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Abstract: The leaf area index (LAI) is a critical parameter for characterizing the structure and 
function of vegetation in ecosystems. Currently, operational LAI products always have coarse 
spatial resolution, and fine-resolution LAI maps are urgently needed for ecological environment 
assessment and the precise monitoring of cropland growth. LAI downscaling methods are efficient 
at improving the spatial resolution of LAI products but often ignore the scaling effect of the model. 
In this study, a novel model-downscaling method is proposed for fine-resolution LAI estimation. It 
uses scaling equations of model parameters (SEMPs) to describe the scaling relations of models at 
different spatial resolutions and construct a downscaled model from a coarse-resolution model. 
Landsat Normalized Difference Vegetation Index (NDVI) at 30 m and Global LAnd Surface Satellite 
(GLASS) LAI at 1 km spatial resolutions are used because they are readily available. The downscaled 
model is evaluated by a fine-resolution model directly constructed with fine-resolution data. The 
fine-resolution LAI values estimated by this model-downscaling method are evaluated with field 
LAI measurements. The validation results show that the proposed method can generate highly 
accurate LAIs, with an RMSE of 0.821 at the Pshenichne cropland site in Ukraine and an RMSE of 
0.515 at the Camerons forest site in Australia when compared with field LAI measurements. The 
results are also better than those of Ovakoglou’s downscaling method. These results demonstrate 
that the model-downscaling method for fine-resolution LAI estimation is viable and referable for 
related studies. 

Keywords: leaf area index; fine resolution; downscaling modeling; model parameters 
 

1. Introduction 

The leaf area index (LAI) is defined as half of the total green leaf area per unit ground horizontal 
surface area [1], which is a critical parameter that quantitatively describes the structure and function 
of vegetation [2]. LAI products (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) LAI, 
Global LAnd Surface Satellite (GLASS) LAI, the second version of global biophysical products 
(GEOV2) LAI, Visible Infrared Imaging Radiometer Suite (VIIRS) LAI and EUMESAT Polar System 
(EPS) LAI) with coarse resolutions are the critical input data for terrestrial ecosystem and land-
surface models [3–9]. Fine-resolution LAI maps need to be applied in ecological environment 
assessments and the precise monitoring of cropland growth [10,11]. Coarse-resolution LAI products 
require upscaled fine-resolution LAI maps to verify their accuracy [12]. Achieving fine-resolution 
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LAI maps in a study area with limited ground measurement data requires downscaling coarse-
resolution LAI products [13]. Downscaling refers to an increase in spatial resolution; upscaling refers 
to a decrease in spatial resolution [14]. Scaling plays an important role in the validation or application 
of the LAI. Open-access LAI products are mostly coarse-resolution products [3–9]. A downscaling 
method based on existing coarse-resolution LAI products could be a convenient and quick method 
to estimate fine-resolution LAI maps. Downscaling, which increases the information content, is more 
difficult than upscaling, which reduces the information content [15]. 

In the remote-sensing field, remote-sensing algorithms for LAI estimation are usually described 
as follows: 

( , )s f LAI p=  (1) 

where f  takes observation data ( s ) to retrieve the LAI, and p  is a set of model parameters. 
According to Equation (1), we can study LAI scaling from three aspects: observation data ( s ), models 
( f ) and land surface parameter products ( LAI ). 

Research on LAI upscaling has mostly focused on land surface parameter products [16–21]. For 
example, Chen assumed that the scaling effect was due to solely considering the dominant surface 
types while ignoring other types and proposed a method in which the pixel value is the weighted 
sum of the subpixel LAI considering the surface type of the subpixel [16]. However, the subpixel 
contained other types, the fraction of the cover type was changed with spatial resolutions [22], and 
this method ignored the scaling effect of the model. If a model finef  is established at a fine resolution 
and is directly applied to a coarse resolution, the equation is： 

( , )coarse fine coarse fineS f LAI p=  (2) 

where coarseS  is the observation vector at the coarse resolution, coarseLAI  is the target parameter at 
the coarse resolution and finep  is a set of parameters in the model finef . The spatial resolutions of 
the observation data and the model are inconsistent in Equation (2). Other research has considered 
the scaling effect of the model. Studies have applied Taylor’s theorem (TT) [22], the wavelet-fractal 
technique (WF) [23] and fractal theory (FT) [24] to correct the scaling bias of LAI values. 

In addition, several studies have examined LAI downscaling from the perspective of remote-
sensing models. The main concept was to construct models with coarse resolution data that are 
achieved in homogeneous pixels, and these models were used to estimate fine-resolution LAI maps. 
For example, Gao et al. developed a regression tree between homogeneous and high-quality MODIS 
LAI data and pixel-aggregated Landsat surface reflectance for fine-resolution LAI estimation [25,26]. 
Moreover, Landsat LAI values were estimated using MODIS regression equations and Landsat 
Enhanced Vegetation Index (EVI) values [27]. In an LAI downscaling study, these methods ignored 
the scaling effect of the remote-sensing model. The fraction of the cover type was changed with spatial 
resolution [22]. Usually, the homogeneous area at a coarse resolution is heterogeneous at a fine 
resolution when measured by the surface types. When assessing remote-sensing algorithms, several 
studies have considered the scaling effect of the model. The main concept was to construct a model 
at a specific spatial resolution or to build a scale-invariant model [28,29]; the former was more popular 
(e.g., a model of leaf optical properties spectra (PROSPECT ) established at the leaf scale [30] and the 
geometric optical model constructed at the canopy scale [31]). However, there is little research on 
model scaling, and there is little research on LAI downscaling from the perspective of a model-
downscaling method. 

The spatial heterogeneity of the land surface and the nonlinearity of remote-sensing models are 
commonly considered to be the causes of scaling effects [18,19,32]. The spatial heterogeneity of the 
land surface is the fundamental cause of scale issues in remote-sensing [21,33] because it is an intrinsic 
property. The degree of spatial heterogeneity changes with spatial resolution [28]. Models are 
mathematical expressions used to characterize land surfaces, and a model that is established at a 
spatial resolution records the information at that spatial resolution. A remote-sensing model can 
hardly be scale-invariant [34]. Therefore, studying the scaling relation of models that are established 
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at disparate spatial resolutions would be a breakthrough for LAI downscaling. Is there an existing 
scaling relation for models? How can model scaling be realized to make a model consistent with the 
observation data at the spatial resolution? These are the issues we attempt to address in this paper. 

In this paper, a novel LAI downscaling method is proposed from the perspective of model 
downscaling by considering the scaling effect of the model. The results of this study demonstrate that 
the scaling relation of models at different spatial resolutions can be expressed by scaling equations of 
model parameters (SEMPs) according to preliminary research. With SEMPs, the downscaled model 
can be built with high accuracy. The fine-resolution LAI estimated by this model-downscaling 
method meets the accuracy requirements of applications. The model-downscaling method proposed 
in this paper is effective and viable. 

2. Materials 

2.1. Field LAI 

Many institutions have carried out the verification and validation of remotely sensed LAI 
products and have accumulated some ground observation data. Among them, we collected data from 
the VAlidation of Land European Remote-Sensing Instruments (VALERI) project 
(http://w3.avignon.inra.fr/valeri/) and the ImagineS project (http://www.fp7-imagines.eu/) because 
they contain a relatively large number of field measurements suitable for building statistical models 
[35]. Additionally, we collected basic information for each collected site. The VALERI project is 
hosted by the Centre National d’Etudes Spatiales (CNES) and has established a global site network. 
This project provides fine-resolution LAI maps that are created from ground measurements to 
validate products that are derived from satellite observations. The ImagineS project has implemented 
campaigns since 2013 to validate satellite-derived biophysical products and provides field LAI and 
fine-resolution LAI maps. 

In this study, the selected sites contained the following four characteristics. First, the coordinates 
for the ground sampling points could be obtained to extract the surface reflectance, which is 
consistent with the location of the ground measurements. Second, the dates of the ground 
observations could be obtained to ensure that the downloaded remotely sensed surface reflectance 
images are from the same period. Third, the sites provide the land cover types for cropland and forest 
model constructions. Finally, the sites clarify whether the LAI is true or effective for future use. 

In the ImagineS project, the data provided on the website include the true LAI. In the VALERI 
project, most of the data are the effective LAI, and we can convert them into a true LAI by Equation 
(3): 

/t effLAI LAI= Ω  (3) 

where Ω is the clumping index (CI), which describes the distribution of leaves in the vegetation 
canopy. 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡 represents the true LAI, and 𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 represents the effective LAI. The CI we used was 
expanded by new and complete year-round observations from POLDER 3 and was terrain-effect 
corrected [36]. Then, a quality control check of these data was conducted; the data preprocessing 
procedure consists of four steps: first, the field LAI measurements, whose values were lower than 0.1 
were excluded, because when ground LAI values are lower than 0.1, the Normalized Difference 
Vegetation Index (NDVI) values are related to the background of soil, litter and so on, and the 
uncertainty of these NDVI values is large [37]; second, for a given site, the land cover types with 
proportions of samples less than 1% of the overall dataset were eliminated; third, the exceptional data 
were identified, and auxiliary data were used to recheck them to determine whether they were used. 
Fourth, sites with relatively large numbers of field LAI measurements were chosen. In total, we 
screened 14 sites from the two projects to build a basic research database; 6 sites were covered by 
cropland and 8 sites by forest. The basic information of these sites is shown in Table 1 and includes 
the following: the site name, country, location, day of the year (DOY), year, land cover type, 
instrument for the LAI measurements and the number of ground samples. Generally, field LAI 
measurements are regarded as the reference values of fine-resolution LAI products [38]. 

http://w3.avignon.inra.fr/valeri/
http://www.fp7-imagines.eu/
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Table 1. Information on the selected sites in the basic research database. 

ID Site Name Country Location DOY Year Land Cover Instrument 
Number of 

Ground 
Samples 

1 Camerons Australia 
32.598°S 

116.254°E 
61–64 2004 Broadleaf forest DHP 29 

2 Concépcion Chile 
37.467°S 
73.470°W 

7–10 2003 
Coniferous 

forest 
DHP 26 

3 Gnangara Australia 
31.534°S 

115.882°E 
58–63 2004 Broadleaf forest DHP 31 

4 Hirskangas Finland 
62.643°N 
27.011°E 

219–232 2003 
Coniferous 

forest 
LAI-2000 30 

5 Hyytiälä Finland 
61.851°N 
24.308°E 

170–206 2008 
Coniferous 

forest 
DHP 41 

6 Larose Canada 
45.380°N 
75.217°W 

217–220 2003 Mixed forest DHP 28 

7 Puéchabon France 
43.725°N 
3.652°E 

162–166 2001 Broadleaf forest DHP 60 

8 
Sierra 

Chincua 
Mexico 

19.675°N 
100.282°W 

345–347 2001 
Coniferous 

forest 
DHP 17 

9 SouthWest France 
43.504°N 
1.171°E 

170–177 
205–210 
228–232 
245–249 

2013 Mixed cropland DHP 71 

10 Ottawa Canada 
45.035°N 
75.767°W 

153 
178 
186 

2014 Mixed cropland SDP/DHP 13 

11 Pshenichne Ukraine 
50.077°N 
30.232°E 

134–137 
163 
212 
174 
204 

2013 
2014 
2014 
2015 
2015 

Mixed cropland DHP 148 

12 Barrax Spain 
39.054°N 
2.101°W 

139–140 
147 
203 

2014 
2015 
2015 

Mixed cropland 
DHP/ 

LAI-2200 
72 

13 AHSPECT France 
43.573°N 
1.375°E 

173–176 2015 Mixed cropland 
DHP/ 

LAI-2200/ 
Lp80 

77 

14 Capitanata Italy 41.464°N 
15.487°E 

76 2015 Wheat LAI-2000 182 
   113     

SDP = Standard digital photography, DHP = Digital hemispherical photos. 

2.2. Satellite Imageries 

In this study, we used 30 m and 1 km spatial resolution NDVI and LAI data. The fine-resolution 
NDVI data were calculated from the Landsat Thematic Mapper (TM), Enhanced Thematic Mapper 
Plus (ETM+) or Operational Land Imager (OLI) surface reflectance images, and the spatial resolution 
was 30 m; the coarse-resolution NDVI data were obtained from the MOD13A2 product; the spatial 
resolution was 1 km, and the temporal resolution was 16 days. Xiao et al. (2014) generated the Global 
LAnd Surface Satellite (GLASS) LAI product [6], which is highly accurate and has been widely 
accepted [9]; therefore, we took the GLASS LAI value as the reference value of the LAI at the 1 km 
spatial resolution. The GLASS LAI is the true LAI, and the temporal resolution was 8 days. The 
projections and spatial resolutions of the GLASS LAI and MOD13A2 NDVI products were the same. 
The satellite imagery information we used in this paper is listed in Table 2 and includes the site name, 
acquired year, acquired date of the year (DOY), imagery type and number of ground samples. 
Because of the scattered observation times at the collection sites, Landsat 5 TM, Landsat 7 ETM+and 
Landsat 8 OLI data were used in this paper. 
  



Remote Sens. 2020, 12, 4147 5 of 21 

 

Table 2. The satellite imagery information used in this paper. 

Site Name Year 
MOD13A2 NDVI 

(DOY) GLASS LAI Landsat NDVI 

   DOY Number of Ground Samples DOY Satellite 
Camerons 2004 049 057 20 62 TM 

Concépcion 2003 001 009 20 10 ETM+ 
Gnangara 2004 049 057 12 62 TM 

Hirskangas 2003 225 225 9 231 TM 
Hyytiälä 2008 177 177 12 212 ETM+ 
Larose 2003 209 217 12 212 ETM+ 

Puéchabon 2001 161 161 12 177 ETM+ 
Sierra Chincua 2001 345 337 12 330 TM 

SouthWest 

2013 
2013 
2013 
2013 

161 
193 
225 
241 

161 
193 
225 
241 

560 

177 
193 
232 
248 

OLI 
OLI 
OLI 
OLI 

Ottawa 2014 
145 
177 
177 

145 
177 
185 

12 
153 
178 
186 

OLI 
OLI 

ETM+ 

Pshenichne 

2013 
2014 
2014 
2015 
2015 

129 
161 
209 
161 
193 

129 
161 
209 
161 
193 

2000 

138 
157 
212 
176 
189 

OLI 
OLI 
OLI 
OLI 
OLI 

Barrax 
2014 
2015 
2015 

129 
145 
193 

129 
145 
193 

36 
130 
126 
197 

OLI 
OLI 
OLI 

AHSPECT 2015 161 161 16 174 OLI 
Capitanata 2015 113 113 

24 
120 OLI 

 2015 65 73 80 ETM+ 

For each site, two (LAI, NDVI) datasets with spatial resolutions of 1 km and 30 m were obtained. 
The coarse-resolution (LAI, NDVI) dataset was obtained from the GLASS LAI and MOD13A2 NDVI 
products, and the fine-resolution (LAI, NDVI) dataset was obtained from the ground LAI 
measurements of the VALERI or ImagineS projects and Landsat TM, ETM+ or OLI land surface 
reflectance products. 

2.3. Validation Data 

We chose the Pshenichne site (Figure 1a), which is covered by mixed cropland, and the 
Camerons site (Figure 1b), which is covered by forest, as the validation sites. The Pshenichne site in 
Ukraine covers a larger region than the other sites and has conducted five field campaigns, which 
means that this site has a large amount of coarse-resolution and fine-resolution data. This is 
significant for model establishment and LAI validation. The Camerons site in Australia has more 
coarse-resolution data to establish a statistical model, and the amount of ground LAI data is relatively 
large. Therefore, we chose it to validate the model-downscaling method in forests. 

  
(a) (b) 

Figure 1. Location and study area of the validation site: (a) Pshenichne site (Landsat 8 NIR, Red and 
Green); (b) Camerons site (Satellite Pour L'observation de la Terre (SPOT) 4 NIR, Red and Green). 



Remote Sens. 2020, 12, 4147 6 of 21 

 

3. Method 

We propose a model-downscaling method for fine-resolution LAI estimation in this section. For 
an invariant model form, the difference between models at different spatial resolutions is the model 
parameters, so model scaling is based on the scaling equations of model parameters (SEMPs). In the 
remote-sensing field, models for LAI estimation can be divided into three broad categories: statistical 
models, physical models and data-driven models [6]. Statistical models estimate the fine-resolution 
LAI by establishing a statistical relationship between the vegetation index (VI) and ground-based 
LAI measurements, and statistical models with a few variables are easy to operate [35,36]. Therefore, 
we chose a form of the NDVI-LAI statistical model for this research. Moreover, 30 m and 1 km spatial 
resolution data were used to study this issue because of their easy availability. The implementation 
of this method was divided into three steps, and the flowchart is shown in Figure 2. 

Step 1: Construct the scaling equations of model parameters. The NDVI-LAI statistical models 
at 30 m spatial resolutions ( ( )f p ) and the NDVI-LAI models at 1 km spatial resolutions ( ( )F P ) were 
constructed. Then, we analyzed the scaling relation of model parameters at the two spatial 
resolutions, and SEMPs were constructed by linear regression for cropland sites and forest sites. 

Step 2: In a validation site, the downscaled NDVI-LAI statistical model ( )SDf p  was established 
with SEMPs and ( )F P  at this site, which is suitable for fine-resolution LAI estimation. The 
downscaled model ( )SDf p  was evaluated by the model ( )f p  at this site. 

Step 3: In the validation site, Landsat NDVIs were input into the downscaled model ( )SDf p  to 
estimate the fine-resolution LAI. The fine-resolution LAI estimated by this model-downscaling 
method was evaluated by the field LAI and reference LAI maps. 

 
Figure 2. Flowchart of a model-downscaling methodology based on scaling equations of model 
parameters for fine-resolution leaf area index (LAI) estimation. 

3.1. SEMP Construction Method 

The scaling equations of model parameters (SEMPs) are established in this section. First, for the 
given model form, NDVI-LAI statistical models were established at 30 m and 1 km spatial resolutions. 
Each site listed in the basic research database (Table 1) constructed a model at a 1 km spatial 
resolution using MOD13A2 NDVI and GLASS LAI data and built a model at a 30 m spatial resolution 
using Landsat NDVI data and field LAI measurements. The NDVI-LAI statistical models were 
constructed by the ordinary least squares (OLS) method. Then, a SEMP was constructed for each 
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model parameter by the OLS method. The regression function for SEMP establishment was linear. 
The regression analysis was performed in MATLAB. 

3.1.1. NDVI-LAI Model Construction 

In the process of NDVI-LAI statistical model construction, the model form used is shown in 
Equation (4): 

b= aNDVI LAI  (4) 

A simple form is preferred under the condition of ensuring model accuracy so that we can focus 
on the scaling relation of models. According to Equation (4), the NDVI-LAI model built at a spatial 
resolution of 30 m is expressed as Equation (5) and labeled as ( )f p : 

30
30 30 30

Sb
S S SNDVI a LAI=  (5) 

where parameter 30Sa and parameter 30Sb represent parameter a  and parameter b  of the model 
( )f p , the 30SNDVI  data are derived from the Landsat surface reflectance products in which a pixel 

records the land surface information with 30 m spatial resolution. The ground LAIs 30SLAI  are also 
acquired at 30 × 30 m samples (some are at 20 × 20 m or 10 × 10 m samples). The spatial resolution 
of 30SNDVI  is consistent with the spatial resolution of 30SLAI , so ( )f p  is suitable for 30 m LAI 
estimation. According to Equation (4), the NDVI-LAI model built at a spatial resolution of 1 km is 
expressed as Equation (6) and labeled as ( )F P : 

1000
1000 1000 1000

Sb
S S SNDVI a LAI=  (6) 

where 1000Sa and 1000Sb represent parameter a  and parameter b  of the model built at a 1 km spatial 
resolution. The 1000SNDVI  data are derived from the MOD13A2 NDVI products in which a pixel 
records the land surface information at a 1 km spatial resolution. The coarse-resolution LAIs 1000SLAI  
are derived from the GLASS LAI products. The spatial resolution of 1000SNDVI  is consistent with the 
spatial resolution of 1000SLAI , so ( )F P  is the model suitable for 1 km LAI estimation. ( )F P  and 

( )f p  models are constructed by the OLS method at the selected sites (Table 1). 

To evaluate the accuracy of the NDVI-LAI models, 2R  was used, and the formula is as follows: 

2

2 1

2

1

( )

( )

n

i i
i

n

i
i

y y
R

y y

∧

=

=

−
=

−

∑

∑
 (7) 

where iy  represents the observation values of NDVIs, 
∧

iy  represents the estimated NDVIs, y  
represents the mean value of the NDVI observations and n represents the number of ground samples. 
The larger 2R  is, the higher the proportion of data that can be interpreted by the variables, and the 
more reliable the model is. Both the 30 m and 1 km NDVI-LAI statistical models used R2 to evaluate 
the model accuracy. 

3.1.2. SEMP Generation 

The LAI was used to describe the vegetation canopy, and the VI was correlated with the physical 
properties of the vegetated canopy [39,40]. Therefore, the relationship between the LAI and NDVI 
(the NDVI-LAI model) is related to the vegetation canopy. Several studies have proven that there are 
strong relationships between the LAI and NDVI [41]. The NDVI is the most stable vegetation index 
for LAI estimation [42]. The NDVI-LAI model built by the observation data and the LAI values 
acquired at a specific spatial resolution records the information at that spatial resolution. 
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In this section, for an invariant statistical model form of the NDVI and LAI, scaling equations of 
model parameters (SEMPs) are established between the 30 m spatial resolution and the 1 km spatial 
resolution. To create the SEMPs, we first extracted parameter datasets from models ( )F P  and ( )f p . 
In Equation (4), the model parameters a  and b  affect the relation between the NDVI and LAI. The 
parameter a  dataset consists of parameters 1000Sa  and parameters 30Sa , which are extracted from 

( )F P  and ( )f p  models in Section 3.1.1, and the parameter b  dataset consists of parameters 1000Sb  
and parameters 30Sb , which are also extracted from ( )F P  and ( )f p  models in Section 3.1.1. Then, 
the SEMPs were built with linear function g . SEMP a  and SEMP b  are shown in Equations (8) 
and (9): 

( )S30 a S1000a = g T ,a  (8) 

( )S30 b S1000b = g T ,b  (9) 

where aT  are parameters of SEMP a  used to realize downscaling parameter a  and bT  
represents parameters of SEMP b  used to complete downscaling parameter b . In Equations (8) and 
(9), 30Sa , 30Sb , 1000Sa  and 1000Sb  are variables. The OLS method was used to calculate aT  and bT . 

To evaluate the accuracy of the SEMPs, 2R  was used, as shown in Equation (10): 

2

2 1

2

1

( )

( )

n

i i
i

n

i
i

y y
R

y y

∧

=

=

−
=

−

∑

∑
 (10) 

where iy  represents the true values of the model parameter, 
∧

iy  represents the estimated values 

of the model parameter, y  represents the mean of the true values and n represents the number of 

sites. The larger 2R  is, the higher the proportion of data that can be interpreted by the variables and 
the better the simulation results. During this process, we found that the accuracy of the SEMPs can 
be improved when we consider the land cover type. Therefore, we established the SEMPs for 
cropland and forest. 

3.2. Model Downscaling Based on SEMPs 

The GLASS LAI and MOD13A2 NDVI were used to construct the downscaled model ( )SDf p  
based on SEMPs. In a validation site, the NDVI-LAI statistical model ( )F P , which was built with the 
MODIS NDVI and GLASS LAI data, recorded the vegetation information at a 1 km spatial resolution. 
To improve the accuracy of the 30 m LAI estimation, model ( )F P  was downscaled to model ( )SDf p . 
In this paper, the model ( )F P  was downscaled based on SEMPs in Section 3.1, and ( )SDf p  is 
shown as follows: 

1000( , )
30 1000 30( , ) b Sg T b

S a s SNDVI g T a LAI=  (11) 

During the process, 1000Sa  is converted into 30Sa  by SEMP a  (Equation (8)), and 1000Sb  is 
converted into 30Sb  by SEMP b  (Equation (9)). ( )SDf p  is suitable for 30 m LAI estimation at the 
validation site. Thus far, model downscaling has been completed. SEMPs can transform the model 
from a 1 km spatial resolution to 30 m spatial resolution or from a 30 m spatial resolution to 1 km 
spatial resolution. In this paper, SEMPs were used for downscaling a model at a 1 km spatial 
resolution to a model that is suitable for a 30 m spatial resolution. The SEMPs can also be extended 
to other vegetation types and physical models. To compare the )SDf pNDVI （  calculated by the model 
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( )SDf p  with the ( )f PNDVI  calculated by the model ( )f p  to evaluate the accuracy of the 
downscaled NDVI-LAI statistical model, the equation is: 

1000

30

( , )
) 1000 30

( ) 30 30

( , )
=

b S
SD

S

g T b
f p a s S

b
f P S S

NDVI g T a LAI
NDVI a LAI

（  (12) 

3.3. Fine-Resolution LAI Estimation 

Landsat NDVIs at the validation site were input into the downscaled model ( )SDf p , and the 
LAI with the 30 m spatial resolution was estimated. Usually, the process of fine-resolution LAI 
estimation is conducted by inputting fine-resolution NDVIs into the fine-resolution model, which is 
built by fine-resolution NDVIs and field LAIs. In areas where there is no field LAI or insufficient field 
LAI data, the fine-resolution model cannot be built. Downscaling the coarse-resolution model into a 
fine-resolution model is a new method for downscaling LAIs from the perspective of the remote-
sensing model. 

The fine-resolution LAI based on the model-downscaling method was compared with the 
reference LAI (field LAI measurements and the LAI maps obtained from field LAI) to evaluate the 
accuracy of this method. Moreover, Ovakoglou’s downscaling method [27] was compared to evaluate 
this model-downscaling method. 

4. Results 

4.1. Accuracy of NDVI-LAI Statistical Models 

NDVI-LAI statistical models of the 14 sites are built at 30 m and 1 km spatial resolutions. The 
models of the six cropland sites are shown in Figure 3, and the models of the eight forest sites are 
shown in Figure 4. 

 
Figure 3. Normalized Difference Vegetation Index (NDVI)-LAI statistical models of the 6 cropland 
sites. The red points represent the (LAI, NDVI) dataset with 30 m spatial resolution, the red curves 
represent the model ( )f p  at 30 m spatial resolution, the aquamarine points represent the (LAI, 
NDVI) dataset with 1 km spatial resolution and the aquamarine curves represent the model ( )F P  

at 1 km spatial resolution. 
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Figure 4. NDVI-LAI statistical models of the 8 forest sites. The red points represent the (LAI, NDVI) 
dataset with 30 m spatial resolution, the red curves represent the model ( )f p  at 30 m spatial 

resolution, the aquamarine points represent the (LAI, NDVI) dataset with 1 km spatial resolution and 
the aquamarine curves represent the model ( )F P  at 1 km spatial resolution. 

In Figure 3, the cropland sites have high R2 values (0.52–0.87) for both models at the 30 m and 1 
km spatial resolutions, and these (LAI, NDVI) datasets are well described by these models. In the 
cropland sites, the curves of the models at the two spatial resolutions show the following 
characteristics: ( )f p  is above ( )F P  for smaller LAI values, and ( )f p  is below ( )F P  for larger 
LAI values. 

In Figure 4, the first six forest sites have relatively high R2 values (0.24–0.82) at both 30 m and 1 
km spatial resolutions. These forest sites have lower R2 values than the cropland sites. The Hyytiälä 
site has a low R2 at the fine resolution because it has three outliers, but we have no reason to eliminate 
them. The Sierra Chincua site has a low R2 at coarse resolution because the data are concentrated. 
Trees change slightly over one year—most sites only have field data for one year, and the samples 
are limited, so the model accuracy in forests is low. Except for the Sierra Chincua site and Larose site, 
other sites have the same curve tendency and characteristics as the cropland sites. 

Altogether, Figures 3 and 4 indicate that the NDVI-LAI statistical models established at 30 m 
spatial resolutions are different from the NDVI-LAI statistical models established at 1 km spatial 
resolutions, and the traits are similar. 
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4.2. Accuracy of the Scaling Equations of Model Parameters 

In the six cropland sites, the established SEMP a  and SEMP b  are shown in Figure 5a,b, 
respectively. In the eight forest sites, SEMP a  and SEMP b  are also established, and the results are 
shown in Figure 5c,d, respectively. 

 
Figure 5. Scaling equations of model parameters (SEMPs); (a) SEMP a  of the cropland sites; (b) 
SEMP b  of the cropland sites; (c) SEMP a  of the forest sites; (d) SEMP b  of the forest sites. 

Figure 5a shows the SEMP a  of the cropland sites (Equation (13)): 

30 10000.9028 0.1491S Sa a= × +  (13) 

where 30Sa  represents the parameter a  in the 30 m spatial resolution model, 1000Sa  represents the 

parameter a  in the 1 km spatial resolution model, 2R = 0.522, RMSE = 0.123, bias = 0.107. Figure 5b 
shows the SEMP b  of the cropland sites (Equation (14)): 

30 10000.4455 0.0858S Sb b= × +  (14) 

where 30Sb  represents the parameter b  in the 30 m spatial resolution model, 1000Sb  represents the 

parameter b  in the 1 km spatial resolution model, 2R = 0.445, RMSE = 0.211, and bias = −0.180. The 
results indicate that there is a strong scaling relation of model parameter a , and there is a strong 
scaling relation of model parameter b  at the cropland sites. Figure 5c shows the SEMP a  of the 
forest sites (Equation (15)): 

30 10000.5040 0.3412S Sa a= × +  (15) 

where 2R = 0.768, RMSE = 0.116, and bias = 0.062. Figure 5d shows the SEMP b  of the forest sites 
(Equation (16)): 

30 10000.2353 +0.0794= ×S Sb b  (16) 

where 2R = 0.286, RMSE = 0.199 and bias= −0.113. The results show that there is a strong scaling 
relation for parameter a  in forest sites, and parameter b  has a relatively lower R2. 
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Generally, the scaling relation of NDVI-LAI models established at 30 m and 1 km spatial 
resolutions can be described by SEMPs. SEMPs describe the scaling relation of model parameters well 
for the cropland. SEMP a  describes the scaling relation of the parameter a  well for the forest, and 
SEMP b  describes the scaling relation of the parameter b  as relatively weak. 

4.3. Accuracy of the Downscaled NDVI-LAI Statistical Model 

The results and validation of the downscaled NDVI-LAI statistical model are analyzed in this 
section. 

4.3.1. Cropland 

For the Pshenichne site, the constructed model ( )F P  at 1 km spatial resolution is shown in 
Equation (17), and the downscaled NDVI-LAI statistical model ( )SDf p , which is suitable for 30 m 
spatial resolution, is shown in Equation (18): 

0.364
1000 10000.508=S SNDVI LAI  (17) 

0.248
30 300.608=S SNDVI LAI  (18) 

In Figure 6a, the aquamarine curve represents the model ( )F P , and the orange curve represents 
the downscaled model ( )SDf p . The model ( )f p , which is constructed directly with Landsat NDVI 
and field LAI, is shown in Equation (19): 

0.238
30 300.627=S SNDVI LAI  (19) 

The red curve in Figure 6a represents the model ( )f p  at the Pshenichne site. The NDVI ratio 
(Equation (12)) between ( )SDf p  and ( )f p  is shown in Figure 6b. 

 
Figure 6. Results and validation of the downscaled model at the Pshenichne site. (a) The aquamarine 
curve is the model ( )F P  at 1 km spatial resolution established by the Ordinary Least Squares (OLS) 
method; the orange curve is the downscaled model ( )SDf p  established by SEMPs; the red curve is 
the model ( )f p  at 30 m spatial resolution directly established by the OLS method; (b) the orange 
curve is the NDVI ratio between ( )SDf p  and ( )f p . 

In Figure 6a, ( )SDf p  is more similar to the model ( )f p . In Figure 6b, the NDVI ratio between 
( )SDf P  and ( )f p  ranges from 0.884 to 0.972 when the LAI ranges from 0.0001 to 8, and the ratio is 

close to 1. For the Pshenichne site, the accuracy of the downscaled model is high. 

4.3.2. Forest 

For the Camerons site, the model ( )F P  at 1 km spatial resolution is shown in Equation (20), 
and the downscaled NDVI-LAI statistical model ( )SDf p  is shown in Equation (21): 
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0.578
1000 10000.358=S SNDVI LAI  (20) 

0.215
30 300.522=S SNDVI LAI  (21) 

In Figure 7a, the aquamarine curve represents the model ( )F P  and the orange curve represents 
the downscaled model ( )SDf p . The model ( )f p , which is constructed directly with Landsat NDVI 
and field LAI, is shown in Equation (22): 

0.119
30 300.563=S SNDVI LAI  (22) 

The red curve in Figure 7a represents the model ( )f p  at the Camerons site. The NDVI ratio 
between ( )SDf p  and ( )f p  is shown in Figure 7b. 

 
Figure 7. Results and evaluation of the downscaled model at the Camerons site. (a) The aquamarine 
curve is the model ( )F P  at 1 km spatial resolution established by the OLS method; the orange curve 
is the downscaled model ( )SDf p  established by SEMPs; the red curve is the model ( )f p  at 30 m 

spatial resolution directly established by the OLS method; (b) the orange curve is the NDVI ratio 
between ( )SDf p  and ( )f p . 

In Figure 7a, ( )SDf p  is more similar to the model ( )f p . In Figure 7b, the NDVI ratio between 
( )SDf p  and ( )f p  ranges from 0.383 to 1.132 when the LAI ranges from 0.0001 to 8. When the LAI 

is greater than 1, the NDVI ratio is close to 1. For the Camerons site, the accuracy of the downscaled 
model is high, especially when the LAI value is greater than 1. 

4.4. Accuracy of the Estimated Fine-resolution LAI 

The results and validation of 30 m LAIs are analyzed in this section. Meanwhile, the comparison 
between the fine-resolution LAI estimated by the model-downscaling method and Ovakoglou’s 
downscaling method [27] is shown in this section. 

4.4.1. Crop 

At the Pshenichne site, the field LAI data for LAI validation were distributed over 5 months and 
three years: May 2013, June and July 2014, and June and July 2015. The reference LAI map with 30 m 
spatial resolution in June 2015 was obtained from the ImagineS project. 

The result evaluated by the ground LAI is shown in Figure 8a; RMSE = 0.821, and bias= 0.299. 
The result evaluated by the reference LAI map is shown in Figure 8b; RMSE = 0.573, and bias = 0.276. 
A scattering density map can analyze the distribution traits of data. When the dot density is larger, 
the color is closer to red; otherwise, the color is closer to blue. The scattering density map shows that 
the accuracy of the LAI maps with 30 m spatial resolutions based on the model-downscaling method 
is high. 
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Figure 8. Evaluation of the fine-resolution LAI based on the model-downscaling method proposed in 
this paper at the Pshenichne site. (a) Ground LAI measurements; (b) the reference LAI map with 30 
m spatial resolution obtained from the ImagineS project. 

At the Pshenichne site, the LAI map produced by the model-downscaling method proposed in 
this paper is shown in Figure 9a; the LAI map produced by Ovakoglou’s downscaling method [27] is 
shown in Figure 9b; the LAI map based on the model ( )F P  is shown in Figure 9c. The reference 
LAI map obtained from the ImagineS project is shown in Figure 9d. The LAI map based on the model-
downscaling method has a more similar spatial distribution to the reference LAI map and contains 
more detailed information than the reference LAI map. Comparing the LAI map in Figure 9a with 
the LAI map in Figure 9c, it is demonstrated that the model ( )F P  records the vegetation 
characterization at the 1 km spatial resolution and the model ( )SDf p  records the vegetation 
characterization at the 30 m spatial resolution. The model built at the coarse resolution is not suitable 
for fine-resolution LAI estimation. 

Meanwhile, comparing the LAI map in Figure 9a with the LAI map in Figure 9b, the raster in 
Figure 9a has a more similar spatial distribution to the reference LAI map. 

 

Figure 9. LAI maps with 30 m spatial resolution at the Pshenichne site. (a) Based on the model-
downscaling method proposed in this paper; (b) based on Ovakoglou’s downscaling method; (c) 
based on the model ( )F P ; (d) the reference LAI map with 30 m spatial resolution obtained from the 

ImagineS project. 

The scattering density map between the LAI map in Figure 9a and the reference LAI map in 
Figure 9d is plotted in Figure 10a; RMSE = 0.573, and bias = 0.276. The scattering density map between 
the LAI map in Figure 9b and the reference LAI map in Figure 9d is plotted in Figure 10b; RMSE = 
1.469, and bias = 0.293. The scattering density map between the LAI map in Figure 9c and the 
reference LAI map in Figure 9d is plotted in Figure 10c; RMSE = 1.700, and bias = −1.526. From Figure 
10a–c, it is indicated that the LAI map based on the model-downscaling method has the highest 
accuracy. When considering the scaling effect of the model, the RMSE is smaller and the R2 is higher. 



Remote Sens. 2020, 12, 4147 15 of 21 

 

 
Figure 10. Scattering density map between the estimated LAI map and the reference LAI map at the 
Pshenichne site. (a) Based on the model-downscaling method proposed in this paper; (b) based on 
Ovakoglou’s downscaling method; (c) based on the model ( )F P . 

4.4.2. Forest 

For the Camerons site, the field LAI data for LAI validation were retrieved on March 3, 2004. 
The reference LAI map with 20 m spatial resolution on March 3, 2004 was obtained from the VALERI 
project. The reference LAI map was resampled to 30 m spatial resolution for LAI validation. The 
result evaluated by ground measurement data is shown in Figure 11a; RMSE = 0.515, and bias= 0.263. 
The result evaluated by the reference LAI map is shown in Figure 11b; RMSE = 0.523, and bias = 
−0.354. These results show that the accuracy of the LAI maps with 30 m spatial resolutions based on 
the model-downscaling method is high and can meet the application requirements for forests. 

 
Figure 11. Evaluation of the fine-resolution LAI based on the model-downscaling method proposed 
in this paper at the Camerons site. (a) Ground LAI measurements. (b) Reference LAI map with 30 m 
spatial resolution obtained from the VAlidation of Land European Remote-Sensing Instruments 
(VALERI) project. 

At the Camerons site, the LAI map based on the model-downscaling method proposed in this 
paper is shown in Figure 12a; the LAI map based on Ovakoglou’s downscaling method [27] is shown 
in Figure 12b; the LAI map based on the model ( )F P  is shown in Figure 12c. The reference LAI map 
obtained from the VALERI project is shown in Figure 12d. The LAI map produced by the model-
downscaling method has a more similar spatial distribution to the reference LAI map and contains 
more detailed information than the reference LAI map. Comparing the LAI map in Figure 12a with 
the LAI map in Figure 12c, it is demonstrated that model ( )F P  records the vegetation 
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characterization at the 1 km spatial resolution, and model ( )SDf p  records the vegetation 
characterization at a 30 m spatial resolution. The model built at the coarse resolution is not suitable 
for fine-resolution LAI estimation. 

Meanwhile, comparing the LAI map in Figure 12a with the LAI map in Figure 12b, the raster in 
Figure 12a has a more similar spatial distribution to the reference LAI map. 

 
Figure 12. LAI maps with 30 m spatial resolutions at the Camerons site. (a) Based on the model-
downscaling method proposed in this paper; (b) based on Ovakoglou’s downscaling method; (c) 
based on the model ( )F P ; (d) the reference LAI map with 30 m spatial resolution obtained from the 

VALERI project. 

The scattering density map between the LAI map in Figure 12a and the reference LAI map in 
Figure 12d is plotted in Figure 13a; RMSE = 0.523, and bias = −0.354. The scattering density map 
between the LAI map in Figure 12b and the reference LAI map in Figure 12d is plotted in Figure 13b; 
RMSE = 0.612, and bias = 0.437. The scattering density map between the LAI map in Figure 12c and 
the reference LAI map in Figure 12d is plotted in Figure 13c; RMSE = 0.385, and bias = 0.187. From 
Figure 13a–c, it is indicated that the R2 of the estimated LAI in Figure 13a is similar to the estimated 
LAI in Figure 13b,c. In Figure 7a, there is little difference between the downscaled model and the 
coarse-resolution model when the LAI is around 2.5, and the LAI values are mostly around 2.5 at this 
site. Therefore, the RMSEs in Figure 13a,c are similar. 

 
Figure 13. Scattering density map between the estimated LAI map and the reference LAI map at the 
Camerons site. (a) Based on the downscaling method proposed in this paper; (b) based on 
Ovakoglou’s downscaling method; (c) based on the model ( )F P . 

Overall, the LAIs estimated with 30 m spatial resolutions based on the model-downscaling 
method in this paper have high accuracy, and this model-downscaling method is viable. Moreover, 
the scaling effect of the model should be considered in multiscale LAI estimation. 
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5. Discussion 

5.1. Feasibility of the Model-Downscaling Method 

We proposed a model-downscaling method for fine-resolution LAI estimation. This method was 
tested by a nonlinear statistical model form of the NDVI and LAI. The results showed the viability of 
this model-downscaling method. This method has two characteristics: first, as the model form is 
invariant at different spatial resolutions, it is easy to apply to other models, and it has the potential 
to be extended to physical models; second, it is convenient to select model parameters that are 
sensitive to the spatial resolution, and we can establish SEMPs for the sensitive parameters of the 
model. From the perspective of modeling, this model-downscaling method is flexible and easy to 
apply. 

Existing results have also indicated some problems that need to be further studied and solved. 
First, the model form must be considered to ensure high model accuracy [43,44], as it provides 

the basic data for the SEMPs; for example, the semiempirical model form (Equation (23)) [38] is 
chosen for the model-downscaling method: 

( ) e− ×
∞ ∞= − − × k LAI

gNDVI NDVI NDVI NDVI  (23) 

where NDVI∞  represents the maximum NDVI, gNDVI  represents the NDVI value of soil, and k  

represents the relative change in the NDVI when the LAI changes, which is equivalent to the 
extinction coefficient. We tried to use a semiempirical model form to construct the SEMPs. Figure 14 
shows the results of model construction. 

 
Figure 14. Semiempirical NDVI-LAI statistical model established at the two spatial resolutions (30 m 
and 1 km spatial resolutions) and at the six cropland sites. The red points represent the (LAI, NDVI) 
datasets with 30 m spatial resolutions, and the red curves represent the models ( )f p  at 30 m spatial 

resolutions; the aquamarine points represent the (LAI, NDVI) datasets with 1 km spatial resolutions, 
and the aquamarine curves represent the models ( )F P  at 1 km spatial resolutions. 
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Comparing the models shown in Figure 14 with the models shown in Figure 3, the model 
accuracy slightly improved at most sites. In the process of SEMP construction, we found that the 
NDVI∞  values hardly change with the spatial resolution. It is not necessary to establish a SEMP for 
all the model parameters. In this paper, we set NDVI∞  to 0.986 because the mean value of NDVI∞  

values at the six cropland sites and the two spatial resolutions is 0.986. The scaling equations of k  
and gNDVI  are shown in Figure 15. 

 

Figure 15. The scaling equations of model parameters at the cropland sites. (a) k; (b) gNDVI . 

In Figure 15, the 2R  of SEMP k is 0.628, and the 2R  of SEMP gNDVI  is 0.608. Parameter k 

changes slightly with spatial resolutions, and parameter gNDVI  changes with spatial resolutions. 

Moreover, compared with the SEMPs based on Equation (4), in which the 2R  of the SEMP a  is 
0.522 and the 2R  of the SEMP b  is 0.445, the SEMPs based on Equation (23) show higher 2R  
values. 

Therefore, the model form affects the accuracy of the SEMP, and we need to identify the sensitive 
parameters of a specific model form. In the future, we will try to replace statistical models with 
physical models, select scale-sensitive parameters and establish SEMPs. 

5.2. The Amount of Data Needed for the Statistical Model 

The accuracy of a statistical model depends on the amount of modelling data [45]. Currently, in 
this paper, there are two types of statistical models: the NDVI-LAI model and the SEMPs. The amount 
of ground LAI data retrieved from the cropland sites is large, and the uncertainty in the NDVI-LAI 
model is low, but at the forest sites, the amount of ground data is limited, and the uncertainty in the 
NDVI-LAI model is higher. In this paper, the number of selected global sites is limited, so the data 
amount of the model parameter dataset influences the accuracy of the SEMPs. 

It is difficult to obtain the reference value of the LAI at different spatial resolutions, which affects 
the study of the scale issue, but our research is based on the actual needs of LAI and proposes a 
possible downscaling scheme to support the application under the condition that there is not enough 
fine-resolution ground LAI measurement data to build an NDVI-LAI statistical model with high 
accuracy; therefore, the method in this paper has reference value. 

6. Conclusions 

We proposed a model-downscaling method based on scaling equations of model parameters 
(SEMPs) for fine-resolution LAI estimation by considering the scaling effect of the model. LAI and 
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NDVI data at 1 km and 30 m at six crop sites and eight forest sites were collected. Three steps were 
included in this method. The first step was the construction of SEMPs. NDVI-LAI statistical models 
were built at 1 km and 30 m spatial resolutions. The SEMPs were built using the parameter datasets 
of the models at 30 m and 1 km spatial resolutions for cropland and forest, respectively. The second 
step was the establishment of the downscaled NDVI-LAI statistical model based on SEMPs and ( )F P  
at a validation site. The achieved downscaled model records the land surface information at 30 m 
spatial resolution at the validation site. The third step was inputting the Landsat NDVI into the 
downscaled model to estimate the 30 m LAI at the validation site. The Pshenichne crop site and 
Camerons forest site were chosen to validate the proposed method. The validation results show that 
at the crop site, the RMSE is 0.821 and the bias is 0.299 when compared with the ground LAI. The 
RMSE is 0.573 and the bias is 0.276 when compared with the referenced LAI map. At the forest site, 
the RMSE is 0.515 and 0.523, and the bias is 0.263 and −0.354 when compared with ground LAI and 
the referenced LAI map, respectively. The results are better than those of Ovakoglou’s downscaling 
method. The spatial distribution of the fine-resolution LAI based on this model-downscaling method 
is more similar to the reference fine-resolution LAI maps and contains more detailed information 
than the reference LAI. 

In conclusion, the results of this study demonstrate that a scaling relation of the remote-sensing 
model exists, and scaling equations of model parameters can achieve model scaling of models at 
different spatial resolutions. The basic framework of this model-downscaling method is referable and 
viable for fine-resolution LAI estimation. Further verification of this method requires more data and 
experiments. 
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