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Abstract—The ocean surface net radiation (Rn) characterizing 

ocean surface radiation budget, is a key variable in ocean climate 

modeling and analysis. In this study, a downscaling scheme was 

developed to generate a high-resolution (0.05°) time-series (2002 – 

2013) daily ocean surface Rn from the third-generation Japanese 

Ocean Flux Data Sets with Use of Remote-Sensing Observations 

(J-OFURO3) at 0.25° based on the Advanced Very-High-

Resolution Radiometer (AVHRR) top-of-atmosphere (TOA) 

observations (AVH021C) and other ancillary information 

(Clearness Index and cloud mask). This downscaling scheme 

includes the statistical downscaling models and the residual 

correction post-processing. A series of angle-dependent 

downscaling statistical models were established between the daily 

ocean surface Rn in J-OFURO3 and the AVHRR TOA data, and 

then, the residual correction was conducted to the model estimates 

Rn_AVHRR_est to obtain the final downscaled dataset 

Rn_AVHRR. Validation against the measurements from 57 

moored buoy sites in six ocean observing networks shows the high 

accuracy of the downscaled estimates Rn_AVHRR_est with a R2 of 

0.88, RMSE of 23.44 W∙m-2, and bias of -0.14 W∙m-2 under all-sky 

condition. The results of the spatio-temporal analysis in 

Rn_AVHRR and inter-comparison with Cloud and the Earth’s 

Radiant Energy System (CERES) and the Interim ECMWF Re-

Analysis (ERA-Interim) products also indicated that the superior 

of the Rn_AVHRR with more detailed information especially in the 

hot spot regions, such as central tropical Pacific (warming pool), 

Atlantic and Equatorial Eastern Indian Ocean (EIO). 

 
Index Terms—AVHRR, downscaling, net radiation, ocean 

surface, remote sensing. 
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I. INTRODUCTION 

HE ocean,  as earth’s primary heat reservoir, plays a crucial 

role in earth’s energy budget and variations in ocean heat 

content, which makes a fundamental impact on regional and 

global climate system [1]. Through the transportation of general 

circulation in the ocean and atmosphere, heat, water, and 

momentum fluxes are frequently exchanged through the ocean 

surface to redress the heat imbalance. Generally, heat flux is 

transferred from atmosphere to the ocean by shortwave 

radiation, while it would be also lost by the longwave radiation 

emitting from the ocean to atmosphere. The ocean surface net 

radiation (Rn) characterizing ocean surface radiative energy 

budget balance is the difference between the downward and 

upward radiations from shortwave (0.3 μm ~3.0 μm) to 

longwave (3.0 μm ~100.0 μm) spectrum. During the day, a 

positive Rn value can be observed in most oceans [2], which 

means excessive energy is absorbed by the ocean surface and 

the sea surface temperature (SST) will increase subsequently. 

Part of this energy would be lost to the atmosphere through 

evapotranspiration (ET), while the remaining energy would be 

transferred to the full-deep ocean or cooler ocean regions 

through ocean currents to keep the ocean heat budget staying in 

a balance. The energy redistribution and interaction between 

ocean and atmosphere or in the ocean interior would ultimately 

influence the global and regional ocean climate systems [3]. For 

example, several studies have pointed out that some ocean 

climate events, such as typhoon, El Niño/Southern Oscillation 

phenomenon, etc., are closely related to ocean surface radiation 

anomaly [4, 5], especially the outgoing longwave radiation 

(OLR). Besides, the ocean surface radiation anomaly also leads 

to continental meteorological disasters, such as drought, 

rainstorm, etc. [6]. Therefore, ocean surface Rn information at 

various spatial scales is also necessary to help us to better 

understand the ocean climate system. 

However, little attention has been paid to the Rn over ocean 

surface though it is vital for studies of surface energy exchange 

and ocean climate events. The voluntary observing ship (VOS) 

and moored buoy sites could provide the ocean surface 

radiation fluxes observations, but the available observations are 

few and sparsely distributed. The typical method to obtain the 
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ocean surface Rn was from the calculated radiative components 

(downward and upward shortwave and longwave radiation) 

which were computed by applying the bulk algorithms with a 

set of meteorological state variables (i.e., air temperature, sea 

surface temperature, sea surface humidity, sea surface wind, 

and so on) [7]. However, the accuracy and consistency of the 

calculated Rn from different bulk formulas vary a lot [8]. And 

this method is also limited to the spatial extent of application 

because it was developed based on the sparse meteorological 

measurements at point scale. Meanwhile, most inputted 

meteorological variables for the bulk algorithms are hardly 

obtained, which seriously hinders the development of the 

method [9, 10].  

The alternative way to obtain the ocean surface Rn is from the 

existing datasets including the satellite-based product, the 

model reanalysis product, the reconstructed product, and the 

ship-based product. These products range from various spatial 

resolutions and temporal resolutions, as well as the long 

duration time periods, and are widely used [11-13]. Recently, 

Jiang et al. [14] validated and compared ten sets of ocean 

surface Rn products against the observations and pointed out 

their large discrepancies, which was consistent with the 

previous studies [12, 15, 16]. It was found [14] that the third 

generated Japanese Ocean Flux dataset with the Use of Remote 

Sensing Observations (J-OFURO3) performed best with the 

highest overall accuracy and the finest spatial resolution (0.25°) 

than all other products. The J-OFURO3 project has offered 

daily ocean surface flux data sets that include heat, momentum, 

freshwater fluxes, and related parameters over the global oceans 

(except regions of sea ice) from 1988 to 2013. After a 

comprehensive analysis, the J-OFURO3 data was proved to be 

a good quality, which helps us to better understand ocean–

atmosphere characteristics (such as ocean fronts, mesoscale 

eddies, and geographic features) and their effects on ocean 

climate change [17]. Even though, a dataset in ocean surface Rn 

with higher spatial resolution for analyzing the ocean climate 

events at local or regional scale is still required [18-20], and the 

frequent satellite observations at fine spatial resolution make it 

possible. 

Downscaling methods are usually used to enhance the spatial 

resolution of a parameter without losing its original accuracy. 

The basic idea of these downscaling methods is to either 

establish a statistical correlation or develop a physically based 

model between aggregated high-resolution predictors and the 

targeted parameters at the coarse resolution scale, and then the 

developed downscaling model is applied in the high-resolution 

predictors to obtain targeted parameters at the fine scale. The 

type of input predictors (radar data, optical/thermal data, 

biophysical variables) and the characteristics of the scaling 

model (physical or statistical) are main differences of these 

downscaling methods [21]. Nowadays, the interest in statistical-

based downscaling models development is growing because of 

its effectiveness and simplicity. Currently, different 

downscaling methods have been successfully applied in many 

fields, such as the soil moisture (SM) [22], the land surface 

temperature (LST) [23], the evapotranspiration [24], the 

precipitation [25] and so on. For example, Piles et al. [26] 

developed a downscaling statistical model to combine SM data 

from the Soil Moisture and Ocean Salinity (SMOS) and the 

fine-scale (1km) Moderate Resolution Imaging 

Spectroradiometer (MODIS) Normalized Difference 

Vegetation Index (NDVI) and the LST data, and then obtained 

the 1-km SM over Iberian Peninsula. The results showed that 

the spatial representation of SMOS coarse SM estimates was 

improved by the developed downscaling method while 

maintaining its temporal correlation. Hutengs et al. [27] 

proposed a downscaling method to the MODIS 1-km LST 

based on the random forest (RF) regression algorithm. In this 

study, the RF regression model was built between the MODIS 

LST and the topographical variables derived from the Shuttle 

Radar Topography Mission (SRTM), the MODIS land cover 

data, and the 250 m MODIS/Terra surface reflectance in the 

visible and near-infrared band, and then the 250 m LST 

estimates were calculated based on developed downscaling 

models. The result indicated that the method was promising for 

the downscaling of MODIS or VIIRS LST data. Mahour et al. 

[24] applied the downscaling cokriging method to retrieve the 

daily actual evapotranspiration (AET) with a medium spatial 

resolution (250m) from MODIS NDVI data, and the results 

showed AET had a higher spatial variability than original 

dataset. Therefore, the statistical based downscaling method 

was considered to be applied for downscaling the ocean surface 

Rn from J-OFURO3 into a finer spatial resolution using 

Advanced Very High Resolution Radiometer (AVHRR, 0.05°) 

data in this study. The AVHRR sensor aboard National Oceanic 

and Atmosphere Administration (NOAA) polar-orbiting 

satellites was initially designed for meteorological applications 

and was proved to be a very powerful tool to monitor global 

surface. The earliest AVHRR sensor was aboard on TIROS-N 

in 1978, followed by NOAA-6/8/10 and the most recent 

satellites were NOAA-18/19 and Metop A/B, which constituted 

the longest global satellite observation record. Its 

characteristics include a high temporal frequency with a daily 

global coverage, a 4-km spatial resolution, and the presence of 

both visible and near-infrared (NIR) channels. These properties 

make it an attractive tool to study the evolution of atmospheric 

or surface variables at global scale [28, 29]. 

The main objective of this study is to develop a new 

statistical based downscaling scheme based on AVHRR data to 

retrieve a finer spatial resolution daily ocean surface Rn from J-

OFURO3 dataset from 2002 to 2013. The organization of this 

paper was as follows. Section II gives a brief introduction of 

data and its pre-processing procedure. The details of the 

methods are provided in Section III, and the results are 

described in Section IV. Section V gives some uncertainties 

analysis. Conclusions are presented in Section VI. 

II. DATA AND PRE-PROCESSING 

A. Moored Buoy Measurements 

The ocean surface Rn measurements collected from 57 

moored buoy sites in six ocean observing networks (details 

were shown in Table I) were used for accuracy validation in this 

study. These buoy sites are distributed over global oceans, and 



 

mostly over the low- to mid- latitude oceans, as shown in Fig. 

1. The Global Ocean Observing System (GOOS), Global 

Climate Observing System (GCOS), and the Global Earth 

Observing System of Systems (GEOSS) together form the 

Global Tropical Moored Array Program. Major components of 

the program include Tropical Atmosphere Ocean/Triangle 

Trans-Ocean Buoy Network (TAO/TRITON) array in the 

Pacific [30], Pilot Research Moored Array in the Tropical 

Atlantic (PIRATA) in the Atlantic [31], and Research Moored 

Array for Afrcian-Asian-Austrian Monsoon (RAMA) in the 

Indian Ocean [31, 32]. OceanSITES is an integral part of the 

GOOS. Its observations cover meteorology, oceanography, 

water, biogeochemical, and cycle parameters associated with 

carbon, ocean acidification ecosystem and geophysics. The 

primary focus of Upper Ocean Process Group (UOP) is the 

study of physical processes in the upper ocean and at the air-sea 

interface using moored surface buoys equipped with 

meteorological and oceanographic sensors [33]. The Chinese 

National Arctic and Antarctic Center (CN-NADC) is a national 

facility within the Polar research institute of China (PRIC). It 

serves as the only authorized institution in China to capture, 

regulate the management and long-term preservation of data 

and sample information, and provide sustainable polar data 

service. The available data generally covers physical 

oceanography, marine meteorology, polar marine chemistry 

and so on [34]. 

However, ocean surface Rn was not the routine measurements 

at most moored buoy sites, instead of the downward shortwave 

radiation, downward longwave radiation, and sea-surface 

temperature (except the site in CN-NADC) being available. 

Therefore, ocean surface Rn was calculated firstly at each buoy 

site according to the following: 

 

                             𝑅𝑛 = 𝑅𝑛
𝑠 + 𝑅𝑛

𝑙                                         (1) 

                             𝑅𝑛
𝑠 = (1 − 𝛼𝑠𝑤)𝑅𝑑

𝑠                                  (2) 

𝑅𝑛
𝑙 = 𝑅𝑑

𝑙 − 𝑅𝑢
𝑙  = 𝑅𝑑

𝑙 − [𝜀𝑜𝑐𝑒𝑎𝑛𝜎𝑆𝑆𝑇4 + (1 − 𝜀𝑜𝑐𝑒𝑎𝑛)𝑅𝑑
𝑙 ]    (3) 

 

where 𝑅𝑛
𝑠  is the net shortwave radiation (W·m-2), 𝑅𝑛

𝑙  is the net 

longwave radiation (W·m-2), 𝛼𝑠𝑤  is the daily ocean surface 

shortwave broadband albedo provided by Global LAnd Surface 

Satellite (GLASS) team [35], 𝑅𝑑
𝑠  is the shortwave downward 

radiation on the ocean surface (W·m-2), 𝑅𝑑
𝑙  and 𝑅𝑢

𝑙  are the 

downward and upwelling longwave radiation at the ocean 

surface (W·m-2), 𝜀𝑜𝑐𝑒𝑎𝑛  is the daily ocean surface broadband 

emissivity, provided by the GLASS team [36], SST is the sea 

surface temperature (unit: K), and 𝜎  is Stefan-Boltzmann’s 

constant (5.67 × 10−8𝑊 · (𝑚−2 · 𝐾−4)). 

Table I provides the detailed information of each network. It 

was seen that these moored buoy measurements from various 

networks have different temporal resolutions, units and data 

formats, hence, a strict pre-processing procedure was conducted 

in order to keep the consistency of these measurements. First of 

all, all measurements were used only when their quality code 

labeled as 1 (high quality) [37], and then, the daily Rn was 

directly calculated according to Eqs.(1)-(3) at the sites from 

PIRATA, RAMA, and TAO/TRITON. For those sites that 

sampling resolution was less than daily, their measurements 

were firstly processed into hourly scale, and the daily Rn was 

calculated by averaging the hourly records only if at least one 

observation was available in each single hour for one day. Unit 

of measurement was unified to W∙m-2. Afterwards, time-series 

data for each buoy sites was quality controlled by visual 

inspection and three-sigma rule [38] so as to exclude the 

abnormal records. Finally, all these daily Rn measurements 

(14,688 samples for clear-sky and 30,695 for cloudy-sky) from 

buoy sites were used for validation in this study. 

B.  Remotely Sensed Data 

1) AVH02C1: The Land Long-Term Data Record Project 

(LTDR: http://ltdr.nascom.nasa.gov/ ) provides the Version5 of 

the AVHRR Top-of-Atmosphere (TOA) reflectance/brightness 

temperature data (AVH02C1) (bands 1-5) used in this study. 

The consistent AVHRR dataset generated from global area 

coverage (GAC) data has a spatial resolution of 0.05° at daily 

scale (one instantaneous observation per day) from 1981 to 

present based on AVHRR sensor [39]. These AVHRR TOA 

Observations provide five spectral bands at visible channel 

(0.580-0.680 μm), near-infrared channel (0.725-1.100 μm), 

mid-infrared channel (3.55-3.93 μm) and thermal channels 

(10.5-11.3 um, 11.5-12.5 μm). However, the AVHRR 

instrument suffered from the lack of onboard calibration for its 

visible to shortwave infrared channels, therefore, the LTDR 

project adopted the approach developed by Vermote [40] which 

relies on the clear ocean and accurate Rayleigh scattering 

computations to derive the sensor degradation in the red bands 

consistently across the AVHRR instruments onboard various 

NOAA satellites. In particular, the calibrated method consists 

TABLE I 

INFORMATION OF THE SIX OBSERVING NETWORKS 

Abbreviation Site number Observation 

frequency 

Variables Time span URL 

PIRATA 7 Daily 𝑅𝑑
𝑠 , 𝑅𝑑

𝑙 , SST 2006166-2016350 http://www.pmel.noaa.gov/  

RAMA 6 Daily 𝑅𝑑
𝑠 , 𝑅𝑑

𝑙 , SST 2004297-2016350 http://www.pmel.noaa.gov/  

TAO/TRITON 15 Daily 𝑅𝑑
𝑠 , 𝑅𝑑

𝑙 , SST 2000113-2016350 http://www.pmel.noaa.gov/  

OceanSITES 6 1h 𝑅𝑑
𝑠 , 𝑅𝑑

𝑙 , SST 2000282-2018024 http://uop.whoi.edu/index.html  

UOP 22 15min 𝑅𝑑
𝑠 , 𝑅𝑑

𝑙 , SST 1991112-2016090 https://dods.ndbc.noaa.gov/oceansites/  

CN-NADC 1 1h 𝑅𝑑
𝑠 , 𝑅𝑑

𝑙 , 𝑅𝑢
𝑠 , 𝑅𝑢

𝑙 , 1999232-2014214 http://www.chinare.org.cn/  

PIRATA: Pilot Research Moored Array in the Tropical Atlantic; RAMA: Research Moored Array for Afrcian-Asian-Austrian Monsoon; TAO: Tropical 

Atmosphere Ocean/Triangle Trans-Ocean Buoy Network; OceanSITES: Ocean Sustained Inter-disciplinary Timeseries Environment; UOP: Upper Ocean 

Process Group; CN-NADC: Chines National Arctic and Antarctic Center. 
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of two steps. The first step is to use bright clouds at high 

latitudes (12 kilometers and above) as “white” targets to 

perform inter-calibration between channels 1 and 2, which has 

a comparable function with that using ocean glint. The second 

step is to perform an absolute calibration of channel 1, using an 

offshore nadir view (40-70°) at channels 1 and 2, and to correct 

the aerosol effect. In this process, the satellite measurements in 

channel 2 are used to depress the aerosol effect in the channel 1 

after the water vapor absorption correction. In turn, the net 

signal in channel 1, consisting of the predictable Rayleigh 

scattering component, is used to calibrate this channel itself. 

Meanwhile, a clock correction approach [41] was also applied 

for a better geolocation correction to AVH02C1 dataset. The 

corresponding geometric information (i.e., solar zenith angle 

(SZA), viewing zenith angle (VZA), and relative azimuth angle 

(RAA)) for each pixel were extracted. Besides, the 

corresponding AVHRR cloud mask data which matches well 

with MODIS cloud mask at a consistency greater than 90% [42], 

was used to identify the different sky conditions. It is noting 

that the missing data in AVH02C1 is most in mid- and low-

latitude areas. The pre-processing procedure is below. 

At first, the TOA observations (0.05°) from AVH02C1 were 

aggregated into 0.25° scale to match ocean surface Rn from J-

OFURO3. Instead of directly averaging within each window 

(5 × 5 pixel) in the visible/near-infrared bands (bands 1-2), the 

SZA for every pixel in this window was also incorporated 

according to Pinker [43] as Eq. (4) shows, while the brightness 

temperature data (bands 3-5) was directly averaging. 

Afterwards, the averaged TOA observations in ith channel �̅�𝑡𝑜𝑎𝑖
 

were used to develop the downscaling model. 

 

 �̅�𝑡𝑜𝑎𝑖
=

∑ (
(𝑟𝑡𝑜𝑎𝑖,𝑗

)2

𝑐𝑜𝑠(𝜃𝑠𝑗
)
)25

𝑗=1

25

⁄
                            (4) 

 

where 𝑟𝑡𝑜𝑎𝑖,𝑗
, 𝜃𝑠𝑗

 are jth TOA visible/near-infrared observation 

and its SZA (unit: °) extracted from AVH02C1 within each 

window in ith channel (i=1, 2), respectively. Moreover, only the 

pure clear- or cloud-sky samples from J-OFURO3 were 

considered in this study, which was determined only when 25 

AVH02C1 pixels within one window were all labeled as clear 

(cloud mask = 0) or cloud (cloud mask = 1). 

2) J-OFURO3: J-OFURO3, a third-generation data set 

developed by the Japanese Ocean Flux Data Sets with Use of 

Remote-Sensing Observations (https://j-ofuro.scc.u-

tokai.ac.jp/en/) research project. The initial data set, J-OFURO1 

was released to the public around 2000; the second-generation 

data set, J-OFURO2, followed closely behind in 2008, and its 

main featured improvements primarily steamed from using 

multi-satellite data. In order to further improve the quality of 

dataset, a variety of follow-up research and development were 

conducted  to construct the third-generation, J-OFURO3, which 

offers datasets for surface heat, momentum, freshwater fluxes, 

and related parameters over the global oceans (except sea ice 

covered regions) from 1988 to 2013, based on a 0.25 grid 

system at daily scale [44]. J-OFURO3 provides daily ocean 

surface 𝑅𝑛
𝑠  and 𝑅𝑛

𝑙  [17]. Specifically, the 𝑅𝑛
𝑠  was calculated by 

Eq. (2), in which the 𝑅𝑑
𝑠  was interpolated from the International 

Satellite Cloud Climatology Project (ISCCP) (before 2000) and 

the version 3A of CERES Synoptic data (CERES-

SYN1deg_Ed3A) (after 2000) and the 𝛼𝑠𝑤  was set as 0.03. 

While the 𝑅𝑛
𝑙  was calculated by Eq. (3), in which the 𝑅𝑑

𝑙  was 

also interpolated from ISCCP [45] (before 2000) and CERES-

SYN1deg_Ed3A (after 2000) and the 𝑅𝑢
𝑙  was calculated with 

the emissivity (set as 0.975) and SST from J-OFURO3. Then, 

the ocean surface Rn was obtained by combing daily ocean 

surface 𝑅𝑛
𝑠  and 𝑅𝑛

𝑙 . Rn_JOFURO3 from 2002 to 2013 was used 

for downscaling modelling. 

3) CERES-SYN1deg: Cloud and the Earth’s radiant Energy 

System (CERES: https://ceres.larc.nasa.gov/index.php) is a 

broadband instrument measuring both solar-reflected 

shortwave and earth-emitted longwave radiation from TOA to 

the earth surface, onboard on Terra, Aqua and the Suomi 

National Polar-orbiting Partnership (S-NPP) satellites, with 20-

km spatial resolution at nadir [46]. CERES flux product was 

regarded as one of the most advanced flux product [47]. So the 

CERES surface radiation flux data was taken as the reference 

in this study. The version 4A of CERES Synoptic products 

(CERES-SYN1deg_Ed4A) data was used. CERES-

SYN1deg_Ed4A was calculated using the Langley Fu-Liou 

radiative transfer model from the input geostationary (GEO) 

radiance, Moderate Resolution Imaging Spectroradiometer 

(MODIS) and GEO cloud properties, Goddard Modeling and 

Assimilation Office (GMAO) atmospheric profiles, and 

MODIS aerosols [48]. Compared to SYN1deg_Ed3A, 

SYN1deg_Ed4A has many algorithm and input improvements. 

In Ed3A, MODIS Collection 4 was switched to Collection 5 at 

the end of March 2006, and the switch caused a shift in the 

retrieved aerosol optical thickness over land. While, in Ed4A, 

MODIS Collection 5 was used from March 2000 through 

February 2017, and Collection 6 was used for March 2017, so 

the shift was eliminated. Both the MODIS and GEO cloud 

retrieval algorithms were significantly improved in Edition 4A, 

and cloud properties from geostationary satellites were derived 

hourly, which further improved the temporal resolution from 

the 3-hourly in SYN1deg_Ed3A to hourly in SYN1deg_Ed4A. 

Besides, there are also many other improvements which can be 

found in CERES SYN1deg_Ed4A Data Quality Summary. 

Therefore, the ocean surface Rn data from CERES- 

SYN1deg_Ed4A (Rn_CERES, hereinafter) was obtained by 

combining the four radiative components (downward and 

 
Fig. 1.  Global ocean distribution of six observing networks. 

  



 

upward shortwave and longwave radiation) with 1° spatial 

resolution at daily scale. 

C.  Reanalysis Data 

The European Center for Medium range Weather 

Forecasting (ECMWF: https://apps.ecmwf.int/) has released a 

reanalysis data ERA-Interim aiming at replacing ERA-40. 

ERA-Interim uses 4D-variational analysis (4D-var) that is a 

temporal extension of 3D-var on a spectral grid with triangular 

truncation of 255 waves (corresponds to approximately 80 km 

spatial resolution) and a hybrid vertical coordinate system with 

60 levels [49]. Its radiation is calculated based on the Rapid 

Radiation Transfer Model (RRTM). ERA-Interim data covers 

period from 1989 to present at a horizontal spatial resolution of 

0.75° over globe at 6-hourly interval. ERA-Interim is usually as 

a reference data in many radiation studies [50-52], and it was 

thought to be better than other reanalysis product in ocean 

surface radiation [14], therefore, ocean surface Rn data from 

ERA-Interim was also used as a reference in this study. 

D. Other Parameters 

The AVHRR TOA data was used to downscale the daily 

Rn_JOFURO3, however, it is far from enough to describe the 

daily average atmospheric condition only depending on one 

instantaneous TOA observation per day. Several studies have 

applied the instantaneous TOA satellite observations to 

estimate daily surface radiation by assuming the atmospheric 

conditions were invariant during a day [53-55]. However, this 

assumption was found to be unreasonable in our previous 

research, and the clearness index (CI) was suggested to present 

the daily atmospheric transmittance [56]. CI has been 

successfully applied to several related studies [57, 58] and it can 

be calculated as following: 

 

CI =
𝑅𝑑

𝑠

𝐷𝑆𝑅𝑡𝑜𝑎
⁄                                   (5) 

 

where 𝑅𝑑
𝑠 is extracted from CERES SYN1deg_Ed4A data, 

𝐷𝑆𝑅𝑡𝑜𝑎 is the TOA shortwave downward radiation calculated 

through Eqs. (6)-(9) [59]. 

 

           𝐷𝑆𝑅𝑡𝑜𝑎 =
1440𝐺𝑠𝑐𝑑𝑟

𝜋
(𝜔𝑠 sin 𝜑 sin 𝛿 + cos 𝛿 sin 𝜔𝑠)   (6) 

𝑑𝑟 = 1 + 0.033 cos (
2𝜋𝐷𝑂𝑌

365
)             (7)   

𝜔𝑠 = cos−1(− tan 𝜑 tan 𝛿)              (8) 

δ = 0.409 sin (
2𝜋𝐷𝑂𝑌

365
− 1.39)           (9)  

 

where 𝐺𝑠𝑐  is the solar constant (0.0820 MJm-2·min-1); 𝑑𝑟 is the 

distance between earth and sun; 𝜔𝑠 , 𝜑 and 𝛿  are hour angle, 

latitude and sun declination, respectively. The calculated CI 

was sampled into 0.25° using the nearest neighboring 

interpolation to match the spatial resolution of Rn_JOFURO3.                 

III. METHODOLOGY 

Figure 2 gives the overall flowchart of this study. It contains 

four steps. The first step, the qualified comprehensive 

Rn_JOFURO3 samples were selected based on the filter results 

between J-OFURO3 and CERES-SYN1deg_Ed4A data. The 

second, all inputs were extracted according to the selected 

samples and pre-processed subsequently. Thirdly, the 

downscaling models were developed based on the AVHRR 

TOA data under various conditions (i.e., geometric 

combination, sky conditions) and validated against the 

measurements collected from the moored buoy sites. And the 

residual correction method was applied at the last step to the 

estimates derived from step 3 to generate a more accurate and 

reliable estimates. Three measures were used to characterize the 

validation accuracy: R2, root-mean-square-error (RMSE), and 

bias. In general, all three measures were examined to evaluate 

the performance of various models, but RMSE values were 

given larger weights. More details about these major steps were 

given below. 

A. Samples Selection 

To obtain the most representative Rn_JOFURO3 data with a 

good quality, a test about data consistency was conducted 

taking the corresponding Rn_CERES as the reference because 

of the satisfactory performance of CERES radiation over land 

and ocean surface [14, 60]. First of all, Rn_JOFURO3 data was 

aggregated into 1° (4 × 4 pixels in one window) to match the 

Rn_CERES. And then, a multi-year absolute difference between 

Rn_CERES and the aggregated Rn_JOFURO3 was calculated 

for each sample. Based on the statistical results, it showed that 

more than 60% of the difference values were within 1 W∙m-2, 

which agreed well with the validation accuracy in Jiang’s study 

[14] (bias = 0.742 W.m-2). Hence, 1 W∙m-2 was taken as the 

spatial threshold to select the aggregated Rn_JOFURO3 samples 

by Eq. (10): 

 

|𝑅𝑛𝐽
𝑎 − 𝑅𝑛𝐶| < 1 (10) 

 

where 𝑅𝑛𝐽
𝑎 is the aggregated Rn_JOFURO3 (1°)，𝑅𝑛𝐶 is the 

corresponding Rn_CERES. 

Each selected 𝑅𝑛𝐽
𝑎 contains 16 original Rn_JOFURO3 pixels, 

which were examined by the Tuckey’s Test [61] to ensure their 

consistency. In Tuckey’s test, the minimum and maximum 

 
Fig. 2.  Flowchart of downscaling Rn_JOFURO3 using AVHRR data. 

  



 

values (𝑅𝑛𝑚𝑖𝑛
, 𝑅𝑛𝑚𝑎𝑥

) for each window in 𝑅𝑛𝐽
𝑎  sample were 

first calculated by Eqs. (11) and (12), and then the pixels in this  

window were excluded as long as their values exceed the range 

between 𝑅𝑛𝑚𝑖𝑛
 and 𝑅𝑛𝑚𝑎𝑥

. Moreover, the information about 

location and time of each pixel was also examined to make the 

samples more representative and comprehensive.  

    

𝑅𝑛𝑚𝑖𝑛
= 𝑞1 − 𝑘 × (𝑞3 − 𝑞1)              (11) 

𝑅𝑛𝑚𝑎𝑥
= 𝑞3 + 𝑘 × (𝑞3 − 𝑞1)                 (12) 

 

where 𝑞1 is the lower quartile; 𝑞3 is the upper quartile; k is a 

coefficient defined as 1.5 in our study [62].  

Finally, 6,101 points from 2002 to 2013 (26,051,451 samples 

in total) in Rn_JOFURO3 over global ocean were selected for 

modelling (Fig. 3a) in this study period. 

B. Downscaling Models Development 

A series of the statistical downscaling models were 

developed to downscale the Rn_JOFURO3 with the AVH02C1 

data and other ancillary information under various conditions. 

Table II gives the response and independent variables used for 

modeling. According to previous studies [55], the different 

conditions were defined by the angle bin groups composed with 

SZA, VZA and RAA as well as the atmospheric conditions 

(clear- / cloudy-sky) determined based on the AVH02C1 cloud 

mask in this study and the number of samples in each bin was 

shown in Fig. 4. For clarify, Fig. 3b-e gives the proportion 

distribution of the selected samples under different conditions. 

It was shown that the SZA range of these samples is mainly 

from 20° to 75° both in clear- and cloudy-sky, while the 

distributions of the VZA and RAA were relatively uniform. 

Besides, the samples were mainly in cloudy-sky (Fig. 3b), 

which means the cloudy day was very often over oceans. Noting 

that these models were built only when the number of samples 

was larger than 100. Therefore, 504 (7 SZA bins * 6 VZA bins 

* 6 RAA bins * 2 sky conditions) downscaling conditional 

models should be built theoretically, however, only 297 models 

were developed because of the limitation of sample size (> 100), 

in which 127 models were under clear-sky condition and 170 

models were under cloudy-sky condition, respectively. In the 

development of downscaling regression models, the training 

dataset of each bin was randomly divided into two subsets that 

80% was used for model training and the remaining 20% was 

used for model validation. 

The mathematic format of the downscaling regression 

models was shown in Eq. (13): 

 

𝑅𝑛𝐽 = 𝑓𝜃𝑠,𝜃𝑣,𝜑
(𝑟𝑡𝑜𝑎 , 𝑡𝑡𝑜𝑎, 𝐶𝐼, 𝑙𝑎𝑡, 𝑑𝑜𝑦)       (13) 

 

The explanations of each variable and corresponding 

processing were given in Table II. Under the assumption that 

the TOA observations of each AVH021C pixel in the 5*5 

window corresponding to one Rn_JOFURO3 sample have the 

same relationship with its ocean surface Rn, hence, the 

downscaling models were developed at each samples directly, 

TABLE II 

SUMMARY OF THE INDEPENDENT AND RESPONSE VARIABLES IN THE 

DOWNSCALING MODELS 

 Abbr Full Name Unit Data source Processing 

Response  
variable 

𝑅𝑛𝐽 Ocean 
surface Rn 

W∙m2 J-OFURO3  \ 

 

 
 

Independent 

variable 

𝑟𝑡𝑜𝑎 TOA 

reflectance 

\ AVH02C1 

(bands 1-2) 

Eq.4 

𝑡𝑡𝑜𝑎 TOA 

brightness 

temperature  

K AVH02C1 

(bands 3-5) 

Averaging  

CI Clearness 

Index 

\ Calculated Nearest 

neighboring 

interpolation  

𝑙𝑎𝑡 Latitude Degree J-OFURO3 \ 

𝑑𝑜𝑦 Julian day \ J-OFURO3 \ 

 

 
Fig. 4.  Number of samples in each bin composed by (a) SZA, (b) VZA, and 

(c) RAA under clear- and cloudy-sky, respectively. The X-axis in each plot 
gives the corresponding range of each bin. 

 

 
Fig. 3.  Distribution of the selected samples from Rn_JOFURO3 over global 
oceans (a), and under different sky (b), SZA (c), VZA (d) and RAA (e) 

conditions, respectively. 

 
 

  



 

and all independent variables (except latitude and Julian day) 

were pre-processed into 0.25° (see Section II).  

Artificial neural network (ANN) is a powerful regression 

modelling tool that is used widely [63]. It can learn the 

relationship between inputs and outputs by studying previously 

recorded data [64]. Generally, a typical neural network consists 

of an input layer, a hidden layer, an output layer, and other 

associated components include neurons, weights and transfer 

functions, etc. Fig. 5 shows a typical neuron in a neural network. 

Back-propagation (BP) [65] is one of the available forms of 

neural networks. Besides, there are different training algorithms 

associated with it, such as Gradient descent and Levenberg-

Marquardt [63]. In general, BP algorithm is ideal for multi-layer 

feedforward neural networks. 

A key step to build an efficient ANN model is to find the 

optimal architecture including the number of layers, the number 

of neurons in each layer, and the transition functions associated 

with each neuron [66]. It was concluded that a three-layer 

network with tan-sigmoid transfer functions in the hidden layer 

and linear function in other two layers was enough for most 

modelling applications [63], hence, it was also applied in this 

study. However, the most important thing was to determine the 

optimal number of neurons in the hidden layer for each 

downscaling model in this study. The optimal state was 

determined when the absolute deviation of the RMSE values 

between connected neurons was all less than 0.01 with 5 

consecutive neurons. The number of neurons corresponding to 

the minimum RMSE value was the optimal number of neurons 

in the hidden layer of the model. The optimal structure of each 

model was determined one by one, and it was found that 20 to 

25 was the general number of optimal neurons for most cases. 

Afterwards, these downscaling models were used to calculate 

the ocean surface Rn estimates at high spatial resolution of 0.05° 

(Rn_AVHRR_est, hereinafter) with the original AVHRR TOA 

observations as input. And then, the Rn_AVHRR_est at 0.05°
was validated against all moored buoy measurements. 

C. Residual Correction 

A residual correction was applied to the estimates from the 

downscaling models because the developed ANN regression 

models cannot account for the total variation in the original data 

with a coarse resolution [27]. The residual correction proposed 

by Kustas [67] has been applied frequently in previous 

downscaling works [68, 69]. It is to use the information of 

original coarse resolution data to scale the range of the 

downscaled data to a normal one matching the coarse resolution 

data. In this study, the residual correction consists of three steps: 

First, the estimated Rn_AVHRR_est (0.05°) values from the 

downscaling models were aggregated into 0.25° (5×5 pixel in 

one window) to match the original Rn_JOFURO3. Secondly, 

the residuals between the aggregated Rn_AVHRR_est and the 

corresponding Rn_JOFURO3 were calculated. Thirdly, the 

residuals were resampled into 0.05° and then added to each 

Rn_AVHRR_est in the aggregated window to yield the final 

corrected result (Rn_AVHRR, hereinafter). The procedure is 

indicated as below: 

 

                                  ∆𝑅𝑛0.25 = 𝑅𝑛𝐽 − �̂�𝑛0.25                     (14) 

                                  ∆𝑅𝑛0.05 = 𝑓(∆𝑅𝑛0.25)                     (15) 

         
Fig. 5.  Schematic diagram of a neuron. 

  

 
Fig. 6.  The validation results of Rn_AVHRR_est and  Rn_JOFURO3 against 
buoy measurements from 2002 to 2013 under clear sky (a-b), cloudy sky (c-d), 

all-sky (e-f) conditions, respectively. 

 

  
Fig. 7.  Spatial distribution of the Rn_AVHRR_est validation results at each buoy 

site: (a) BIAS (Wm-2), (b) RMSE (Wm-2), (c) R2 and (d) the difference of relative 
RMSE values between Rn_AVHRR_est and Rn_JOFURO3 against buoy 

observations. 

  



 

                                   �̂�𝑛0.05 = 𝑅𝑛0.05 + ∆𝑅𝑛0.05              (16) 

 

where 𝑅𝑛𝐽  is the Rn_JOFURO3, �̂�𝑛0.25  is the aggregated 

Rn_AVHRR_est, 𝑅𝑛0.05  is the Rn_AVHRR_est, ∆𝑅𝑛0.25  and 

∆𝑅𝑛0.05  is the residual and resampled residual, respectively, 

�̂�𝑛0.05 is the Rn_AVHRR. 

The residual correction can ensure that the re-aggregated 

downscaled Rn matches the original coarse resolution data and 

remove some prediction bias. However, if the downscaling 

model’s predictive strength is low, notable boxshaped artifacts 

may, on the other hand, be introduced into the downscaled Rn 

map [70].   

IV. RESULTS 

Downscaling Results Validation 

The Rn_AVHRR_est estimates from downscaling models 

under clear- and cloudy-sky conditions were directly validated 

(14,688 validated samples for clear-sky and 30,695 for cloudy-

sky) using the measurements from 57 moored buoy sites 

separately, and the corresponding validation results of 

Rn_JOFURO3 were also calculated for comparison, and all 

results were displayed in Fig. 6. Rn_AVHRR_est estimates 

showed a good agreement with buoy observations with RMSEs 

of 20.18 W∙m-2, 24.81 W∙m-2 and 23.44 W∙m-2, biases of -4.08 

W∙m-2, 1.70 W∙m-2 and -0.14 W∙m-2, R2 of 0.80, 0.87 and 0.88 

under clear-sky, cloudy-sky and all-sky, respectively. Generally, 

the downscaled results have the tendency to be underestimated 

under clear-sky, while overestimated under cloudy-sky, 

respectively. It was also observed that the underestimation at 

high values (>250 W∙m-2) and overestimation at low values (<0 

W∙m-2) in Rn_AVHRR_est occurred under both clear-sky and 

cloudy-sky conditions. Comparatively, the overall accuracy of 

Rn_JOFURO3 was close to Rn_AVHRR_est with RMSEs of 

21.84 W∙m-2, 18.90 W∙m-2 and 23.09 W∙m-2, biases of -0.98 

W∙m-2, -4.11 W∙m-2 and 0.48 W∙m-2, and R2 of 0.89, 0.82 and 

0.88 under all-, clear- and cloudy-sky, respectively. The relative 

RMSE values of Rn_AVHRR_est comparing to Rn_JOFURO3 

increased by 0.65% (from 9.61% to 10.26%), and 1.19% (from 

15.94% to 17.13%) under clear- and cloudy-sky, separately, 

which means that the downscaling models performed better 

under clear-sky than that under cloudy-sky resulted from the 

overestimation at low values. It was possibly due to the 

uncertainty of the AVHRR cloud mask resulting in poorer 

performance under cloudy-sky. Overall, the validation results 

indicated that the performances of the new developed 

downscaling models for daily ocean surface Rn are satisfactory. 

According to statistics, the mean RMSE values of 

OceanSITE, PIRATA, RAMA, TAO and UOP networks were 

23.38 W∙m-2, 24.07 W∙m-2, 24.62 W∙m-2, 27.86 W∙m-2 and 28.32 

W∙m-2, respectively. In general, the accuracy of 

Rn_AVHRR_est was satisfactory and comparable with 

Rn_JOFURO3 at low latitude open sea buoy sites, such as 

PIRATA, RAMA and TAO in the tropical oceans. Figure 7 

represents the spatial distribution of the validation results of the 

Rn_AVHRR_est at each moored buoy site. Fig. 7a and b also 

show that the accurate Rn_AVHRR_est estimates were mostly 

at the buoy sites in open the seas, while the poor 

Rn_AVHRR_est estimates were usually at the buoy sites in the 

coastal or high latitude oceans with a larger RMSE or bias 

magnitude. For comparison, the difference of the relative 

RMSE values between the Rn_AVHRR_est and the 

Rn_JOFURO3 of each buoy site were calculated and shown in 

Fig. 7d, and the larger values mean the difference between the 

 
Fig. 8. Temporal variations in Rn_AVHRR_est , Rn_JOFURO3, and buoy 

measurements at sites (a) PIRATA_03 (10°S, 10°W) and (b) 
OceanSITE_STRATUE (19.75°S, 85.33°W). 

  

  
Fig. 9.  Times series plots of downscaled ocean surface Rn and J-OFURO3 for 

(a) uncorrected case and (b) corrected case at site TAO_01 (0°, 95°W). Ratio 
(%) is the relative difference between Rn_AVHRR_est or Rn_AVHRR and J-

OFURO3. 

  

  
Fig. 11.  Monthly variations in Rn_AVHRR_est, Rn_AVHRR, Rn_CERES, 
Rn_J-OFURO3, Rn_ERA-Interim and buoy observations from 2002 to 2013. 

  



 

Rn_AVHRR_est and the Rn_JOFURO3 was large. It was   

observed that the differences were remarkable at some buoy 

sites in the coastal and high latitude oceans, such as the buoy 

sites in UOP network closer to the coastal area and the site 

CNNADC_NWsea (70.66°N, 5.1°E) with the largest RMSE 

value (60.25 W∙m-2) located in the Arctic seas. It was noting 

that the Rn_JOFURO3 pixels in the coastal areas were 

extrapolated from nearby pixels without sufficient quality 

checks [71], even though no satellite observations were 

available [72], thus, the Rn_JOFURO3 performed worse in the 

coastal areas. Besides, the increased surface heterogeneity in 

the process of aggregation and downscaling near the coast, and 

the complex air-sea interactions influenced by the inland 

properties and human factors, would be all the possible reasons 

to explain the large uncertainty in the Rn_AVHRR_est in the 

coastal areas. Regarding to the high latitude oceans, it is 

generally accepted that large challenges exist for accurately 

retrieving the ocean surface radiation fluxes in high latitude 

oceans because of the complex interactions among the 

atmosphere, the ocean and the sea ice as point by Chaudhuri et 

al. [73]. Therefore, more cautions should be paid in these 

special regions. 

Two site examples were presented in Fig. 8. The two sites 

were from the PIRATA and OceanSITES networks. And, the 

corresponding time series in Rn_JOFURO3 were also shown. In 

these two plots, the Rn_AVHRR_est captured the temporal 

variations in Rn_JOFURO3 very well, but both had the 

tendency to underestimate and overestimate the ocean surface 

Rn during the peak and valley periods, which agreed with Fig. 

6. 

In summary, the new developed downscaling models worked 

well for most sea areas, but the estimation errors increased over 

the costal and high latitude ocean areas. 

A. Downscaled Ocean Surface Rn Mapping  

In order to reduce the uncertainties and remove the prediction 

bias in Rn_AVHRR_est, a residual correction method based on 

the original Rn_JOFURO3 was conducted and generated the 

final ocean surface Rn estimations, namely Rn_AVHRR. For 

better illustration, one example was presented in Fig. 9. Figure 

9 shows the comparison results in the bias between the 

Rn_AVHRR_est and Rn_AVHRR to the Rn_JOFURO3 at site 

TAO_01 (0°, 95°W), the red line in the plots represented the 

relative difference ratio. It was seen that the residual corrected 

Rn_AVHRR was more closer to the original Rn_JOFURO3 

                          
Fig. 10.  Comparison of Rn_AVHRR_est (0.05°), Rn_AVHRR (0.05°), Rn_JOFURO3 (0.25°), Rn_ERA-Interim (0.7°) and Rn_CERES (1°) at 225 day of 2008 in 

study area A (Lat: 5° N ~ 20°N, Lon: 135°E ~ 140°E) and study area B (Lat: 50° N ~ 60°N, Lon: 35°W ~ 45°W). (a1) and (b1) are the differences between 
Rn_AVHRR_est and Rn_JOFURO3 over A and B study areas. (a2) and (b2) are the differences between Rn_AVHRR and Rn_JOFURO3 over A and B study areas. 

White color represents the missing data. 

  



 

since the relative difference ratio was almost less than 5% (Fig. 

9b), which illustrated that the post-processing step was  

incorporated necessarily in this study. However, the large 

residuals with relative differences being larger than 10% after 

residual correction are hardly to be corrected well, and these 

large residuals may be caused by the resampling operation in 

residual correction. 

The quality of the maps of Rn_AVHRR was further assessed 

by visual comparison with the direct downscaled result 0.05° 

Rn_AVHRR_est, the 0.25° Rn_JOFURO3, the 0.75° ocean 

surface Rn from ERA-Interim (Rn_ERA-Interim), and the 1° 

ocean surface Rn from CERES (Rn_CERES) in two selected 

areas (Fig. 10). The study area A is a low latitude open sea 

located in the eastern Asia (Lat: 5° N ~ 20°N, Lon: 135°E ~ 

140°E), and the study area B is a high latitude ocean to the south 

of Greenland (Lat: 50° N ~ 60°N, Lon: 35°W ~ 45°W). 

Rn_AVHRR_est and Rn_AVHRR maps reproduced much of 

the ocean surface Rn variation in the referenced three maps 

(Rn_JOFURO3, Rn_ERA-Interim, Rn_CERES) for both study 

areas, and similarly enhanced visual information in comparison 

to the original Rn_JOFURO3, but Rn_AVHRR map was more 

smooth than Rn_AVHRR_est, especially the areas with mosaics. 

Hence, it illustrated that the residual correction was helpful for 

global ocean surface Rn mapping. However, some areas cannot 

be downscaled (white color in the figures) because of the 

missing AVH021C data. The histograms of the differences 

between the Rn_AVHRR_est or Rn_AVHRR and the 

Rn_JOFURO3 within the two study areas were also examined 

and presented in Fig. 10. The results also proved that the 

differences were decreased after residual correction (Fig. 10a 

and Fig.10b). 

Figure 11 displayed the comparison results of the variations 

in monthly ocean surface Rn from 2002 to 2013 for five 

different datasets and the buoy observations. Generally, the 

polylines of the Rn_AVHRR_est, Rn_AVHRR, Rn_CERES and 

Rn_JOFURO3 were closer to the buoy observations than 

Rn_ERA-Interim, and Rn_JOFURO3 and Rn_AVHRR fit the 

best with the buoy observations all over the year, while 

Rn_ERA-Interim presented an obvious underestimation from 

January to Septemper and overestimation after October. The 

residual correction nearly made Rn_AVHRR the same as 

Rn_JOFURO3. Specifically, the differences between 

Rn_AVHRR_est and Rn_CERES and the observations were 

increased mainly during the summer time (May to Sep.), which 

indicated that the dramatic air-sea interaction (dynamical 

adjustments and thermodynamic feedbacks) in this period 

would lead to a complex cloud environment and, therefore, 

more uncertainties would exist in ocean surface radiative 

components estimation. Among these data, only Rn_CERES has 

an obvious overestimation. This is most likely because CERES 

SYN1deg_Ed 4A cloud product underestimate the low-level 

clouds (11.8% and 20.9% for day and night) over the sun-glint 

 
Fig. 12.  Spatial explicit of Rn_AVHRR (0.05°), Rn_JOFUR3 (0.25°), and Rn_CERES (1°) on the doy of 50, 135, 225 and 345 in 2008 from top to bottom. White 

color represents the missing data. 

  



 

ocean and the polar region for both daytime and nighttime, 

though the CERES_Ed4A cloud property retrieval algorithms 

have improved significantly [74]. Due to overestimation of 

surface incident shortwave radiation [75], CI index calculated 

from CERES TOA and surface incident shortwave radiation 

presented an underestimation, which means a lower 

atmospheric transmission or a more turbid atmosphere. So an 

underestimation of Rn_AVHRR_est during the summer time 

was presented. Overall, it has demonstrated that the accuracy of 

Rn_JOFURO3 was satisfactory, and Rn_AVHRR improved 

spatial resolution and also kept its accuracy. 

Fig. 12 showed the comparison of the global ocean surface 

Rn in Rn_AVHRR, Rn_JOFURO3, and Rn_CERES on the 

random selected dates in four seasons in 2008 (doy = 50, 135, 

225 and 334). The spatial variations explicit in ocean surface Rn 

from the three datasets in the four plots seasons were very 

similar. It can be seen that the high Rn moving north from spring 

to summer and then south from autumn to winter, and the high 

Rn values in CERES were a little bit larger (the red color was 

darker) than Rn_AVHRR and Rn_JOFURO3. To be specific, 

the three maps (three panels in the first row, doy=50) were in 

March and most Rn was high over tropical oceans. This is due 

to the fact that the sun crosses the equator in March, that is, the 

sun is higher on the equator at noon, which eventually increases 

the daily amount of solar radiation reaching the surface so that 

Rn increases subsequently. Moreover, the atmosphere tends to 

be more stabilized because heating of the low stratosphere 

provides a more stable lid to the troposphere, which hinders 

atmosphere convection [76, 77]. In June (three panels in the 

second row, doy=135), the Rn increases with the sun moving to 

the Northern Hemisphere because the amount of solar radiation 

reaching Northern Hemisphere is increased dramatically. When 

the sun crosses the equator again by September (three panels in 

the third row, doy=225), the spatial variability and intensity of 

Rn decreases compared with that in summer in the Northern 

Hemisphere.  It results from increased solar radiation in the 

Southern Hemisphere and decreased solar raidation in the 

Northern Hemisphere, and then Rn intensity changes 

subsequently. In December (three panels in the last ro, 

doy=334), the Rn intensity in the Southern Hemisphere becomes 

higher than that in the Northern Hemisphere when the sun 

moves to the Southern Hemisphere, which is opposite to that 

observed in June. It is noted that the missing areas (white color) 

in Rn_AVHRR was larger than Rn_JOFURO3. For one reason, 

the downscaling models cannot work in the polar region 

because of the limitation of the samples (ice-free), and the 

lacking of the AVH021C data was the other one. 

B. Spatiotemporal Analysis of Rn_AVHRR 

The long-time Rn_AVHRR series from 2002 to 2013 was 

generated, and then the trend of deseasonalized monthly ocean 

surface Rn anomalies was calculated below latitude 60° oceans. 

Results were given in Fig. 13. It was observed that the overall 

trend in ocean surface Rn during the study period was downward. 

Specifically, ocean surface Rn significantly decreased (blue 

color) in the central Pacific near Austria, while it significantly 

increased in the central and eastern Pacific near the equator (red 

color). The spatial distribution of ocean surface Rn trends was 

consistent with the study of Tan [77] that a positive trend of 

Photosynthetically active radiation (PAR) was revealed at west 

of Central America around 15°N and west of South America 

around 20°S and in the central Pacific around latitude 5°S.  

To further prove the reliability of trend of Rn_AVHRR, a 

comparison of trends of the mean monthly Rn series obtained 

using Rn_AVHRR and buoy observations series at 40 buoy 

locations was presented in Fig. 14. The trends for the mean 

 
Fig. 13.  Trend of deseasonalized monthly ocean surface Rn anomalies from 
2002 to 2013 based on Rn_AVHRR. 

  

 
Fig. 15.  (a) the ratio of the standard deviation of 0.05°×0.05° Rn_AVHRR 

trend within 0.25°×0.25° grid and the co-located Rn_JOFURO3 trend; (b) the 
ratio of the standard deviation of 0.25°×0.25° Rn_JOFURO3 trend within 

1°×1° grid and the co-located Rn_CERES trend; (c) the ratio of the standard 

deviation of 0.05°×0.05° Rn_AVHRR trend within 1°×1° grid and the co-
located Rn_CERES trend. All datasets cover same period from 2002 to 2013. 

  

                     
Fig. 14. Linear trends of the mean monthly Rn series obtained using the 40 

Rn_AVHRR and buoy-based series over oceans during the period 2002-2013. 

 



 

monthly Rn series of the 40 Rn_AVHRR and buoy-based  series 

showed an agreement in the signs and values throughout the 

study period 2002-2013, which proved the consistency between 

Rn_AVHRR and buoy observations and increased the 

confidence of the spatial distribution of trends in Fig. 13. After 

analysis, the abnormal data points with a large magnitude of 

trend was caused by the series missing of buoy observations 

series. 

The AVHRR TOA data applied in this study not only 

downscaled the Rn_JOFURO3, but also increased the 

information of trend change of deseasonalized monthly average 

Rn. Hence, the temporal change information that different from 

the orignial Rn_JOFURO3 was explored. The standard 

deviation of 0.05°×0.05° Rn_AVHRR trend within each 

corresponding 0.25°×0.25° coarse grid was compared with the 

co-located Rn_JOFURO3 trend (Fig. 15a). The ratios were also 

presented between Rn_JOFURO3 and Rn_CERES (Fig.15b) as 

well as between Rn_AVHRR and Rn_CERES in the same way 

(Fig. 15c). The larger the ratio in Fig. 15a, the more information 

of temporal change provided by Rn_AVHRR compared to 

Rn_JOFURO3. On the other hand, Rn_AVHRR can also be 

proved to illustrate more spatial details of trend variations 

compared to Rn_JOFURO3 when we use trend information of 

Rn_CERES as a reference (Fig. 15b and c). Based on Fig. 15a, 

it showed that spatial variability of the Rn_AVHRR trend was 

greater than that of Rn_JOFURO3 at several ocean regions, 

including central tropical Pacific (warming pool), Atlantic and 

Equatorial Eastern Indian Ocean (EIO) and meanwhile, these 

ocean regions have Rn with a more dramatic variation of trend. 

Because of El Niño-Southern Oscillation (ENSO) event, many 

studies have been conducted to investigate the impact of ENSO  

on ocean climate changes based on surface radiative fluxes and 

meteorological variables over the tropical Pacific using satellite 

observations and atmospheric reanalysis [78, 79]. Meanwhile,  

incoming shortwave and absorb outgoing longwave radiation 

were also frequently used to study Indian Summer Monsoon 

(ISM) over EIO since radiation budget has a great impact on 

SST [80]. In terms of these hotspot ocean regions, Rn_AVHRR 

may be an ideal data source for studying long term ocean 

climate changes and local disaster events due to its high spatial 

resolution, high accuracy and reasonable temporal trend. 

V. UNCERTAINTIES ANALYSIS 

To downscale the ocean surface Rn in J-OFURO3, a series of 

new downscaling models were built by using the AVH021C 

data in this study, and the validation results proved the ability 

of these models. However, as mentioned above, the 

uncertainties were still large in some regions. Therefore, the 

reasons were explored and discussed in this section. 

A. The Effect of CI 

CI is usually used to represent the daily average atmospheric 

condition. In this study, the downscaling models were built 

based on the AVHRR TOA instantaneous observations, which 

can only provide the instantaneous atmospheric condition. 

However, previous studies [53-55] usually assumed the 

instantaneous atmospheric condition was invariant during a day, 

which was pointed out unreasonable in Wang’s study [81]. 

 
Fig. 16.  Daily Rn_AVHRR_est validation results for (a) with CI and (b) 
without CI under all-sky condition. 

 

 
Fig. 17. Fitting RMSE of the ocean surface Rn downscaling models (W/m2) in 

each angular bin for (a) RAA < 90° under clear-sky, (b) RAA > 90° under 

clear-sky, (c) RAA < 90° under cloud sky, and (d) RAA > 90° under cloud 
sky. 

  

      

      
 

Fig. 18. The validation bias (W∙m-2) (a) and RMSE (W∙m-2) (b) against the 

buoy observations for different SZA in clear-sky, cloudy-sky and all-sky. 

  



 

Therefore, CI was introduced in these downscaling models. To 

better understanding the effect of CI, the estimation validation 

results with and without introducing CI were shown in Fig. 16. 

A large increase in RMSE and bias could be observed from 

23.44 to 29.19 W∙m-2 and -0.14 to 2.42 W∙m-2, respectively. In 

one word, it is very effective to improve the validation accuracy 

by adding CI to our downscaling models. 

B. Viewing Geometry 

The impacts of geometric information (SZA, VZA, and RAA) 

on the downscaling models were also analyzed. As stated in 

Section 3.2, each downscaling model was built using the 

training data in each angular bin (see Fig. 4), hence, the 

variations in the fitting accuracies of these models represented 

as the RMSE (W∙m-2) with geometric information was 

examined. The fitting accuracies were divided by the 

combination of RAA (less or larger than 90°) and sky condition 

(clear or cloudy-sky), and the results were shown in Fig. 17. It 

should be noted that the blank grids in the figure because of the 

few samples in these cases. Generally speaking, no significant 

difference was found between the smaller (< 90°) and larger (> 

90°) RAA under the same sky condition, but the RMSE values 

ranged from 5 to 12 W∙m-2 under clear-sky and from 8 to 15 

W∙m-2 under cloudy-sky, respectively. Specifically, for clear-

sky, the model prediction errors were the smallest when SZA 

and VZA both were less than 45°, and increased when the SZA 

increased up to 60° (Fig.18a and b); for cloudy-sky the case was 

opposite that the prediction errors were smaller when SZA was 

larger than 45° (Fig.17c and d). Therefore, it could be 

concluded that the influence of SZA on model performance is 

much larger than VZA and RAA. 

Besides, the variations in the validation accuracy 

(represented by bias and RMSE) with SZA under clear-, 

cloudy-, and all-sky conditions were also examined in Fig. 18. 

It was indicated that downscaling models worked worse when 

SZA larger than 45° under clear-sky but smaller than 60° under 

cloudy-sky, which was agree well with Fig. 17. Moreover, it 

was also found that the bias was overly positive for cloudy-sky 

and negative for clear-sky but with a sharp increase to positive 

when SZA was larger than 60° (Fig. 18a). According to the 

statistic results, the ocean surface Rn values were most less than 

0 W∙m-2 when SZA was larger than 60°, which was also agree 

well with the result presented in Fig. 6 that overestimation 

appeared when ocean surface Rn was very small. The 

uncertainties increased when SZA was large under cloudy-sky 

condition could be explained with three reasons. For first one, 

the clouds and the large SZAs would block or reduce the surface 

information reaching to the satellite, and for the second one, the 

uncertainties of the original Rn_JOFURO3 were large, and the 

third one, few samples could be collected for modeling in these 

cases (see Fig.4), which made the performances of these models 

poor. 

C. Others 

As described above, the accuracy of Rn_AVHRR_est in the 

coastal areas was worse than that in the open oceans, which 

might be caused by the large uncertainty in Rn_JOFURO3 and 

its relative coarse spatial resolution. One sample in 

Rn_JOFURO3 at coastal areas were usually mixed with land 

surface and ocean at 0.25°, but it was still taken as a pure pixel 

for modeling. Even some techniques were implemented in J-

OFURO3 to improve accuracy of gridded products over the sea 

near the land-sea boundaries [82], it seems more efforts still 

needs to be done. Hence, other information, such as the 

reanalysis products, other satellite observations, and so on, 

could be taken into account in the downscaling models in the 

future to improve the estimations in the coastal areas or high 

latitude oceans.  

Overall, the factors to make the performance of the 

downscaling models poor in some special cases are objective 

and should be addressed in future studies. 

VI. CONCLUSIONS 

Ocean surface net radiation Rn at high spatial resolution is 

required for regional or local ocean climate and air-sea 

interaction researches. However, the spatial resolutions of most 

available ocean surface Rn products are very coarse (> 1°). To 

our best knowledge, the daily ocean surface Rn from the 

satellite-based J-OFURO3 product has been reported to be one 

of the best datasets [14], but its spatial resolution is still as 

coarse as 0.25°. The downscaling method was used to enhance 

the spatial resolution of a parameter without losing its original 

accuracy, and it was successfully utilized in various 

applications (i.e., soil moisture, land surface temperature). 

Therefore, a downscaling scheme was developed in this study 

to obtain the daily ocean surface Rn with a high spatial 

resolution from J-OFURO3. 

By considering the advantages of satellite data, the AVHRR 

TOA observations (AVH021C) was used for its high spatial 

resolution (0.05°), long time-span (1978-present) and global 

coverage. In this study, the downscaling scheme consists of the 

downscaling statistical models and residual correction to the 

model estimates. First of all, a series of angle-dependent 

downscaling statistical models were established between the 

daily ocean surface Rn in J-OFURO3 and the corresponding 

aggregated AVHRR TOA data and other ancillary information 

by assuming the relationship was the same for each AVHRR 

pixel. Afterwards, the residual correction was conducted to the 

model estimates (Rn_AVHRR_est) based on the original data 

(Rn_JOFURO3) to reduce the prediction biases. Finally, the 

downscaling scheme was applied to generate a time series daily 

ocean surface Rn dataset at 0.05° resolution from 2002 to 2013 

(Rn_AVHRR). 

After validating against the measurements from 57 global 

buoy sites, it was shown that the accuracy of Rn_AVHRR_est 

with an R2 of 0.88, an RMSE of 23.44 W∙m-2 (14.53%), and a 

bias of -0.14 W∙m-2 under all-sky condition, which was very 

close to the original Rn_JOFURO3. Further analysis indicated 

that the spatio-temporal variations in Rn_AVHRR_est was also 

consistent with Rn_JOFURO3, hence, it was demonstrated that 

the performances of these new developed downscaling models 

were satisfactory and generally robust. For comprehensive 

validation, the generated dataset Rn_AVHRR was inter-

compared with the CERES SYN1deg_Ed4A and the reanalysis 

ERA-Interim products. The inter-comparison results indicated 

that Rn_AVHRR not only has a very similar spatial explicit with 

other products, but also could provide more detailed 

information especially for those hotspots in the current local 



 

ocean climate events and studies, which could help us further 

understand the ocean climate change. 

However, the limitations cannot be ignored: (1) these 

downscaling statistical models performed poor as long as the 

SZA was large, which was possibly due to the limited amount 

of samples for model training; (2) the information contained in 

CI index was limited (only accounted for radiation variation in 

the shortwave range) though it was usually introduced to 

represent the daily average atmospheric condition; (3) the 

coastal mixed pixels have larger uncertainties, and (4) the 

missing data in the Rn_AVHRR was due to the unavailability 

of AVH02C1 data, which was primary designed for the land 

applications [83, 84]. Moreover, the uncertainties caused by the 

AVHRR cloud mask were needed to be taken into account in 

the future. More efforts would be taken to improve the 

performance of the downscaling models and the quality of 

Rn_AVHRR dataset in the future work. 
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