very sensitive to APAR in 
the SIF-TBMs (Parazoo et al., 2020). 

It should also be noted that the GOME-2 SIF was inherently noisy 
due to the instrument's low signal levels, especially for high-latitude 
regions (Joiner et al., 2013). In addition, the large area in South 
America (red rectangles in Fig. 7), known as the South Atlantic 
Anomaly (SAA), also demonstrated a high variability in the product as 
the performance of the instrument degraded in this region (Joiner et al., 
2013). These inherent drawbacks of the GOME-2 SIF product also led to 
some mismatches in our evaluation. 

To quantitatively assess the performance of our presented model, 
the relationship between the simulated monthly SIF and the GOME-2 
based SIF was analyzed. As our model cannot well handle needleleaf 
species, the ENF and DNF data were excluded. As shown in Fig. 8, there 
were high correlations between these two SIF datasets for all monthly 
retrievals (R2 > 0.5; RMSE < 0.36 mW/m2/sr/nm). Compared with 
the simulated SIF, the GOME-2 SIF product demonstrated some high 
values during the late autumn and winter periods (black ellipses in  
Fig. 8). A further detailed analysis indicated that these high values were 
mainly distributed in Antarctica that was scarcely covered with vege
tation, suggesting that some uncertainties still existed in the GOME-2 
SIF product. Although the simulated SIF and the GOME-2 SIF were 
highly correlated, we also noticed that the simulated SIF was generally 
overestimated. This derivation could be partly attributed to cloud 
contamination within the GOME-2 footprint (Joiner et al., 2013). Ad
ditionally, the homogeneous assumption of our coupling model might 
have been violated within a 0.5° × 0.5° grid, which could have resulted 
in its decreased performance. 

As the MetOp-A overpass time of 9:30 am is not appliable across the 
globe, we generated daily-averaged SIF using the simulated in
stantaneous SIF at 9:30 am LT and SZA following the method described 
in Frankenberg (2015) to eliminate the deviations caused by satellite's 
overpass time and illumination. The comparisons between simulated 
daily-averaged SIF and GOME-2 daily-averaged SIF at a monthly scale 
indicated that both SIF values were spatially and temporally well cor
related (Fig. S10). Compared with the instantaneous monthly SIF, the 
deviations at high latitudes decrease significantly and the correlations 
between the two SIF datasets increases after performing a daily cor
rection (Fig. S11). 

4.4. GPP simulation 

We also checked our coupling framework by evaluating its 

Fig. 6. Comparison among our simulated SIF, SCOPE SIF, and GOME-2 SIF product for the ZA-Kru site. The individual points in the left subplots represent the 
simulated SIF values at 9:30 am LT for each day. The monthly SIF were generated using only “clear-sky” simulations. 
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performance in simulating GPP. A comparison between the modeled 
monthly averaged daily GPP and the FLUXNET GPP was conducted. To 
generate monthly GPP, daily GPP was first obtained by aggregating the 
modeled hourly value to a daily scale, and the monthly averaged daily 
GPP was then generated using the mean value of the daily GPP for each 
month. As shown in Fig. 9, the simulated GPP was generally consistent 
with the FLUXNET GPP for all sites. We also found that the simulated 

GPP demonstrated overestimations when compared with EC-based GPP. 
A further detailed analysis indicated that the overestimation of GPP was 
mainly distributed at both the beginning and end dates of the growing 
period (Fig. S13). This kind of mismatch may be caused by parametric 
uncertainties in the model. As the coupling model simulates the eco
physiological, biogeochemical and the associated processes, numerous 
model parameters should be determined before running. Some 

Fig. 7. Globally distributed GOME-2 SIF and simulated SIF for January (a), April (b), July (c), and October (d).  
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important parameters, including Vcmax and the slope of stomatal con
ductance to the net photosynthetic rate (m), vary temporally 
(Houborg et al., 2013; Kosugi and Matsuo, 2006; Mo et al., 2008;  
Zhang et al., 2014). However, their values were treated as PFT-specific 
in our study, which may lead to some deviations. 

We also compared our modeled GPP with the SCOPE based one. The 
instantaneous photosynthetic rates for both models at 9:30 am LT were 
generated. We found that our modeled GPP was well correlated with 
the SCOPE based one (Fig. S12). These comparisons confirm that the 
BEPS-SCOPE coupling model can properly integrate the photosynthetic 
theory of the two-leaf based BEPS and the fluorescence model of SCOPE 
and provide reasonable estimations for both SIF and GPP. 

5. Discussion 

5.1. Applied limitation of the BEPS-SCOPE coupling model 

The integration of BEPS and SCOPE enabled the efficient generation 
of spatially distributed SIF and GPP. It provided additional outputs of 
TOC SIF at 740 nm that corresponded to the GOME-2 SIF product when 
compared with the outputs of the original version of BEPS. The model 
also simplified the radiative transfer physics of the SCOPE model and 

included a consideration of soil water effects. Thus, the presented 
model provided an efficient solution for regional/global SIF and GPP 
simulations. 

Our integrated model introduced a simple equation (Eq. (17)) to 
simplify the fluorescence radiative transfer process within the canopy. 
This simplification was adopted from the SCOPE model in which a 
Fluspect model was used to characterize the reflectance, transmittance 
and fluorescence emissions of leaves and a FluorSAIL model was 
adopted to simulate the radiative transfer process within a multilayer 
canopy. As an extension of the classic broadleaf radiative transfer 
model PROSPECT, the Fluspect model may demonstrate some un
certainties in simulating the optical properties for needleleaf species 
that are small, narrow and irregularly shaped since the assumption of 
infinite plane layers for broadleaves is violated (Zhang, 2011;  
Zhang et al., 2008). Moreover, needleleaf species generally occupies 
strong clumping in both shoots and crowns, which enhancing the mu
tual shading between needles and affecting the radiant transfer process, 
thereby resulting in a lower reflectance when compared with broadleaf 
species (Rochdi et al., 2006). Likewise, the modeled SIF may demon
strate an overestimation for needleleaf species when compared with the 
remotely sensed one if we use the same setups as broadleaf species. In 
future studies, a correction factor for needleleaf species can be applied 

Fig. 8. Comparisons between the modeled SIF and the GOME-2 based SIF for January (a), February (b), March (c), April (d), May (e), June (f), July (g), August (h), 
September (i), October (j), November (k), and December (j). 
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to tackle these limitations. In addition, the FluorSAIL model, which was 
established based on the SAIL theory, is applicable for structurally 
homogeneous canopies. Terrestrial surface, however, are usually sig
nificantly heterogeneous, especially in large areas like the GOME-2 
footprint. Therefore, more advanced models that can handle hetero
geneous canopies should be considered when characterizing the ra
diative transfer of fluorescence. 

In a study conducted by Zhao et al. (2016), a Monte Carlo ray-tra
cing model, FluorWPS (Fluorescence model with Weighted Photon 
Spread method) was proposed to deal with the fluorescence radiative 
transfer for heterogeneous 3-D canopies. Liu et al. (2019) modeled TOC 
SIF for heterogeneous forests using the Discrete Anisotropic Radiative 
Transfer (DART) model. These studies put forward solutions for simu
lating heterogeneous TOC SIF. However, the computation efficiency of 
FluorWPS or DART is relatively low, which may not be suitable for 
regional and global simulations. Thus, further studies are still needed to 
develop models that can coordinate accuracy, efficiency and applic
ability at various spatial scales. 

We simulated TOC SIF at 740 nm in the vertical viewing direction 
for a comparison with the GOME-2 monthly SIF product. Although the 
impact of viewing geometry decreases after performing monthly 
averages, the instantaneous SIF demonstrate directional variations 
(Liu et al., 2016b; Van Wittenberghe et al., 2015). Thus, the proposed 

leaf-canopy fluorescence upscaling strategy in this study is limited in 
fully characterizing the optical properties of the TOC SIF, especially 
when compared with the instantaneous GOME-2 retrievals, further 
studies are still needed to model the bidirectional TOC SIF emissions for 
applications in more situations. Besides that, in a study conducted by  
Liu et al. (2016b), the bidirectional variation of TOC SIF was corrected 
to nadir using a semiempirical bidirectional reflectance distribution 
function (BRDF) model. A similar approach was performed by  
He et al. (2017) in order to derive hot spot directional TOC SIF using 
the GOME-2 SIF product. The findings of these studies indicated that 
the bidirectional TOC SIF can be angular normalized using the BRDF 
model or a hot spot function, which can extend the applicability of our 
model. 

5.2. Uncertainties in the model parameters setting 

Due to the fact that the SIF-GPP relationship is affected by light 
conditions, we adopted the BEPS model that follows the sunlit-shaded 
leaf stratification strategy (Liu et al., 1997; Norman, 1982; Wang and 
Leuning, 1998) in modeling canopy-level photosynthesis and fluores
cence. In comparison to the big-leaf model, the two-leaf model has been 
proven to more efficiently handle the nonlinear response of leaf pho
tosynthesis to meteorological variables (Chen et al., 1999; Zhang et al., 

Fig. 9. Comparisons between the simulated GPP and the EC-based GPP for DE-Geb (a), US-Ne1 (b), US-Ne2 (c), US-Ne3 (d), US-MMS (e), AU-Tum (f), RU-SkP (g), US- 
Me2 (h), BE-Vie (i), and ZA-Kru (j). 

T. Cui, et al.   Agricultural and Forest Meteorology 295 (2020) 108169

14



2012). In this context, we expected that the BEPS-SCOPE coupling 
model can effectively and efficiently simulate the fluorescence emis
sions, a parameter that is correlated with photosynthesis (Eq. (7)). 
However, a recent study conducted by Parazoo et al. (2020) suggested 
that the simulated APAR shows significant variations across different 
SIF-TBMs. Although our simulated SIF and GPP were generally con
sistent with the SCOPE based ones at site-scale, the fundamental 
methods in generating sunlit/shaded LAI and APAR are different across 
these two models. The BEPS-SCOPE coupling model adopts the em
pirical formula of Erbs et al. (1982) and Black et al. (1991) to derive 
direct and diffuse irradiances above canopy, it also deploys the methods 
of Norman (1982) and Chen et al. (1999) in obtaining LAI and PAR for 
sunlit and shaded leaf groups. The sunlit/shaded APAR is then calcu
lated using PAR and PFT-specific canopy albedo. By contrast, the 
SCOPE model deploys a semi-analytical radiative transfer approach in 
generating sunlit/shaded LAI and APAR in a 60-layer canopy by con
sidering the impact of both leaf optical properties and canopy structure. 
It distinguishes the shaded leaves into 60 elements (60 layers) and 
treats the sunlit leaves as 60 × 13 × 36 elements (60 layers, 13 leaf 
inclinations, and 36 leaf azimuth angles) in deriving the interceptions 
of solar fluxes for sunlit and shaded leaf groups (van der Tol, et al., 
2009). In this study, we compared the BEPS-SCOPE simulated sunlit/ 
shaded LAI and APAR with the SCOPE based ones. As the sunlit/shaded 
fractions are mainly determined by SZA in the BEPS-SCOPE coupling 
model (Norman, 1982; Chen et al., 1999), we derived sunlit/shaded LAI 
and APAR with BEPS-SCOPE and SCOPE by varying SZA from 0° to 60° 
with an interval of 10°, LAI from 1 to 5 with an interval of 1, and Rin 

from 100 W/m2 to 1000 W/m2 with an interval of 100 W/m2. As shown 
in Fig. 10, the sunlit/shaded LAI simulated using both models are al
most identical. We also noticed the sunlit APAR simulated by both 
models demonstrated high consistency while the shaded APAR ex
hibited significant differences between the two models. In our site-scale 
simulations, we adopted the MODIS FPAR in generating APAR for sunlit 
and shaded leaf groups, which lead to similar seasonal variation trends 
when compared with the GOME-2 SIF product. Deploying the MODIS 
FPAR product can reduce some uncertainties caused by the pre-defined 
PFT-specific canopy albedo in generating APAR, but it cannot avoid the 
uncertainties caused by model schema. In Parazoo et al.’s (2020) study, 
they highlighted that the SIF-TBMs based APAR generally deviate from 
the field measurements. As the relationship between ΦP and ΦF is dif
ferent when APAR changes, more comprehensive evaluations and 
comparisons should be performed in future studies. 

Although our coupling model performed well for most sites when 
performing monthly comparisons, some deviations still existed when 
we compared the interannual variations of the simulated SIF with the 
GOME-2 SIF product (Fig. S14). We found that the simulated SIF de
monstrated overestimations when compared with the GOME-2 SIF 
product. Like the overestimation of GPP, the overestimation of annual 
SIF can be mainly attributed to the overestimated SIF values at both the 

beginning and end dates of the growing period (Figs. 4–6). We con
sidered that the consistent temporal parameter settings in our simula
tion can lead to this type of deviation. In the research conducted by  
Zhang et al. (2014), Zhang et al. (2018c), Guan et al. (2016), and  
Camino et al. (2019), remotely sensed SIF was used to derive Vcmax. 
Additionally, SIF has been proven to be related to canopy conductance 
(Shan et al., 2019). Recent studies have also discussed the possibility of 
optimizing model parameters by assimilating the SIF data into the 
terrestrial biosphere models (Koffi et al., 2015; Norton et al., 2019;  
Dutta et al., 2019). These studies suggest that SIF has the potential to 
reduce model uncertainties through model parameterization, which 
supports further studies in accurately estimating regional and global 
GPP using our BEPS-SCOPE integrated model. 

5.3. Limitations in upscaling SIF from leaf to canopy 

In our study, the upscaling factor for SIF at 740 nm, which is located 
in the far-red region, was found to be mainly affected by LAI. In con
trast, the red SIF was also affected by the reabsorption of leaf chlor
ophyll, especially when Cab was below 30 μg/cm2 (Fig. 11), which 
makes the relationship between leaf and canopy fluorescence more 
complex in this spectral range. Although Liu and Cheng (2010) and  
Liu et al. (2017b) suggested that far-red TOC SIF is more reliable for 
estimating GPP due to the chlorophyll reabsorption effect at red band, 
the red SIF has been proven to be more physiologically related to 
photosynthesis (Verrelst et al., 2016, Liu et al., 2020), which makes it 
essential for photosynthesis, especially in short-time scale studies. Thus, 
the simulation of red TOC SIF is as important as the far-red one. 

We used an upscaling factor that is related to LAI to generate TOC 
SIF after conducting a series of sensitivity analyses. As the canopy- 
averaged leaf-level fluorescence was generated using fluorescence that 
comes from both sunlit and shaded leaves, we considered that the up
scaling factor can account for the canopy extinction and scattering ef
fects for both sunlit and shaded leaf groups. Although the proposed 
method greatly improved the efficiency of our simulation, it should be 
noted that recent literature highlights the influence of incident-ob
servation geometry and brown pigments (Cs) in determining the canopy 
SIF escape probability (van der Tol et al., 2019). Thus, we investigate 
their impacts on the leaf to canopy upscaling process. Considering that 
Rin affects the intensities of both leaf and canopy fluorescence, it was 
also included to enlarge the ranges of the intensity values. The ranges of 
the input values used for the SCOPE simulation are listed in Table S2. 

As shown in Fig. 12, apart from LAI, Cs also has an impact on the 
upscaling process. This impact can be attributed to the competition 
relationship between brown pigments and chlorophyll for their ab
sorption of photons, which makes Cs affect the production of fluores
cence. SZA affects the intensities of leaf and canopy fluorescence but 
only has slight impact on their relationship, while VZA shows no ob
vious influence on the upscaling factor. Compared with the results that 

Fig. 10. Comparisons between BEPS-SCOPE based and SCOPE based APAR and LAI for sunlit and shaded leaf groups.  
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neglect the influence of Cs (Fig. S2), the relationship between leaf and 
canopy fluorescence varies as Rin changes. As Cs affects the absorption 
of photons, increased Cs can lead to decreased absorption and fluores
cence, leading to changeable relationship between leaf and canopy 
fluorescence changes even when Rin remain constant. However, a re
cent study conducted by Pacheco-Labrador et al. (2020) suggested that 
SCOPE may neglect the differences between green and senescent leaf 
groups in modeling radiative transfer and exchanges of heat, water and 
CO2. The influence of Cs cannot be neglected and should be investigated 
in further studies using the senSCOPE model (Pacheco-Labrador et al., 
2020) that is more suitable in modeling canopies with mixed green and 
senescent leaves. 

In this study, we only considered the spherical leaf inclination angle 

distribution scenario in assessing the factors that affect the leaf to ca
nopy upscaling process, which may lead to some considerable devia
tions as the angular distribution of leaves affects the allocation of in
cident radiations on sunlit and shaded leaf groups as well as the escape 
ratio of fluorescence. To assess the impacts of leaf inclination, six types 
of leaf inclination angle distributions including spherical, uniform, 
planophile, plagiophile, erectophile and extremophile (Goel, 1988) 
were tested. We found that although LAI mostly determine the re
lationship between leaf and canopy fluorescence for all types of leaf 
inclination angle distributions, the empirical relationships between the 
upscaling factor and LAI are different (Fig. 13). Thus, we advocate 
using biome-specific upscaling factors in the scaling research between 
leaf and canopy fluorescence. 

Fig. 11. The leaf-canopy fluorescence relationship at the red region (685 nm) under various LAI (a) and Cab (unit: μg/cm2) (b).  

Fig. 12. The leaf-canopy fluorescence relationship under various LAI (a), Cs (unit: fraction) (b), Rin (unit: W/m2) (c), SZA (°) (d), and VZA (°) (e).  
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In a recent study conducted by Liu et al. (2018a), a random forest 
model was proposed to downscale SIF from canopy-level to photo
system level, which facilitated the normalization of SIF observations 
across canopy types and incident-observation geometries. As machine 
learning or deep learning algorithms can deal with nonlinear relation
ships between leaf and canopy SIF, we expect it can be adopted in 
further studies to derive TOC SIF. 

5.4. Uncertainties in the model evaluation 

To match with the GOME-2’s large footprint, we adopted EC flux 
sites that were spatially homogeneous over large areas to test our 
model. During the site-scale simulation, we employed the FLUXNET 
based meteorological data and the 1 km GLASS LAI, which are incon
sistent with the GOME-2’s footprint. Therefore, some uncertainties ex
isted when using GOME-2 SIF to assess our site-scale simulation, 
especially for the ZA-Kru site (Fig. 6) which demonstrated a higher 
heterogeneity. Additionally, in our global scale simulation, the 0.05° 
GLASS LAI was spatially aggregated to a 0.5° spatial resolution after 
performing a temporal gap-filling algorithm to exclude LAI that were 
contaminated by clouds. We also adopted a “clear-sky” temporal SIF 
aggregation method to further reduce the influences of clouds. We ex
pect these processes can derive more “clearer” SIF in a 0.5° × 0.5° grid 
than the monthly GOME-2 SIF product and can lead to some deviations. 
Fortunately, the spatial and temporal resolutions of remotely sensed SIF 
are expected to increase substantially in the near future. In comparison 
with GOME-2, the OCO-2 (Frankenberg et al., 2014), TROPOMI 
(Guanter et al., 2015; Köhler et al., 2018), Tansat (Du et al., 2018;  
Liu et al., 2018b) and ESA's Earth Explorer Fluorescence Explorer 
(FLEX) (Drusch et al., 2017) can provide finer resolution SIF retrievals 
that are less contaminated by clouds. Although both OCO-2 and Tansat 
based SIF are spatially and temporally discontinuous, some spatial- 
temporal downscaling approaches have been recently put forward to 

generate global spatially contiguous SIF data at relatively high spatial 
and temporal resolutions (Duveiller and Cescatti, 2016; Gentine and 
Alemohammad, 2018; Zhang et al., 2018a; Li and Xiao, 2019). The 
availability of these high-quality SIF can be adopted to test and evaluate 
our model at a finer resolution in future studies. 

6. Conclusions 

In this study, we proposed an integrated model that linked BEPS and 
SCOPE models to facilitate spatial SIF simulations for regional and 
global applications. The model deployed the sunlit-shaded leaf se
paration strategy, which made it possible to efficiently capture the 
nonlinear responses of water, heat, CO2 fluxes and the associated 
fluorescence to environmental factors. Furthermore, the fluorescence 
radiative transfer process described in the SCOPE model was simplified 
to improve model efficiency. This BEPS-SCOPE coupling model has a 
high computational speed and precision, which makes it possible for 
use in regional and global SIF simulations. 

We put forward a canopy-averaged leaf-level fluorescence to re
present the fluorescence that comes from both sunlit and shaded leaves. 
The canopy-averaged leaf-level fluorescence is obtained by calculating 
the LAI weighted summation of the sunlit- and shaded-leaf emitted 
fluorescence. After performing a series of sensitivity analyses, we found 
that the relationship between leaf-level and canopy-level fluorescence 
at 740 nm was mainly affected by LAI, the impacts of Vcmax, Cab, Rin, Ta, 
SZA and VZA were relatively small. Although brown pigments and leaf 
inclination angle demonstrated some impacts on the scaling process, we 
found that using an LAI-based equation can well characterize the 
fluorescence radiative transfer process within the canopy. This finding 
makes it possible to use simplified equations to describe the complex 
fluorescence radiative transfer process within the canopy, which pro
motes our model's efficiency. 

Due to the inherent limitation of the radiative transfer theory used 

Fig. 13. The leaf-canopy fluorescence relationship under various LAI for spherical (a), uniform (b), planophile (c), plagiophile (d), erectophile (e), and extremophile 
(f) leaf inclination angle distributions. 
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in the coupling model, the current version of our model has some 
limitations when applied to needleleaf species. However, for most 
species, the model demonstrated a good performance in both site-scale 
and global-scale simulations, which suggests that it can be used for 
regional and global applications, especially as a prior constraint in a 
GPP estimation. 
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