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A B S T R A C T

A key variable describing the mass of seasonal snow cover is snow water equivalent (SWE), which plays an
important role in hydrological applications, weather forecasting and land surface process simulations. In this
paper, the accuracy of an SWE product, GlobSnow-2, which combines microwave satellite data and in situ
measurements, is assessed using three reference evaluation datasets north of 35°N in China. The GlobSnow-2
estimates are also compared with stand-alone satellite products (AMSR2, Chang and FY-3D SWE). The overall
unbiased root mean square error (RMSE) and bias of the GlobSnow-2 SWE product validated with three re-
ference datasets are 17.4 mm and 11.2 mm, respectively, which outperforms the AMSR2 SWE (39.3 mm and
37.3 mm, respectively) and Chang SWE (57.5 mm and 46.2 mm, respectively) products. The FY-3D SWE product
performs better than the GlobSnow-2 estimate for shallow snow (SWE < 50 mm) and tends to underestimate
snow cover, particularly when SWE exceeds 80 mm. A retrieval sensitivity analysis against land cover types
shows that the highest SWE uncertainties for GlobSnow-2 are exhibited in grassland (unbiased RMSE, 27.8 mm),
and the most serious overestimation occurs in forested areas (bias, 23.6 mm). The GlobSnow-2 performances at
various elevations show an increasing bias trend, ranging from 5 to 61 mm with increasing elevation. The
GlobSnow-2 estimate analyses under different snow regimes show that the GlobSnow-2 SWE product performs
best in taiga snow, with high uncertainties (unbiased RMSE, 28.3 mm) in prairie snow and serious over-
estimations (bias, 23.2 mm) for alpine snow. The results of this study demonstrate that the GlobSnow-2 as-
similation approach tends to overestimate SWE in China. One of the major reasons that overestimations occur is
that the GlobSnow-2 SWE retrieval scheme utilizes a fixed density of 240 kg/m3, which is larger than the average
value derived from ground measurements for China (180 kg/m3), which undoubtedly contributes to the ob-
served SWE overestimation. Another reason is that forest effects on satellite signals remain challenging for SWE
estimations in the GlobSnow-2 assimilation system. The retrieval errors in prairie and alpine are also higher than
others due to the snowpack stratigraphy and complex topography. The GlobSnow-2 SWE product performance is
evaluated over China in this study, and the major factors that affect the assimilation scheme accuracy are
determined. These results will provide a reference to improve the GlobSnow-2 SWE product in future work.

1. Introduction

Seasonal snow covers nearly 50% of terrestrial areas in the Northern
Hemisphere during winter (Brown and Robinson, 2011; Bormann et al.,
2018). Snow cover is the largest single component of the cryosphere in
terms of spatial extent and it affects the global surface energy balance
due to its high albedo and the energy allocation involved in the snow
melting (Hansen and Nazarenko, 2004; Li et al., 2018). The amount of

water stored in a snowpack, which is obtained as snow water equivalent
(SWE), is of great importance for hydrological applications, numerical
weather predictions, climate change research and land surface process
simulations (Derksen et al., 2010; Qin et al., 2020). Snowmelt runoff
not only supports the water demands of approximately a sixth of the
Earth’s population (~1.4 billion people) but also directly affects agri-
cultural and ecological systems in downstream areas (Barnett et al.,
2005). At the same time, accurate forecasting of this water supply is
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essential for the optimal management of snowmelt and prevention of
natural hazards such as flooding and avalanches (Bartelt and Lehning,
2002; Vormoor et al., 2015; Larue et al., 2017; Pulliainen et al., 2020).

There exist three major snow cover regions in China, including
Northeast China, northern Xinjiang and the Qinghai-Tibetan Plateau,
where the mean snow cover extent during the winter covers 27% of the
country’s total area (Huang et al., 2016). The Xinjiang province locates
on the northwest of China, dominated by the grassland and bare ground
(Ran et al., 2012). Snow covers are mainly distributed in northern
Xinjiang, especially around the Altai and Tian Shan mountains (Dai
et al., 2012; Zhong et al., 2018). Previous studies have shown that the
average annual snow depth in northern Xinjiang is highest among these
three snow-covered areas in China (Huang et al., 2019; Yang et al.,
2020). In Northeast China, the forest cover accounts for 40% of the total
area (Che et al., 2016). Meanwhile, the topography in Northeast China
is complex due to many existing mountains, e.g., Great Khingan, Lesser
Khingan, and Changbai. They are the forest and mountain covered re-
gions in Northeast China that are covered with relatively deep snow-
packs (Zhong et al., 2018; Huang et al., 2019). The Qinghai-Tibetan
Plateau is the region with an average elevation of more than 4000 m.
The average annual snow depth in the Qinghai-Tibetan Plateau is
smallest among three major snow cover regions, with a mean value of
approximately 5 cm (Dai et al., 2018; Wang et al., 2019). However, the
annual maximum snow depth typically occurs in the southwest of
Qinghai-Tibetan Plateau, known as the Himalaya range (Dai et al.,
2017; Yang et al., 2020).

Satellite passive microwave (PMW) remote sensing has been pro-
posed as an efficient way to retrieve SWE at both global and regional
scales (Armstrong and Brodzik, 2002; Foster et al., 2011; Hancock et al.,
2013; Tedesco and Narvekar, 2010). The physical basis behind PMW
SWE retrievals is that the volume scattering of microwave radiation in
snow varies with wavelength; thus, the contrast between microwave
brightness temperature at K- (~19 GHz) and Ka-band (~37 GHz) can be
related to the amount of snow in the radiation propagation path (Chang
et al., 1987; Mätzler, 1994; Tedesco et al., 2004). PMW remote sensing
is less affected by atmospheric conditions than optical sensors and
provides Earth observation capability during day and night at good
temporal (daily) and moderate spatial (~25 km) resolutions (Chang
et al., 1987). Another advantage of microwaves over optical wave-
lengths is the possibility of extracting information for the whole
snowpack and not just the surface (Lemmetyinen et al., 2016; Zheng
et al., 2016).

Diverse methods have been proposed to retrieve SWE using PMW
observations, including static and dynamic semiempirical algorithms
(Chang et al., 1987; Foster et al., 1997, 2005; Kelly et al., 2003; Kelly,
2009; Derksen et al., 2005; Jiang et al., 2014), physically based sta-
tistical methods (Jiang et al., 2007, 2011; Dai et al., 2012; Picard et al.,
2013; Che et al., 2016; Pan et al., 2017), machine learning approaches
(Santi et al., 2012, 2014; Durand and Liu, 2012; Forman and Reichle,
2015; Bair et al., 2018; Yang et al., 2020) and assimilation techniques
(Sun et al., 2004; Pulliainen, 2006; Durand et al., 2009; Tedesco and
Narvekar, 2010; Li et al., 2012, 2017; Xue et al., 2018; Kim et al., 2019;
Pulliainen et al., 2020). Most of the widely used inversion algorithms
are based on empirical or semiempirical relationships between snow
depth and multifrequency spaceborne satellite brightness temperature
gradients. In China, two static snow depth algorithms were originally
developed based on Chinese weather station observations and PMW
brightness temperatures (Che et al., 2008; Jiang et al., 2014). The al-
gorithm proposed by Che et al. (2008) is the revised Chang algorithm. It
has been used to generate a long-term snow dataset for the algorithm of
the Environmental and Ecological Science Data Centre of Western
China (hereafter, WESTDC product). The mixed-pixel approach pro-
posed by Jiang et al. in 2014 was designed for China’s Fenyun-3B sa-
tellite (FY-3B), considering the influence of land cover types on SWE
retrieval according to the Derksen et al. study in 2005. The accuracy of
these empirical or semiempirical approaches is affected by

uncertainties arising from several simplifications. One such simplifica-
tion is that snow grain size (radius) and snow density are typically
assumed to be uniform throughout snowpack (Armstrong and Brodzik,
2002). Other sources of uncertainty are related to the effects of the
forest canopy and atmosphere (Foster et al., 2005; Derksen and Brown,
2012; Roy et al., 2014; Shi et al., 2017). The current JAXA standard
SWE algorithm designed for the Advanced Microwave Scanning
Radiometer 2 (AMSR2) onboard the GCOM-W1 satellite accounts for
the influence of forest cover and snow grain growth and takes ad-
vantage of the expanded range of channels (10.65, 18.7 and 36.5 GHz)
available on the AMSR2 instruments (Kelly, 2009). Yang et al. (2019)
assessed the AMSR2 algorithm in addition to four other methods over
China using weather station observations. The validation results in-
dicated that the Chang algorithm (Chang et al., 1987) and AMSR2 al-
gorithm tend to overestimate snow depth over China, with biases as
high as 14 cm and 8.7 cm, respectively. However, underestimation of
SWE was reported for the FY-3B (Jiang et al., 2014) and WESTDC (Che
et al., 2008) algorithms when snow cover was thicker than 20 cm. The
Foster algorithm accounts for the influence of forest cover on brightness
temperature (Foster et al., 1997). However, it tends to overestimate
snow depth in China, especially in densely forested areas (Gu et al.,
2018; Yang et al., 2019).

A technique that assimilates in situ snow depth observations with
microwave emissions by means of a forward emission model for snow
was proposed by Pulliainen in 2006. This assimilation approach was
applied in the European Space Agency's (ESA) GlobSnow project to
estimate daily SWE time series from 1979 to present over the Northern
Hemisphere (Takala et al., 2011).

The GlobSnow-2 SWE algorithm has three features compared to
empirical and semiempirical methods. First, the approach considers
atmospheric and forest effects on spaceborne observed brightness
temperature by means of the forest transmissivity model by Pulliainen
et al (1993) and the statistical atmospheric model in Kruopis et al
(1999). It is commonly acknowledged that forest canopies attenuate
PMW radiation emitted from the underlying snowpack and simulta-
neously contribute to their own signal (Foster et al., 2005; Langlois
et al., 2011). The forest canopy microwave transmissivity is strongly
correlated with structural parameters (such as stem volume and canopy
density), canopy intercepted snow, snow cover class and frequency
(Gelfan et al., 2004; Lemmetyinen et al., 2009; Roy et al., 2014; Xue
and Forman, 2017; Cai et al., 2017). A newly published study also
highlights the sensitivity of canopy transmissivity to tree skin tem-
perature (Li et al., 2019). Previous studies conducted from observation
and modeling perspectives have indicated that forest transmissivity
values decreased spectrally from 0.80 to 0.40 for frequencies ranging
from 6.9 to 37 GHz (Langlois et al., 2011; Roy et al., 2014; Vander Jagt
et al., 2015; Che et al., 2016; Li et al., 2017). Forests cover 40% of
Northeast China, which is one of the three primary snow-covered re-
gions in China. Che et al. (2016) compared three satellite SWE pro-
ducts, the AMSR2 standard product, the GlobSnow-2 SWE product and
the WESTDC product over Northeast China. The results showed that the
GlobSnow-2 estimate was superior to the WESTDC product and NASA
product estimates in forest regions, although the relative error was as
high as 60%.

The second feature is that the GlobSnow-2 algorithm assimilates
spaceborne PMW remote sensing data with synoptic weather station
observations of snow depth. It has been demonstrated that the assim-
ilation of PMW satellite data and in situ observations (snow depth, SWE
and snow cover fraction) into snow models is a promising approach
used to improve SWE estimation (Pulliainen, 2006; Durand et al., 2009;
Xu et al., 2014; Kwon et al., 2017; Larue et al., 2018). Li et al. (2017)
assimilated the AMSR-E 36.5 GHz observations into the microwave
emission model of layered snowpack (MEMLS) model simulations of
SWE using the ensemble batch smoother (EBS) data assimilation
method. In this study, a Land Surface Model (LSM) provided prior es-
timates of the state variables for the MEMLS model. After assimilation,
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the overall root-mean-square error (RMSE) of the SWE estimates was
reduced by 35.4%, and the bias was reduced by 84.2%. Magnusson
et al. (2017) used the particle filter algorithm to assimilate snow depth
measurements into a multilayer energy balance snow model to im-
proves the estimates. The results showed that the assimilation method
make the RMSE of SWE estimates reduce by 64% compared to the
model without assimilation. Larue et al. (2018) suggested that the
overall SWE RMSE was reduced by 82% compared to the original SWE
simulations through the assimilation of AMSR2 observations into a
microwave snow forward model by using the particle filter assimilation
scheme. Stigter et al. (2017) found that the assimilation of snow cover
and snow depth into the modified seNorge snow model using the
Kalman filter technique also improved the estimate of SWE in a Hi-
malayan catchment. Therefore, data assimilation can contribute to
ensure that model simulations remain close to ground truth values,
which corrects the effects of potential errors in modeling and inputs on
SWE estimates (Kumar et al., 2015; Magnusson et al., 2017).

A third feature of the GlobSnow-2 algorithm is the optimization of
effective snow grain size, which fits forward model simulations to the
satellite brightness temperature observations. One of the major chal-
lenges for SWE estimation using PMW remote sensing data is the effect
of snow microstructure (e.g., grain size and shape and moisture con-
tent) on microwave radiation originating from soil (Roy et al., 2004;
Langlois et al., 2012; Picard et al., 2013; Kontu et al., 2017; Pan et al.,
2016). Previous studies have proven that the snow microstructure and
snow grain size are the most sensitive parameters affecting the extinc-
tion coefficient of snowpack (Hallikainen et al., 1987; Tedesco and Kim,
2006; Lemmetyinen et al., 2015; Kontu et al., 2017; Picard et al., 2018).
Even small changes in the size of scattering particles notably modify the
measured brightness temperature. The optimized grain size in
GlobSnow-2 is actually an effective value that includes the effects of
modeling errors and uncertainties in input data (snow density, snow
grain size and forest stem volume).

At present, there are two widely used global (AMSR2 and
GlobSnow-2) and two regional (WESTDC and FY-3) SWE products
available in China (see Section 2.2). These SWE datasets can also be
classified into stand-alone satellite (AMSR2, WESTDC, FY-3) and as-
similated (GlobSnow-2) products. Previous studies have demonstrated
that these stand-alone satellite global SWE products tend to over-
estimate SWE in China (Dai et al., 2012; Yang et al., 2015, 2019; Gu
et al., 2016; Zhang et al., 2017; Wang et al., 2019). The regional SWE
products (e.g., WESTDC and FY-3B) designed for China presented si-
milar performance, and outperformed global SWE products (Li et al.,
2014; Gu et al., 2018; Yang et al., 2019). The assimilated GlobSnow-2
SWE historical dataset is freely available (see www.globsnow.info), and
its gridded SWE data are potentially of great interest in studies of

climate change, hydrological processes, permafrost changes, vegetation
growth and river runoff (Che et al., 2016; Larue et al., 2017; Pulliainen
et al., 2017). Previous assessments suggested that GlobSnow-2 esti-
mates can approach the reanalysis-based products regarding accuracy
over the Northern Hemisphere regions, outperforming the other stand-
alone satellite SWE products (Mudryk et al., 2015; Jeong et al., 2017;
Mortimer et al., 2020). However, while the GlobSnow-2 SWE algorithm
exhibits some advantages in its methodology compared with other
empirical and semiempirical methods, its performance over China has
never been studied in detail.

The main purpose of this paper is to thoroughly assess the
GlobSnow-2 SWE product over China using multireference datasets
from weather stations, snow course surveys and field sampling, de-
termining the main factors affecting the performance of the GlobSnow-
2 SWE product in China. The results of this paper will serve to improve
SWE estimates of the GlobSnow-2 retrieval scheme in the near future.

2. Material and methods

Three validation datasets from stations, snow survey courses and
field sampling were used to verify the GlobSnow-2 SWE product. It was
also compared with other widely used SWE products, including the
AMSR2 SWE product, FY-3D SWE product, and Chang SWE product.
Meanwhile, to consider the influence of snow cover characteristics on
SWE estimation, the assessment of GlobSnow-2 SWE product was per-
formed in various climatological snow classes according to the Sturm
et al. (1995) seasonal snow classification. In addition, a GlobSnow-2
retrieval sensitivity analysis was conducted against land cover types
and elevation.

2.1. Ground observations

Three validation datasets available for assessing the GlobSnow-2
SWE product are briefly introduced in the following section.

A) Weather station measurements (Dataset 1): The weather station
data were acquired from the National Meteorological Information
Centre, China Meteorology Administration (CMA, http://data.cma.cn/
en). The recorded variables include the site name, observation time,
geolocation (latitude and longitude), elevation (m), near surface soil
temperature (measured at a 5 cm depth, °C), snow depth (cm), and
snow pressure (g/cm2), which are applied to yield SWE. Dataset 1
covers 297 stations (only north of 35°N, which is the same as the extent
of the GlobSnow-2 product) throughout China from 2014 to 2017
(Fig. 1, left). The dataset covers northern Xinjiang and Northeast and
central China, which are the primary stable snow-covered regions in
China (Fig. 1, right). Most observations are distributed in northern

Fig. 1. Spatial distribution of weather stations (left) and snow cover types (right) in China. The four colored lines are the snow course routes spanning from December
2017 to March 2018. The base map on the left shows digital elevation model (DEM) data with a 90 m resolution, collected from Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). The histogram on the right indicates the number of observations for each weather
station during the 2014–2017 period.
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Xinjiang and Northeast China (Fig. 1, right). A total of 13,201 samples
were collected during the period 2014–2017.

B) Snow survey courses (Dataset 2): A field campaign supported by
the Chinese snow survey (CSS) project was conducted from December
2017 to March 2018 (Wang et al., 2018). During the field experiment
period, a large number of snow pits were measured every 10 to 20 km.
These measurements include snow depth, density, air temperature, and
the stratigraphy of the snowpack. Fig. 1 shows the four snow survey
routes in northern Xinjiang and Northeast China. Table 1 shows the
details of the snow course data, including longitude, latitude, air tem-
perature, snow depth, snow density and snow class. Snow course 1 was
located in northern Xinjiang, around the Junggar Basin, which is
dominated by grassland and bare ground. Snow course 2 was located
around the Tian Shan Mountains and the Yili Valley, where the mean
elevation exceeds 2000 m (Fig. 1). Following the definition by Sturm
et al. (1995), snow cover in Xinjiang belongs to the prairie snow class,
with the exception of the Altai Mountains (taiga and tundra) (Table 1).
Snow course 3 was in eastern Inner Mongolia, from Xilingol (grassland)
to the Great Khingan (forest). The major climatological snow classes are
prairie, taiga and tundra (Table 1). There were two loop routes in dense
forested areas for snow course 4, around the Changbai mountainous
and lesser Khingan mountainous areas. The snow classes are mainly
taiga and alpine (Table 1).

C) Field sampling work (Dataset 3): A field campaign from January to
March 2018 supported by the CSS project was organized to densely
measure snowpack parameters (snow depth and snow density) in fixed
area grids (25 × 25 km2) that could be used as standard sites to vali-
date remotely sensed SWE products. However, these initially designed
sampling grids were not exactly matched with the satellite pixels (e.g.,
Equal-Area Scalable Earth Grid (25 km × 25 km), hereafter, EASE-
Grid) due to some inaccessible areas. Thus, dense measurements in a
sampling grid could cover several spaceborne pixels. Fig. 2 shows the
corresponding satellite pixels in northern Xinjiang and Northeast China.
All samples are distributed in nonforested areas. The lack of forest cover
makes the site an ideal study area for snow product validation. There
were 4 ~ 25 measurements per pixel, including snow depth and snow
density. Snow depth transect measurements were performed on Jan-
uary 21 and 23, February 1 and March 9, 2018. For field sampling,
measurements within each grid cell were averaged to represent the
ground truth SWE. All the true ground SWE data span from 4.6 mm to
66.7 mm. GlobSnow-2 product was generated using the Special Sensor
Microwave Imager Sounder (SSMIS) brightness temperature data in
EASE-Grid (25 km × 25 km) projection from 2010 to present (see
Section 2.2). The standard AMSR2 SWE product was downloaded from
JAXA’s website (http://gcom-w1.jaxa.jp), and its pixel size is
0.25°×0.25°, different from GlobSnow-2′s (Fig. 2). The standard FY-3D
SWE product has been provided by CMA (http://data.cma.cn/en) since
2019. Thus, in this study, we utilized AMSR2 brightness temperature
data (0.25° × 0.25°) but with FY-3D algorithms to retrieve SWE esti-
mates during the period 2014–2018. Fig. 2 shows two kinds of satellite

pixels (SSMIS: 25 km × 25 km; AMSR2: 0.25° × 0.25°). We collected
14 and 32 samples corresponding to the SSMIS (for GlobSnow-2) and
AMSR2 pixels, respectively. Because of mountain masking and missing
data, available samples for the GlobSnow-2 product are small compared
to those of other products.

2.2. Various SWE algorithms

The GlobSnow-2 SWE historical dataset from 1979 to present is
freely available (www.globsnow.info). The GlobSnow methodology was
thoroughly presented by Pulliainen (2006) and Takala et al. (2011) (see
Table 2). This product uses daily brightness temperatures (at 19 and
37 GHz in vertical polarization) from different satellite sensors: the
Scanning Multichannel Microwave Radiometer (SMMR) from 1979 to
1987, the Special Sensor Microwave/Imager (SSM/I) from 1987 to
2009, and the SSMIS from 2010 to present.

The snow depth retrieval algorithm originally proposed by Chang
et al. (1987) was designed for SMMR sensor. It is based on a linear
regression between snow depth and the brightness temperatures gra-
dient at ~ 19 and ~ 37 GHz (Table 2). In this study, we used SSMIS
brightness temperature data available from the National Snow and Ice
Center (NSIC, https://daacdata.apps.nsidc.org/pub/DATASETS) to re-
trieve snow depth estimates during the period 2014–2018.

The AMSR2 SWE product (L3) was downloaded from JAXA’s Globe
Portal System (http://gcom-w1.jaxa.jp). The current AMSR2 snow
depth algorithm is an evolution of the original AMSR-E SWE algorithm
and takes advantage of the expanded range of channels, such as 10.65,
18.7 and 36.5 GHz (Table 2). This algorithm retrieves the SWE from
moderate snow accumulations using the 36.5 GHz channel and from
deep snow using the 18.7 and 10.65 GHz channels.

China’s FY-3D satellite was launched on 15 November 2017 with
the goal of observing global atmospheric and geophysical features
(http://satellite.nsmc.org.cn/portalsite/default.aspx?
currentculture = en-US). The current FY-3D snow depth algorithm is an
advancement from the original FY-3B mixed-pixel method. Due to dif-
ferent snow cover characteristics and land cover types in China’s stable
snow cover areas, regional algorithms were developed in Northeast
China, Xinjiang, and other areas, respectively (Table 2). Due to no
available standard FY-3D SWE product in CMA until 2019, in this study,
the AMSR2 brightness temperature data (http://gcom-w1.jaxa.jp) were
used to produce the FY-3D SWE product during the period 2014–2018.

2.3. Variable snow density

Snow density defines the relationship between snow depth and
SWE. Density also largely determines the permittivity of dry snow and
thus also affects the extinction rate of microwaves (Mätzler, 1987). For
the GlobSnow-2 product, snow density is treated with a constant value
of 240 kg/m3, which is considered a reasonable ‘global’ value (Takala
et al., 2011). For Chang's algorithm, the relationship between snow

Table 1
Summary of snow course data (location, air temperature, snow depth, snow density, the number of samples, and snow class).

Snow course Location (lat, lon) Air temperature (°C) Snow depth (cm) Snow density (kg/m3) Snow class Samples

Max Min Mean Max Min Mean Max Min Mean

1 43.90°N–48.06°N
82.97°E–89.88°E

–1.7 –34.0 –18.8 50.0 3.0 13.2 300 100 180 tundra
taiga
prairie

70

2 42.97°N–44.50°N
80.83°E–88.97°E

–0.6 –29.5 –12.9 63.0 3.0 19.8 410 120 210 prairie
alpine

73

3 45.10°N–53.46°N
118.30°E–126.96°E

–1.5 –33.8 –15.8 51.5 3.2 16.4 310 60 160 prairie
taiga
tundra

100

4 41.88°N–48.17°N
125.73°E–130.31°E

–3.1 –30.6 –12.4 45.2 4.1 16.6 240 150 180 taiga
alpine

54
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depth and brightness temperature gradient was fitted based on snow
emission modeling (assuming snow density 300 kg/m3). However, our
previous study has demonstrated that Chang’s algorithm presents ser-
ious overestimation in China (Yang et al., 2019). Thus, a constant snow
density (240 kg/m3) was used to convert snow depth to SWE for Chang
SWE product in this study. According to the in situ data, the snow
density is generally approximately 180 kg/m3 in China, which is
adopted in the FY-3D SWE product (Yang et al., 2019). The AMSR2
retrieval scheme utilizes the reference snow density of Sturm’s clima-
tological snow classes to yield SWE. However, snow bulk density is
known to increase with time and depth as the weight of the overlying
snow compacts the underlying layers (Kojima, 1966). Thus, regardless
of snow depth, location, or time of year, these assumptions are not
realistic, which could result in SWE estimation bias (Sturm and Wagner,
2010). To solve these problems, a statistical model based on a Bayesian
analysis was presented by Sturm and Wagner in 2010. The bulk density

is a function of snow depth, day of year (DOY), and snow climate class:

= × × +k h k DOY( ) [1 exp( )]h DOY i, max 0 1 1 2 0i i (1)

where max, 0, k1, and k2 are model parameters (DOY); these values
vary with snow climate class; and i indicates the ith observation. Given
that a snow season generally spans two calendar years, thus DOY ranges
from −92 (1 October) to +181 (30 June, next year), with no 0 value.

2.4. Land cover fraction

The 1-km land use/land cover (LULC) data derived from the 30-m
Thematic Mapper (TM) imagery classification was downloaded from
the Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences (http://www.resdc.cn/). The land cover types
include grassland, cropland, forest, barren, water and construction
(Fig. 2). The fraction was recalculated as the areal percentages of each

Fig. 2. The spatial distribution of field sampling measurements (black points) and satellite pixels in Xinjiang and Northeast China. The green and magenta lines
represent AMSR2 and SSMIS pixels, respectively.

Table 2
Various snow depth retrieval algorithms used in this study.

Algorithm Methodology Basic format Reference

GlobSnow-2 assimilation min {[Tb Tb ] [Tb TB ]}d0 19V, HUT 37V, HUT 19V, satellite 37V, satellite 2

+minDt
Dt Dref t

D ref t

{[Tb19V, HUT Tb37V, HUT] [Tb19V, satellite TB37V, satellite]}2
2

,^

, ,

2

Pulliainen, 2006; Takala et al., 2011

Chang regression = ×SD 1.59 (Tb TB )19H 37H Chang et al., 1987
AMSR2 regression = × + ×SD ff SD ff SDopen open forest forest

= × ×SD log pol fd1/ 10( 37) (Tb TB )/(1 0.6 )forest 19V 37V

= × × + ×SD log pol log pol[1/ 10( 37) (Tb TB ) ] [1/ 10( 19) (Tb TB )]open 19V 37V 10V 19V

Kelly et al., 2003Kelly, 2009

FY-3D regression northeast China: = × ×SD ff0.38 (Tb TB )/(1 0.7 )19H 37H
Xinjiang: = ×SD 0.48 (Tb TB )19V 37H
Other regions: = × + × + × + ×SD ff SD ff SD ff SD ff SDgrass grass forest forest barren barren farmland farmland

Jiang et al., 2014; Yang et al., 2019
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Fig. 3. Color-density scatterplots of estimated and measured SWE: (a) (a’) GlobSnow-2; (b) (b’) AMSR2; (c) (c’) Chang; and (d) (d’) FY-3D. The color scale represents
the data density of scattered points, which range from 0 to 1. The red dotted line represents the linear fitting relationship.

J.W. Yang, et al. Journal of Hydrology 590 (2020) 125499

6



land cover type in the corresponding satellite pixels. The pixels where
the fraction of water bodies and construction is larger than 40% were
filtered out.

3. Results

3.1. Product assessment

The GlobSnow-2 SWE estimates were evaluated using datasets 1–3.
Meanwhile, to demonstrate the performance of the GlobSnow-2 esti-
mates, it was compared with three other operational satellite SWE
products.

3.1.1. Weather station observations (Dataset 1)
Fig. 3 shows scatter diagrams of estimated vs. measured values for

all investigated SWE products. The accuracies of the AMSR2 and Chang
SWE products are lower than those of the other products, with unbiased
RMSEs of 41.7 mm and 48.7 mm, respectively (Fig. 3b and 3c). The
retrievals of these products tend to be overestimated in terms of biases
by approximately 40 mm, which is consistent with the results from
Yang et al. (2015) and Gu et al. (2018) over China. For the Chang SWE
product, the main reason for the overestimation is that the assumption
regarding snow grain size (0.30 mm) fails in China (Li et al., 2014; Che
et al., 2016). Although an empirical equation for the growth of snow
grain size was included in the AMSR2 retrieval algorithm, it is found
that there is only a slight improvement compared to the Chang algo-
rithm, which is consistent with the previous studies (Kelly, 2009; Zhang
et al., 2017; Yang et al., 2019). GlobSnow-2 SWE estimates outperform
Chang and AMSR2 products (Fig. 3a). The unbiased RMSE and bias are
equal to 24.3 mm and 17.7 mm, respectively, with the largest corre-
lation coefficient (corr.coe) being 0.66. The GlobSnow-2 estimate is
particularly underestimated when SWE exceeds the 80 mm threshold

(Fig. 3a). However, for the SWE ranging from 0 to 50 mm, there is a
slight overestimation (Fig. 3a). The FY-3D SWE retrieval scheme is
designed for China, showing an unbiased RMSE of 16.8 mm (Fig. 3d).
Although the mean bias is −2.1 mm, the FY-3D algorithm tends to

Fig. 4. Scatter diagrams of estimated vs. true SWE (a) GlobSnow-2; (b) AMSR2; (c) Chang; and (d) FY-3D.

Table 3
The statistical results for SWE products with reference dataset 2. SC is the ab-
breviation of snow course. RPE represents the relative percentage error, which
is calculated as RPE = abs(bias*100/SWEground).

Dataset GlobSnow-2

corr.coe RMSE (mm) unRMSE (mm) bias (mm) RPE (%)

SC-1 0.39 19.0 14.7 12.2 55.9
SC-2 −0.14 23.6 23.8 3.8 13.1
SC-3 0.51 16.4 16.4 −1.8 6.5
SC-4 0.52 23.3 22.0 8.5 28.7
Total 0.36 19.8 19.3 4.8 17.7

AMSR2
SC-1 0.11 39.5 35.3 18.4 79.2
SC-2 0.30 40.8 37.2 17.7 44.1
SC-3 0.48 54.9 31.2 45.3 161.4
SC-4 0.54 45.1 27.1 36.2 122.8
Total 0.35 47.5 34.6 32.7 109.3

Chang
SC-1 0.31 64.1 40.8 49.9 220.4
SC-2 0.30 75.0 46.4 59.4 156.9
SC-3 0.57 96.1 45.4 84.3 307.3
SC-4 0.17 62.6 40.0 48.5 156.6
Total 0.38 79.3 46.4 64.4 221.8

FY-3D
SC-1 0.31 17.3 16.6 5.6 24.9
SC-2 0.28 22.1 20.6 −8.4 22.3
SC-3 0.67 22.4 18.3 13.0 47.5
SC-4 0.37 17.3 16.9 4.7 15.1
Total 0.42 20.3 19.4 5.7 19.8
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underestimate SWE for values exceeding 50 mm (Fig. 3d).

3.1.2. Field snow course survey (Dataset 2)
Fig. 4 shows the validation results of four satellite SWE products

against snow course observations, with statistics given in Table 3.
AMSR2 and Chang SWE values are overestimated, with mean biases of
32.7 mm and 64.4 mm, respectively. The relative percentage errors
(RPE) in Table 3 are as high as 109.3% and 221.8%, respectively. The
GlobSnow-2 SWE estimates show the best performance among these
four products (Table 3). The overall unbiased RMSE and bias are
19.3 mm and 4.8 mm, respectively.

Snow course 1 was located in areas of shallow snow cover, where
the mean snow depth was 13.2 cm (Fig. 1, Table 1). For this course,
GlobSnow-2 SWE shows an overestimation with a bias of 12.2 mm
(RPE: 55.9%), while the FY-3D product performs relatively well, with a
bias of 5.6 mm and RPE of 24.9% (Table 3).

Snow course 2 was located around the Tian Shan Mountains and Yili
Valley (Fig. 1). The GlobSnow-2 bias and RPE are 3.8 mm and 13.1%,
respectively, which are lower than the FY-3D estimates (−8.4 mm and
22.3%, respectively). However, the correlation coefficient for
GlobSnow-2 is −0.14. Fig. 3a also shows that snow course 2 (green plus
sign) has poor SWE variability.

The performance of GlobSnow-2 in snow course 3 is best among the
four snow survey routes, with an RPE of 6.5%. The FY-3D product

shows an overestimation with a bias of up to 13 mm and an RPE of 50%
(Table 3). The RPEs for GlobSnow-2 and FY-3D in snow course 4 are
28.7% and 15.1%, respectively.

3.1.3. Field sampling (Dataset 3)
Field sampling work was conducted in open areas where the forest

cover fraction was close to zero. We assume here that the average of
sampling measurements in one SWE product grid cell represents the
true SWE. Fig. 5 shows that GlobSnow-2 and FY-3D SWE estimates are
superior to the other two products, with unbiased RMSEs of 8.7 mm and
8.1 mm, respectively. GlobSnow-2 has a larger bias (11 mm) than FY-
3D (1 mm). Fig. 3 also demonstrates that FY-3D SWE outperforms the
others considering the relatively shallow snow cover (< 50 mm). No-
tably, the SSMIS pixels are not fully spatially matched with AMSR2
grids, possibly affecting the results (Fig. 2).

3.2. Effects of land cover, elevation, and snow class on GlobSnow-2

Fig. 6 shows the analysis of GlobSnow-2 SWE compared with dataset
1. Fig. 6a illustrates that the monthly unbiased RMSE and bias are
minimized for the months of November and December due to the
shallow and fresh snow cover. The unbiased RMSE (~38 mm) in March
is the largest in the snow season, which is related to deep and wet snow
conditions at the end of the snow season.

Retrieval sensitivity to land cover types (barren, grassland, farmland
and forest) is shown in Fig. 6b. Any pixel where the land cover fraction
is greater than 85% is viewed as a pure land cover type (Jiang et al.,
2014). The most serious SWE overestimation occurs in forested areas
(bias of up to 23.6 mm), showing that the effects of dense forest canopy
on the microwave signal have significant impacts on this product.
However, the highest SWE uncertainties occur for grassland, with an
unbiased RMSE of 27.8 mm. The ground truth mean SWE in grassland is
highest, whereas the estimated maximum mean SWE occurs in forest
(Fig. 6b). Thus, forest correction is still one of the main challenges in
SWE estimations over forested areas.

For the GlobSnow-2 product, grid cells with a high variation in
elevation were masked out because of known a priori poor algorithm
performance in complex terrain (Takala et al., 2011). To investigate the
potential impact of topography, the bias and unbiased RMSE according
to station elevation (in m) are shown in Fig. 7. As the elevation in-
creases, the unbiased RMSE has very weak variability, showing that the
uncertainties caused by the elevation are low. However, there is a
significant upward trend in the bias with increasing elevation, except
for the areas where the elevation ranges from 1000 m to 2000 m. As

Fig. 5. SWE product performance over China versus densely sampled field
measurements.

Fig. 6. The performance of the GlobSnow-2 SWE product according to the (a) monthly statistics and (b) land cover types.
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shown in Fig. 1, the stations (green and yellow points) are mostly lo-
cated in shallow snow cover areas, which explains why the bias in
1000–2000 m elevation range is small.

Fig. 8 displays the monthly mean unbiased RMSE, bias and

Fig. 7. The performance of the GlobSnow-2 SWE product as a function of the various elevations.

Fig. 8. Monthly SWE unbiased RMSE (top) and bias (bottom) variations in four snow classes. The corresponding lines represent the time series of the correlation
coefficient.

Table 4
Overall statistical performances for each snow category.

Snow Class Tundra Taiga Prairie Alpine

corr.coe 0.45 0.50 0.27 0.37
bias (mm) 17.3 15.5 18.0 23.2
unRMSE (mm) 21.6 13.9 28.3 26.1

Table 5
Summary of overall performances for the GlobSnow-2 SWE product.

Index Dataset 1
(station)

Dataset 2 (snow
course)

Dataset 3 (field
sampling)

Total

corr.coe 0.66 0.36 0.90 0.64
bias (mm) 17.70 4.80 11.00 11.17
RMSE (mm) 30.70 19.80 13.80 21.43
unRMSE (mm) 24.30 19.30 8.70 17.43
ERP (%) 62.32 17.70 44.40 41.47

J.W. Yang, et al. Journal of Hydrology 590 (2020) 125499
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correlation coefficient of GlobSnow-2 SWE estimates compared with
station observations (dataset 1) during the snowy winter seasons in the
2014–2017 period. The correlation is minimized for each snow cate-
gory for the month of March, which is strongly related to snow hu-
midity and snow metamorphism in the late snow season (Brun, 1989;
Ebner et al., 2016; Kontu and Pulliainen, 2010). Generally, the
GlobSnow-2 SWE product has a better performance for tundra and taiga
snow classes than that in prairie and alpine snow cover (Table 4). There
are high levels of uncertainties (unbiased RMSE, 28.3 mm) for prairie
snow and serious overestimations (bias, 23.2 mm) for alpine snow
(Table 4). It should be noted that the global Sturm’s classification
method may exhibit some uncertainty in China, possibly affecting the
results.

4. Discussion

The overall unbiased RMSE and bias of the GlobSnow-2 product in
China are 17.43 mm and 11.17 mm, respectively (Table 5). This ac-
curacy level can meet most user requirements for SWE, such as water
resource management (40 mm), climate analysis (30 mm), seasonal
forecasting (30 mm) and climate model evaluation (30 mm) according
to the ESA SnowConcepts study in 2017. However, we must note that
snow cover is usually shallow over China, with a mean SWE of ap-
proximately 30 mm. The overall RPE for GlobSnow-2 is 41.7%, which
by far exceeds the accuracy threshold (15%) of hydrological applica-
tions (Rott et al., 2010; Larue et al., 2017). Thus, overestimation is a
key factor that affects the accuracy of GlobSnow-2 estimates in China.

The assessment results from different literatures are described in
Table 6. The results show that the overall trends are consistent among
these works in the literature. The global SWE products (AMSR2, Chang
and GlobSnow-2) tend to overestimate SWE in China. For AMSR2 SWE
product, it performs better in northern Xinjiang than in Northeast
China, which is consistent with previous studies (Table 6). The vali-
dation results based on the station measurements, snow course data and
field sampling observations (Section 2.1) also consistently present that
the AMSR2 product typically overestimates SWE, with biases ranging
from 32.7 to 45.1 mm. For the GlobSnow-2 product, there are notable
differences when it is validated using different reference dataset, e.g.,
with the RMSEs of 24.3, 19.3 and 8.7 mm corresponding to the station,
snow course and field sampling measurements, respectively. The com-
parison of performances in forested and open areas was conducted by
Che et al. (2016) in Northeast China according to the in situ measure-
ments observed by several stations. The RMSE in forested areas is larger
than that in open areas, which is qualitatively consistent with the re-
sults in Fig. 6b. Snow course 3 and 4 are located in Northeast China, and
dominated by forest (Figs. 1 and 2). The RMSE is 19.2 mm, larger than
10.6 mm in Che et al. (2016). The bias in our study is 5.2 mm, namely,
slight overestimation, whereas it is opposite of the Che et al. (2016)
result, with a bias of −2.0 mm. Please note that the study areas in the
previous literature are not completely spatially matched with the re-
gions defined in this paper. Moreover, the data amount and time range
are not consistent each other, possibly effecting the result comparison.

Each snow class was defined by an ensemble of snow stratigraphic
characteristics, including snow density, grain size, and morphologic
crystals, which influence the snowpack microwave signature. Fig. 8
displays the good performance of GlobSnow-2 for both the tundra and
taiga snow classes. Fig. 4 also indicates that GlobSnow-2 SWE estimates
outperform the FY-3D product in terms of snow course 3. There are two
major snow classes (taiga and tundra) along snow course 3 (Table. 1).
Fig. 9 shows that the effective grain size optimized by the HUT model is
larger in western Northeast China than in other areas. Moreover, the
effective grain size presents an increasing trend from January to March
2018. The GlobSnow-2 assimilation model accounts for snow strati-
graphy by the optimized effective snow grain size (Takala et al., 2011).
The FY-3D retrieval method is a static semiempirical algorithm that is
easily influenced by snow metamorphism and is not suitable for allTa
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snow classes. The good performance of GlobSnow-2 and FY-3D in snow
course 4, is partially attributable to the stable snowpack parameters
(Fig. 4, Table 1). Fig. 9 also shows that the snow density in eastern
Northeast China had no notable change during the January-March 2018
period.

Fig. 8 and Table 4 present a comparison of the performance for each
snow class and indicate that the correlation coefficient for prairie snow
is the lowest among the four major snow classes. One reason is that the
temperature difference between day and night may increase the speed
of metamorphism processes (Sturm and Wagner, 2010; Ebner et al.,
2016). Another is that the presence of liquid water late in the spring,
when snow is melting, typically results in higher absorption and poor
penetration depth. Thus, GlobSnow-2 SWE estimates present the
highest SWE uncertainties in March, with an unbiased RMSE of
45.7 mm for the prairie class. Fig. 6b also shows that the unbiased
RMSE is 28 mm for grassland, which mainly covers prairie snow.
Meanwhile, the GlobSnow-2 product overestimates SWE, particularly
for alpine snow, with the highest bias of 34.2 mm in March (Fig. 8).
Alpine snow cover is mostly distributed in eastern Northeast China,
where there is dense forest and complex mountain topography
(Changbai Mountains and lesser Khingan Mountains). As shown in
Fig. 6b, the overestimation is as high as 23 mm in forested areas due to

snow-vegetation interactions and vegetation contributions (emissions
and transmissions). A previous study demonstrated that there is a sig-
nificant upward trend in the unbiased RMSE according to the forest
percentage in a satellite grid (25 km × 25 km), described as a simple
quadratic function (Larue et al., 2017). For GlobSnow-2 product, the
original equation by Kruopis et al. (1999) was applied to retrieve forest
transmissivity. Moreover, a constant stem volume of 80 m3/ha was
applied because that there were no reliable global stem volume datasets
at the time. The latest released GlobSnow-3 product adopted a revised
algorithm proposed by Cohen et al. (2015) to simulate microwave at-
tenuation in forest canopies. However, the transmissivity reaches sa-
turation when the stem volume is larger than 100 m3/ha (Cohen et al.,
2015). Thus, it is difficult to achieve the desired correction effect with
the revised algorithm in densely forested northeast China. Although
previous studies have shown that the relationship between transmis-
sivity and stem volume could be modeled as an exponential function
(Langlois et al., 2011; Roy et al., 2014), this relationship is not clear
because the transmissivity is not only related to the stem volume but
also to the canopy closure, tree species, tree skin temperature and mi-
crowave frequency (Li et al., 2019).

Fig. 7 displays a significant upward trend in the bias with increasing
elevation. Snow depth estimation in mountains (high altitude areas)

Fig. 9. Spatiotemporal patterns of effective snow grain size optimized by fitting the modeled brightness temperature into satellite observations and daily mean snow
density from ERA5-land data (https://cds.climate.copernicus.eu/).
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Fig. 10. Snow density daily time series from 2014 to 2017 for different snow classes. The right scatterplots represent the fitting relationship between the station
measurement and estimated snow density with Sturm and Wagner (2010) for corresponding seasonal snow classification.

Fig. 11. Scatterplots between the GlobSnow-2 estimate and ground truth SWE calculated with (a) a fixed value of 240 kg/m3 and (b) station-measured snow density.
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remains a challenge because of the absence of ground truth data, poor
representativeness of station observations, varied snow properties
dramatically and high uncertainties in modeling (Lettenmaier et al.,
2015; Dozier et al., 2016). Most of remotely sensed SWE products were
generated using EASE-Grid data (25 km × 25 km), rather than raw
PMW observations. In fact, the raw observation is finer than the re-
sampled EASE-Grid data, although the satellite footprint is nominally
elliptical. For instance, the AMSR-E’s footprint size at 36.5 GHz is
8 km × 14 km, with an area of approximately 88 km2 (Kelly, 2009).
Some studies utilized AMSR-E Level 2A (L2A) brightness temperature
product to characterize snow in mountainous areas, and results display
that the L2A data are much more sensitive to ground-based SWE than
the EASE-Grid data (Li et al., 2012; Santi et al., 2014).

Most SWE retrieval schemes are based on snow depth information
because this variable can be directly measured at weather station. The
GlobSnow-2 SWE retrieval scheme utilized a fixed density of 240 kg/
m3. Based on ground truth data, the average snow densities in Xinjiang
and Northeast China are 190 kg/m3 and 170 kg/m3, respectively (Yang
et al., 2019). Fig. 10 displays the time series of daily snow density,
including station measurements, mean values for each snow class
(Sturm et al., 1995), and modeling with a dynamic algorithm described
in subsection 2.3. There are large differences among the three snow
densities from the station, snow class and modeling. For the taiga snow
class, the station snow density has almost no variation with the seasonal
evolution. Taiga snow cover is distributed in northern Northeast China,
with low air temperature and vapor pressure in the snow winter season
(Ji et al., 2017). The temperature gradient between the snow and the
atmosphere is small (Colbeck, 1982; Ebner et al., 2016). Moreover,
snow cover is relatively shallow, and the metamorphism caused by
compaction is nonsignificant. Thus, the snow density increases slowly
with seasonal evolution. However, for the alpine snow class, the sea-
sonal evolution of snow density is obvious. One reason is that these
regions of alpine snow cover contain relatively high water vapor in the
high latitudes in China (Shi et al., 2017; Ji et al., 2017). Another reason
is that the temperature cycling between day and night may increase the
speed of the processes (Ebner et al., 2016).

There is no doubt that using a fixed snow density or dynamic values
from the model to convert snow depth to SWE will result in over-
estimation in China (Figs. 3, 4, 5). Fig. 11 compares the validation re-
sults using two different reference snow densities from station snow
pressure observation and a fixed value (240 kg/m3). Fig. 11a shows that
the bias is only 2.3 mm when the ground truth SWE is a product of snow
depth and fixed snow density, 240 kg/m3. This is because the
GlobSnow-2 retrieval algorithm treats snow density as a constant
parameter. In the latest released GlobSnow-3 product, the snow density
was still assumed to be 240 kg/m3 (Pulliainen et al., 2020). However, a
more objective bias in Fig. 11b is as high as 19 mm, showing a notable
SWE overestimation in China. Thus, snow density is a key parameter
that affects the accuracy level of the GlobSnow-2 SWE product.

5. Summary and conclusion

In this study, the GlobSnow-2 SWE product is evaluated using three
reference validation datasets north of 35°N in China. The results show
that GlobSnow-2 SWE estimates, which assimilate ground-based ob-
servations of snow depth and satellite observations, outperform the
stand-alone satellite products, reducing the overall bias from 39.3 mm
(57.5 mm) to 11.2 mm and unbiased RMSE from 37.3 mm (46.2 mm) to
17.4 mm compared with AMSR2 SWE (Chang SWE). The FY-3D SWE
product, which was developed specifically for China, performs better
than GlobSnow-2 for shallow snow conditions (< 50 mm), whereas an
SWE exceeding 80 mm is typically underestimated. The retrieval sen-
sitivity of GlobSnow-2 to land cover types has been studied in detail:
the highest uncertainties are observed for grassland areas that cover
several snow classes (taiga, tundra, prairie and alpine), with an un-
biased RMSE of 28 mm. However, the bias in forest areas is the largest

(23 mm) and overestimation is the most prominent among the four land
cover types, showing that the effects of dense forest on the microwave
signal still limit the accuracy of this product. GlobSnow-2 retrieval
performance over diverse snow classes was also evaluated; the results
show that GlobSnow-2 SWE estimates in taiga snow are generally su-
perior to others. The overall unbiased RMSE and bias are 15.5 mm and
13.9 mm, respectively, with a correlation coefficient of 0.50. Relatively
high uncertainties (unbiased RMSE, 28.3 mm) were found for prairie
snow, and notable overestimation (bias, 23.2 mm) was found for alpine
snow. In addition, the performance of the GlobSnow-2 SWE product
was studied as a function of various elevations. The bias presents a
significant upward trend, ranging from 5 mm to 61 mm with increasing
elevation. The GlobSnow-2 assimilation approach tends to overestimate
SWE, with biases of 17.7 mm, 4.8 mm and 11 mm for datasets 1, 2 and
3, respectively. One of the major reasons is that the GlobSnow-2 SWE
retrieval scheme utilized a fixed density of 240 kg/m3, whereas a rea-
sonable value for China according to ground truth data would be
180 kg/m3. The results of this study also demonstrate that the spatially
and temporally dynamic snow density model by Sturm and Wagner
(2010) tends to overestimate snow density in China. This study evalu-
ates the performance of the GlobSnow-2 SWE product in China and
determines the major factors that affect the accuracy level of the as-
similation scheme; the results will serve as a reference for us to improve
the GlobSnow-2 SWE product in the near future.
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