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Abstract— This study proposes an improved temperature and
emissivity separation (TES) algorithm for simultaneously retriev-
ing the land surface temperature and emissivity (LST&E) from
the Advanced Himawari Imager (AHI) data, including a modified
water vapor scaling (WVS) method and a calibrated empirical
relationship over vegetated surfaces. The modified WVS algo-
rithm is comparable to the original WVS algorithm in deriving
the LST&E but expands the application scope of the original
WVS algorithm. The calibrated empirical relationship improved
the LST&E and retrieval accuracy over vegetated surfaces by
up to 0.165 K and 0.004, respectively. Comprehensive validation
and evaluation are conducted in this study. In situ measurements
from three networks are collected for the temperature-based
validation. The bias and RMSE are 0.19 and 2.93 K in the
daytime, and −0.43 and 1.95 K in the nighttime, respectively.
Radiance-based LST validation shows that the bias and RMSE
are 0.25 and 1.88 K, respectively. In addition, the AHI LST is
evaluated using the MYD11 LST over large inland lakes, and the
bias and RMSE are 0.25 and 1.12 K, respectively. The AHI LST
is also compared to the MYD21 LST. The spatial distributions
of the two LSTs are similar, and the LST differences are mostly
within 4 K. The bias of the AHI LST ranges from −0.57 to
0.36 K, and the RMSE ranges from 1.7 to 2.64 K. The retrieved
AHI LSE is compared with the latest MYD21 LSE. The biases
and RMSEs are smaller than 0.005 and 0.014, respectively, for
the three AHI bands. The improved TES algorithm is proven to
be capable of obtaining accurate LST and LSE from AHI data.

Index Terms— Advanced Himawari Imager (AHI),
Himawari-8, land surface emissivity (LSE), land surface
temperature (LST), temperature and emissivity separation (TES),
thermal infrared (TIR).

I. INTRODUCTION

THE land surface temperature (LST), as a significant
parameter of land surface processes, is a direct driving

factor of surface–atmosphere energy exchange [1]–[5]. It is
of great significance to numerical weather prediction and
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climate change, surface energy balance, drought monitoring,
urban heat islands, ocean circulation, and many other research
fields [6]–[8].

Generally, there are two ways to obtain the LST – ground
monitoring and satellite remote sensing. The accuracy of field
measurements is high with a good temporal continuity that
is not affected by weather conditions, whereas the LST at
the remote sensing pixel scale is affected by solar radiation,
topographic relief, elevation, soil moisture, and surface
vegetation cover. In addition, the spatial distribution of the
surface temperature is nonuniform and varies over time. Due
to the limited ground stations, it is impossible to effectively
monitor the LST changes over a large area. Therefore, remote
sensing has become an important method for obtaining
large-scale LST.

Satellite retrieval of the LST dates back to the 1970s [9].
A large number of LST retrieval methods have been proposed
for thermal infrared (TIR) data. These algorithms are divided
into two categories according to whether extra atmospheric
information is needed. For example, the atmospheric infor-
mation is needed for the mono-window algorithm [10],
generalized single-channel algorithm [11], [12], tempera-
ture and emissivity separation (TES) algorithm [13]–[18],
temperature-independent spectral indices method [19], and
Moderate Resolution Imaging Spectroradiometer (MODIS)
day–night algorithm [20]. Although the MODIS day–night
algorithm does not rely on additional atmospheric information
for atmospheric correction, the shapes of atmospheric air tem-
perature and water vapor profiles are needed. Other algorithms,
e.g., the generalized split-window algorithm [21], multichan-
nel LST inversion algorithm [22]–[24], and multiangle LST
inversion algorithm [22], [25], can conduct atmospheric cor-
rection using atmospheric absorption differences of different
angles or channels. Due to the advancement of hyperspectral
TIR sensors, many land surface temperature and emissivity
(LST&E) retrieval algorithms have also been developed, such
as hyperspectral TES algorithms [26]–[29] and physical-based
integrated inversion algorithms [30], [31]. Among all methods
mentioned above, the split-window algorithm is the most
robust and widely used method and has been successfully
applied to a variety of sensors for the production of oper-
ational LST products, e.g., MODIS [21], [32], VIIRS [33],
SEVIRI [34], FY-2C [35], FY-3A [36], and GOES series [37].

The Himawari-8 is the successor of MTSAT-2 and was
launched in July 2015. Himawari-8’s status as the world’s
first next-generation satellite has made it a subject of global
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attention and keen anticipation [38]. The Advanced Himawari
Imager (AHI) onboard the Himawari-8 has four TIR channels
located in the atmospheric window and views the Earth every
ten minutes, which opens up new opportunities for the research
of daily LST variations and the land surface energy balance.

Clearly, the Himawari-8 does not yet provide an official
LST product. One of the primary reasons is that we do not
have an effective algorithm, which means that the current LST
retrieval algorithms mentioned above have limitations. Since
the LST&E are coupled, the land surface emissivity (LSE)
needs to be determined prior to the application of LST retrieval
algorithms such as the split-window and single-channel algo-
rithms. The widely used classification-based LSE assigning
method cannot reflect seasonal variations in emissivity and
has problems over semiarid and barren areas [39]–[41]. The
multitemporal algorithm, such as the MODIS day–night algo-
rithm, assumes that the LSE is unchanged for the same pixel
within a short time, which is unreasonable due to abrupt
weather changes and pixel mismatches at the global scale.
The accuracy of LST&E obtained by the TES algorithm
relies on the accuracy of atmospheric correction. Incomplete
atmospheric correction will cause large uncertainties in the
retrieved LST&E [42]. In summary, it is necessary to develop
a practical and physical-based algorithm that considers the
instrument characteristics of the AHI to obtain LST&E from
the AHI.

The AHI has four TIR channels located in the
atmospheric window, which is adapted to retrieve the
LST&E simultaneously using the TES algorithm. To improve
the accuracy of atmospheric correction, the water vapor
scaling (WVS) method proposed by Tonooka [43], [44] is a
good choice, which has been integrated into the MODIS and
VIIRS TES algorithms [16], [18]. According to [42], [45],
and [46], the WVS algorithm significantly reduced the LST&E
estimation uncertainties in the TES algorithm. The uncertainty
of LST estimation was reduced from 3.1 to 1.2 K for the
Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) based on tests over a wide range of
representative simulated data [42].

In this article, we have developed an improved TES algo-
rithm for obtaining clear-sky LST&E from AHI data. The
structure of the article is arranged as follows. The detailed
information about the Himawari-8/AHI data is provided in
Section II. The theoretical basis of the TES and modified WVS
algorithms are described in Section III. Section IV presents the
T-based and Radiance-based (R-based) validation results of the
derived AHI LST as well as the cross-validation results of the
AHI LST&E. A short discussion and conclusion are given in
Sections V and VI, respectively.

II. HIMAWARI-8/AHI

The Himawari-8 geostationary meteorological satellite
began operation in July 2015, which covers the East Asia
and Western Pacific regions (60◦ N∼60◦ S, 80◦ E∼160◦ W)
with a longitude of 140.7◦ E. The observation cycle of the
Himawari-8 is 10 min for a full disk, which has higher
spatial and temporal resolutions compared to those of

TABLE I

AHI INSTRUMENT SPECIFICATIONS FOR THE TIR BANDS

Fig. 1. Spectral response functions of the four AHI TIR bands (bands 11,
13, 14, and 15). The blue dotted line shows the atmospheric transmittance of
the 1976 standard atmosphere.

previous geostationary satellites MTSat-2 (Himawari-7). The
AHI/Himawari-8 has 16 bands operating in the VIS (three
bands), near infrared response (NIR) (three bands), and
infrared (ten bands) spectral bands with spatial resolutions
ranging from 0.5 to 2 km. Detailed information about the
TIR bands of the AHI is provided in Table I.

Because bands 12 and 16 are located in the ozone and
carbon dioxide absorption zones, respectively, TIR bands 11
and 13–15 are adopted in the improved TES algorithm. The
corresponding band response functions of the four bands are
shown in Fig. 1.

III. THEORETICAL BASIS

A. TES Algorithm

Under the assumption that the land surface is a Lam-
bertian and atmospheric correction is conducted accurately,
the ground-leaving radiance can be expressed as follows:

Lλ(θ) = ελBλ(Ts) + (1 − ελ)Latm↓,λ (1)

where Lλ(θ) is the ground-leaving radiance, λ is the
wavelength, θ is the view zenith angle, ελ is the LSE at
wavelength λ, TS is the LST, and Bλ(Ts) is the Planck
function. Latm↓,λ is the equivalent atmospheric downward
radiance, which can be simulated using the radiative transfer
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Fig. 2. Empirical relationship between εmin and MMD for the AHI. Dots
correspond to the samples used to fit the relationship, and continuous line is
the fitted relationship. N is the number of the samples.

model such as moderate resolution atmospheric transmission
(MODTRAN 5.2) model [47]. The equation for separating the
LST&E is underdetermined, and additional constraints must
be imposed to better pose the underdetermined equations.
Taking the typical TES algorithm as an example, an empirical
relationship between the minimum emissivity and emissivity
contrast is used to constrain the emissivity shape [13], [48].

The TES algorithm was originally proposed for the
ASTER [13], which consists of three parts.

1) The normalized emissivity method (NEM) module
is used to obtain the initial LST value and the
LSE spectrum by iteratively eliminating the equivalent
atmospheric downward radiance [49].

2) Ratio Model: Emissivities are ratioed to their mean
values to obtain the LSE spectrum shape but not the
actual emissivities.

3) Maximum-Minimum Difference (MMD) Module: The
empirical relationship between the minimum emissivity
εmin and the spectral contrast MMD is established to
obtain the refined LSE and recover the amplitude of the
LSE spectrum [50], [51].

The empirical relationship between εmin and MMD is usu-
ally established using the emissivity spectra chosen from the
ASTER spectral library to represent natural scenes. Specific
details of the TES algorithm can be found in [13].

In this article, the empirical relationship of the TES algo-
rithm is constructed using 89 ASTER emissivity spectra,
including rocks, soils, water, vegetation, and ice/snow [52].
These emissivity spectra are then convoluted with the band
response functions of the AHI, accordingly, to obtain the
band emissivity. The coefficient of the empirical relationship
is fitted using the least squares method, and the result is shown
in Fig. 2

εmin = −0.795 × MMD0.812 + 0.995. (2)

During construction of the empirical relationship, pure
soil/leaf emissivity spectra are considered. Multiple scatter-
ing in the real soil–vegetation system (the cavity effect)
is neglected, leading to the emissivity underestimation of

Fig. 3. Comparison between the calibrated and original empirical relation-
ships for the AHI (Old-ER is the original empirical relationship, and New-ER
is the calibrated empirical relationship).

vegetated surfaces in the original TES algorithm [53], [54].
To incorporate the cavity effect, we recalibrate the empirical
relationship using the canopy directional emissivity spectra
simulated by the 4SAIL model [55].

To compute the vegetation canopy emissivity, the para-
meters listed below are fed into 4SAIL: 1) the optical
properties of the vegetation canopy: leaf emissivity and soil
emissivity; 2) leaf area index (LAI); 3) view zenith angle;
and 4) leaf inclination distribution function (LIDF) para-
meter. Fifteen leaf emissivity spectra and 69 soil emissiv-
ity spectra were extracted from the MODIS University of
California, Santa Barbara (UCSB) emissivity library (https://
icess.eri.ucsb.edu/modis/EMIS/html/em.html) and the ASTER
emissivity library [52]. The LAI varies from 0 (bare soil)
to 7 (dense vegetation cover), with an interval of 0.5. The
differences between 4SAIL-modeled directional emissivity
using four different LIDFs are less than 0.005 according to
Verhoef et al. [55]. Therefore, the LIDF is set as spherical dis-
tribution function in this study. The view zenith angle ranges
from 0◦ to 65◦, with an interval of 15◦. The spectral interval
and resolution were set to 714–1250 and 1 cm−1, respectively.
To reduce emissivity spectra redundancies, we screened out the
4SAIL output emissivity spectra with similar spectral behav-
iors using the spectral angle mapper (SAM) algorithm [56].
Finally, 251 spectra were retained and used to recalibrate the
empirical relationship for vegetated surfaces. The fitted new
relationship for vegetated surfaces is shown in (3). A com-
parison between the new empirical relationship obtained with
4SAIL simulations and the original empirical relationship con-
structed with pure emissivity spectra is shown in Fig. 3. Fig. 3
reveals that the original empirical relationship underestimates
the εmin, especially when MMD is between 0.05 and 0.25

εmin,veg = −0.871∗MMD0.917 + 0.984. (3)

According to [57], when the atmospherically corrected
MODIS normalized difference vegetation index (NDVI) is
smaller than 0.156, the pixel can be regarded as bare soil.
When the MODIS NDVI is larger than 0.156 and smaller
than 0.461, the pixel is treated as partially vegetated land, and
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when the NDVI is larger than 0.461, the pixel is identified
as fully vegetated. Therefore, for pixels with NDVI > 0.156,
the calibrated empirical relationship is adopted in the TES;
otherwise, the original TES empirical relationship is preferred.

B. Atmospheric Correction

The accuracy of the atmospheric correction depends on the
atmospheric profiles (primarily the atmospheric temperature
and water vapor mixing ratio profiles) we can obtain. The
radiosonde technique is the most accurate way to obtain
atmospheric temperature and water vapor profiles [58].
However, radiosonde observations are conducted at several
fixed times each day (00:00 and/or 12:00 UTC), and cannot be
used at large scales. Therefore, various types of atmospheric
profile products are used as alternatives for atmospheric
correction. In this article, 6-h pressure-level-analyzed
meteorological files of the Modern-Era Retrospective analysis
for Research and Applications, version 2 (MERRA-2) [59]
are selected for the AHI atmospheric correction, which can
be downloaded from https://disc.sci.gsfc.nasa.gov/daac-bin/
FTPSubset2.pl. MERRA-2 contains vertical parameters
including the air temperature, geopotential height, and specific
humidity at 42 pressure levels ranging from 1000 to 0.1 hPa.

The atmospheric water vapor content changes greatly and
has a great impact on atmospheric correction for AHI TIR
bands. Residual errors due to incorrect atmospheric correction
in the TES algorithm give rise to large uncertainties in the
obtained LST&E [42], [60]. Therefore, a modified WVS algo-
rithm is implemented to improve the atmospheric correction
accuracy for the AHI. Unlike WVS algorithm, which is only
applied to the graybody pixels, and the scaling factors of
nongraybody pixels are interpolated from the scaling factors of
the neighboring graybody pixels, the modified WVS algorithm
is extended to nongraybody pixels by fitting the coefficients
of the extension of the multichannel water vapor dependent
(EMC/WVD) algorithm according to the minimum emissivity
of the AHI bands.

The WVS method originally proposed by Tonooka
[43], [44] is used to improve the atmospheric correction accu-
racy, which has been integrated into the production of remote
sensing LST&E products, e.g., MODIS [61] and VIIRS [16].

The WVS algorithm is an EMC/WVD algorithm [62].
The EMC/WVD algorithm models the at-surface brightness
temperature using the top of the atmosphere (TOA) brightness
temperature and the total precipitable water (TPW)

Tg,i = αi,0 +
n�

k=1

αi,k Tk

αi,k = pi,k + qi,k W + ri,k W 2, (k = 1, , , n) (4)

where W is the TPW; Tg,i is the at-surface brightness temper-
ature; Tk is the at-sensor brightness temperature for band k;
αi,0, αi,k , pi,k , qi,k , and ri,k are coefficients; i is the band
number; and n is the number of bands. The coefficient of the
EMC/WVD algorithm can be derived from simulated data.
Assuming the atmospheric transmissivity τ can be expressed
by the Pierluissi double exponential band model [63], the water

Fig. 4. Distribution of the LST with respect to the TPW for the profiles
used in the simulation.

vapor profile scaling factor γ can be calculated using the
following equation:
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(5)

where ai is the band model parameter; γ1 and γ2 are two appro-
priately chosen scaling values; τi (θ, γ1) is the atmospheric
transmissivity with the atmospheric water vapor profile scaled
by γ1; I ↑

i (θ, γ1) is the atmospheric upwelling radiance with
the water vapor profile scaled by γ1; γ1 and γ2 are set as 1.0
and 0.7, respectively.

1) EMC/WVD Coefficients: The coefficients of the
EMC/WVD method are determined by the training data,
which are constructed using the radiation transfer model with
representative atmospheric profiles extracted from the SeeBor
V5.0 database and representative emissivity spectra selected
from ASTER and MODIS spectral libraries. For details about
SeeBor, please refer to [64]. The atmospheric profiles over
the ocean are excluded first, and the left atmospheric profiles
are filtered with the following criteria to eliminate possible
cloudy atmospheric profiles, i.e., the relative humidity must
be lower than 90% at each pressure level [64]. Finally,
3517 atmospheric profiles are selected from SeeBor, and
the distribution of the LST with respect to the TPW for the
selected atmosphere profiles is shown in Fig. 4.

In total, 198 emissivity samples, including a variety of
materials such as water, snow/ice, vegetation, soils, sands,
and rock, are selected from the ASTER and MODIS spectral
libraries, with the emissivity ranging from 0.65 to 1 (Fig. 5).

The emissivity spectra are then convolved with the AHI’s
spectral response function (four bands: M11, M13, M14, and
M15). The LST–surface air temperature differences (δLST)
are set as −10, −5, 0, 5, 10, and 15 K for each atmospheric
profile. A total of 4 178 196 simulations (3517 profiles
×198 samples ×6δLST) are generated with the MODTRAN
radiative transfer model for each view angle (0◦, 15◦, 30◦, 45◦,
60◦, and 75◦), and for the four AHI TIR bands. The simulated
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Fig. 5. Combination of MODIS and ASTER library emissivity spectra used
for the development of the EMC/WVD algorithm.

data are divided into six groups according to the minimum
band emissivity: [0.96,1], [0.91,0.96], [0.86,0.91], [0.81,0.86],
[0.76,0.81], and [0.71,0.76] for each view angle. Using the
simulated TOA brightness temperature, ground-leaving bright-
ness temperatures, and the TPW of each atmosphere profile,
the coefficients in (4) are derived using the least squares
method. The EMC/WVD algorithm coefficients are deter-
mined by the view zenith angle and minimum band emissivity.

To determine the minimum band emissivity and the
EMC/WVD algorithm coefficients, we need to identify the
gray pixels first. If all the band emissivities are higher than
0.96, e.g., water, snow/ice, and dense vegetation, then the pixel
is labeled as a graybody pixel. The MODIS 16-day synthetic
NDVI product (MOD13A2) after reconstruction by the
Savitzky–Golay filter algorithm [65] is also used to identify
gray pixels. When NDVI >0.3, the pixel is labeled as a gray
pixel. Furthermore, MODIS snow product MOD10A2 is used
to identify water and snow cover pixels. For the other AHI
pixels, the minimum band emissivity is determined using the
combined ASTER and MODIS emissivity for land (CAMEL)
emissivity product [66], [67]. The CAMEL data set was
created by combining the University of Wisconsin–Madison
MODIS infrared emissivity data set and the Jet Propulsion
Laboratory ASTER global emissivity data set version 4.
Details about the CAMEL data set can be found from the
website: https://lpdaac.usgs.gov/products/cam5k30emv002/.
The spatial resolution of CAMEL data is 0.05◦. The CAMEL
data is resampled to 0.02◦ using the nearest neighbor
interpolation. Regarding the spectral matching, we first
establish the linear relationship between AHI channel
emissivity and the corresponding CAMEL channel emissivity
using the 89 emissivity spectra in Section III. Then the
CAMEL channel emissivities are converted to AHI channel
emissivities using the established linear relationships. After
the minimum band emissivity of each pixel is determined,
the EMC/WVD coefficients are assigned according to the view
angle, and then the ground-leaving brightness temperature
is calculated using (4). When the view zenith angle is not
equal to the specified angles (0◦, 15◦, 30◦, 45◦, 60◦, or 75◦),
the at-surface brightness temperature is linearly interpolated
from the values at the adjacent view zenith angles.

TABLE II

VALUE OF BAND MODEL A FOR EACH BAND

TABLE III

REGRESSION COEFFICIENTS OF (7)

The band model coefficients ai in (5) are determined using
simulated data, where γ , γ1, and γ2 are set as 0.9, 0.7, and 1,
respectively. The values of the band model coefficients are
listed in Table II.

2) Estimation of the Atmospheric Downward Radiance: The
initial atmospheric parameters, τi(θ), and I ↑

i (θ), are estimated
using Radiative Transfer for TOVS 12 (RTTOV) [68]. The
input atmospheric profiles (air temperature and water vapor
mixing ratio profiles) are extracted from the MERRA-
2 product. Given that the water vapor profile scaling factor
γ has been estimated using (5), γ is then used to scale τi(θ)
and I ↑

i (θ) for each pixel as follows:

τi(θ, γ ) = τi(θ, γ1)

γ ai −γ
ai
2

γ
ai
1 −γ

ai
2 · τi (θ, γ2)

γ
ai
1 −γ ai

γ
ai
1 −γ

ai
2

L↑
i (θ, γ ) = L↑

i (θ, γ1)
1 − τi(θ, γ )

1 − τi(θ, γ1)
. (6)

The equivalent downward atmospheric radiance, I ↓
i , is

estimated using the following nonlinear equation of
the atmospheric upwelling radiance at the nadir view,
I ↑
i (0, γ ) [69]:

I ↓
i (γ ) = ai + bi I ↑

i (0, γ ) + ci I ↑
i (0, γ )2 (7)

where ai , bi , and ci are regression coefficients, which can
be derived using the least squares method with SeeBor
atmospheric profiles. The atmospheric upwelling radiance
at the nadir view I ↑

i (0, γ ) is calculated from τi (θ, γ ) and
I ↑
i (θ, γ ) at view angle θ [69]

I ↑
i (0, γ ) = I ↑

i (θ, γ )
1 − τi(θ, γ )cos θ

1 − τi(θ, γ )
. (8)

The regression coefficients of (7) for channels 11 and 13–15
are summarized in Table III. The scatterplot between the path
radiance at the nadir view and downward sky radiance is
shown in Fig. 6.

As shown in Fig. 6, the accuracy of this equation is rela-
tively high, with an RMSE less than 1.32E-07 W/cm2/sr/cm−1.
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TABLE IV

INFORMATION OF SITES IN THE OZFLUX, BSRN, AND HIWATER NETWORKS

Fig. 6. Scatterplot of the atmospheric upwelling and downwelling radiance for the four AHI bands. (a) Band 11. (b) Band 13. (c) Band 14. (d) Band 15.

C. Implementation of the Improved TES Algorithm

Fig. 7 shows the flowchart of the improved LST&E retrieval
algorithm which consists of two components: atmospheric
correction and LST&E separation. Atmospheric correction is
conducted using the modified WVS algorithm, which can
improve the accuracy of atmospheric correction, especially

under humid atmospheric conditions. The calibrated empirical
relationship is used for vegetated surfaces in the simultaneous
retrieval of the LST&E.

IV. RESULTS

To evaluate the accuracy of the AHI LST&E derived by
the improved TES algorithm, a comprehensive validation is

Authorized licensed use limited to: Beijing Normal University. Downloaded on October 30,2020 at 07:26:30 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU AND CHENG: IMPROVED TES ALGORITHM FOR AHI 7111

Fig. 7. Flow diagram showing all steps in retrieving the Himawari-8/AHI LST and LSE.

conducted, including temperature-based (T-based) validation,
R-based validation, and cross-validation. First, the retrieved
LSTs from the AHI are validated using in situ measurements
collected from three networks. Second, the R-based method
is used to validate the AHI LST at sites with radiosonde
measurements. Third, the AHI LST is compared to the MODIS
LST product (MYD11 L2) with the same overpass time over
several lakes. Fourth, the spatial distributions of the AHI and
MODIS (MYD21 L2) LSTs are compared. Regarding the
LSE, we compared the AHI-derived LSE with the MODIS
MYD21 L2 LSE product.

A. T-Based Validation

One-year-old AHI TOA brightness temperature data and
cloud type products (January 1, 2016–December 31, 2016)
are used in this study. To reduce the data storage capacity,
AHI data with a 1-h temporal resolution in the daytime and

data with a consistent overpass time, similar to that of MODIS
in the nighttime, are downloaded. As the AHI has no cloud
mask product, the AHI cloud type product is used to identify
the clear-sky pixels in the daytime instead; the MYD35 cloud
mask product is used for cloud detection for the AHI, with the
same observation time (less than 5 min) as that of MODIS in
the nighttime.

Details of the validation sites in the Heihe Watershed
Allied Telemetry Experimental Research (HiWATER, http://
card.westgis.ac.cn/) network [70], [71], Baseline Surface Radi-
ation Network (BSRN, https://bsrn.awi.de/) [72], and OzFlux
(http://www.ozflux.org.au/) [73] network are summarized in
Table IV.

The spatial resolution of AHI pixels is 0.02◦, whereas the
footprint of the in situ measurement is much smaller than
that of the AHI. Five years (2013–2017) of the ASTER
AST08 LST product are collected to evaluate the hetero-
geneity of the in situ measurements before they are used
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Fig. 8. AHI LST validation results with respect to the HiWATER sites in the daytime. (a) A’rou (AR). (b) Daman (DM). (c) E’bao (EB). (d) Dashalong
(DSL). (e) Sidaoqiao (SDQ). (f) Huazhaizi (HZZ). (g) Huangmo (HM).

for AHI LST validation. We calculate the standard deviations
(STDs) of the ASTER LSTs in 2 km × 2 km windows around
sites and determine that the STDs are less than 2 K in most
cases. Therefore, the in situ measurements can be directly used
for AHI LST validation. The details of the mean, minimum,
and maximum LST STDs are provided in Table V.

For the sites in the BSRN, HiWATER, and OzFlux net-
works, the LST is calculated from the measured surface
upwelling and downward longwave radiation using the fol-
lowing equation:

Ts =


L↑ − (1 − ε)L↓

εσ

�1/4

(9)

where Ts is the LST and ε is the surface broadband emissivity
(BBE), which is obtained from MOD11B1 using the following
equation [74]:

ε = 0.095 + 0.329 × ε29 + 0.572 × ε31. (10)

The uncertainty of the estimated BBE comes from two
parts: one is the uncertainty in the spectral conversion, i.e.,
converting narrow band emissivity to BBE; and the other is
the uncertainty of the MODIS land surface emissivity product.
The RMSE of spectral conversion [see (10)] is 0.01 [74],

TABLE V

LST VARIATION AT THE OZFLUX, BSRN, AND HIWATER SITES

and the RMSDs of MOD11B1 band 29 (8.52 μm) and 31
(11.03 μm) emissivities are 0.009 and 0.006, respectively,
when compared to ASTER emissivity product [75]. Based on
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Fig. 9. AHI LST validation results with respect to the OzFlux sites in the daytime. (a) Ashley Dene. (b) CapeTribulation. (c) Dry River. (d) Robson.
(e) Samford. (f) Warra.

the evaluation results of Hulley et al. [76], the mean
emissivity differences between ASTER emissivity product
and laboratory-measured emissivities are 1.87%, 1.16%,
and 0.9% for ASTER bands 11 (8.6 μm), 13 (10.6 μm)
and 14 (11.3 μm), respectively. The nominal accuracy of
ASTER emissivity product is 0.015. Thus, the accuracy
of ASTER bands 11, 13, and 14 are set to 0.019, 0.015,
and 0.015, respectively. The uncertainty of MODIS band
29 is calculated as (0.0192 + 0.0092)1/2 = 0.02, and
the uncertainty of MODIS band 31 is calculated as
(0.0152 + 0.0062)1/2 = 0.016. Therefore, the uncertainty
of BBE estimated by (10) is sqrt(0.012 + (sqrt(0.3292 ∗
0.022 + 0.5722 ∗ 0.0162))2) = 0.015.

The measurement difference of all CNR1/CNR4 net
radiometers ranged from approximately −8 to 3 W/m2

(−8 W/m2 in daytime and 3 W/m2 at nighttime) compared
with an Eppley Precision Infrared Radiometer during the
HiWATER experiments [77]. The measurement difference of
NR01 radiometer is less than 9.7 W/m2 in daytime and
4.1 W/m2 at nighttime [78].

Given that the surface longwave upwelling and down-
ward radiation are equal to the global annual mean values
of 397.5 and 339.7 W/m2 [79], respectively, and the BBE is
set to 0.95 with an uncertainty of 0.015, the uncertainty of
LST calculated using (9) can be estimated using the error
propagation law. LST uncertainty is equivalent to 1.62 and
0.37 K considering the measurement error of CNR1/CNR4 net
radiometers, whereas the values are 1.58 and 0.57 K consid-
ering the measurement error of NR01 radiometer in daytime
and nighttime, respectively.

The AHI LSTs were compared with the ground-measured
LSTs, and scatterplots of the AHI and in situ LSTs are shown
in Figs. 8–10.

Fig. 10. AHI LST validation results with respect to the BSRN sites in the
daytime.

For the seven sites in the HiWATER network during the
daytime, the bias varies from −0.47 to 1.09 K, with an average
of 0.51 K. The RMSE varies from 2.91 to 3.91 K, with an
average of 3.31 K. For the six sites in the OzFlux network
during the daytime, the bias varies from −1.26 to 0.78 K, with
an average of −0.54 K. The RMSE varies from 1.56 to 2.98 K,
with an average of 2.17 K. For one site in the BSRN network
during the daytime, the bias and RMSE are −0.29 and 2.02 K,
respectively. The RMSEs at the HiWATER sites are larger than
those at the OzFlux and BSRN sites. One reason is that the
AHI view zenith angle is approximately 60◦ at the HiWATER
sites.

Since the AHI does not have cloud mask products in the
nighttime, the MODIS cloud mask is used instead. Only AHI
data with an observation time close to the overpass time of
MODIS (within 10 min) is selected in the nighttime. The AHI
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Fig. 11. AHI LST validation results at the (a) HiWATER, (b) OzFlux, and (c) BSRN sites during the nighttime.

and MYD21 LSTs are compared with the ground-measured
LSTs, and scatterplots of the AHI and in situ LSTs are shown
in Fig. 11. For the sites in the HiWATER network, the bias
and RMSE are −0.83 and 1.94 K, respectively. The bias
and RMSE of MODIS are −1.19 and 2.09 K, respectively.
For the sites in the OzFlux network, the bias and RMSE
are −0.36 and 1.89 K, respectively. The bias and RMSE of
MODIS are −0.1 and 1.85 K, respectively. For the sites in
the BSRN network, the bias and RMSE are 2.69 and 3.04 K,
respectively. The bias and RMSE of MODIS are 2.83 and
3.16 K, respectively. As a result, similar accuracies were
obtained for the AHI and MODIS, and the accuracy of the AHI
was higher during the nighttime than that during the daytime,
due to the lower heterogeneity of the surface temperature
during the nighttime.

B. R-Based Validation

The R-based LST validation method was first proposed
by Wan and Li [80], which only requires field measured
LSE and synchronized atmospheric profiles. The R-based
LST validation method has been applied to assess the
satellite-derived LST products, such as MODIS [81], [82] and
AIRS [83].

One-year-old (2016) radio sounding data, at 0000 UTC
covering China and Australia, are downloaded from http://
weather.uwyo.edu/upperair/sounding.html to implement the
R-based AHI LST validation. Profiles with a low vertical res-
olution are eliminated (e.g., no observations above 400 hPa),
and the relative humidity of each profile must be lower than
90% at each pressure level. The atmospheric profiles are input
into MODTRAN 5.2 to calculate the atmospheric parameters.
As band 14 (11.2 μm) has lower uncertainty in the LSE and is
less sensitive to atmospheric absorption, the TOA brightness
temperature of band 14 is selected to conduct the R-based LST
validation.

The AHI LST is used as the initial value of the LST, and the
emissivity of band 14 is estimated from the MOD11B1 band
31 emissivity by spectral conversion. The flowchart of R-based
LST estimation is shown in Fig. 12. The R-based LST is then
used for AHI LST validation.

Fig. 13 shows the locations of 31 sounding stations and the
corresponding scatterplots of the AHI LST versus the R-based
LST estimated from the AHI TOA radiances in band 14 over
China and Australia. The bias and RMSE of the AHI LST

Fig. 12. Flowchart of R-based LST estimation.

are 0.274 and 1.918 K, respectively, for China and 0.018 and
1.438 K, respectively, for Australia.

C. Comparison With the MYD11 L2 LST

According to Wan et al. [84], the accuracy of the MODIS
LST product derived by the split-window algorithm is higher
than 1 K over lakes, when the TPW ranges from 0.4 to
3.0 g/cm2. To further verify the AHI LST, we selected seven
large inland lakes in China with the MODIS LST product
covering these lakes. We compared the MODIS and AHI LSTs
at the center of each lake under the condition that the TPW
is lower than 3 g/cm2, and the observation time difference
between MODIS and AHI is less than 10 min. The specific
locations of the lakes and the verification results are listed
in Table VI and shown in Fig. 14, respectively. The bias and
RMSE of this case are 0.25 and 1.12 K, respectively, compared
with the MYD11L2 LST product.

D. Comparison With the MYD21 LST

The MODIS LST&E product, MYD21 V6, is also generated
using the TES algorithm, the accuracy of which is higher
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Fig. 13. (a) Locations of 31 sounding stations in China and Australia, and the corresponding scatterplots of the AHI and R-based LSTs for (b) China and
(c) Australia.

TABLE VI

INFORMATION ABOUT THE LOCATIONS OF THE

SEVEN SELECTED LARGE INLAND LAKES

than 1.5 K for most cases compared to in situ measure-
ments [85]. Moreover, the MOD21 LSEs are closer to the lab
values than the MOD11 LSEs assigned based on classification
schemes, especially over arid and semiarid areas. Therefore,
the MYD21 V6 LST&E product is used for evaluation pur-
poses [85].

As the spatial resolution of the AHI (0.02◦) is coarser than
that of MODIS (1 km), the MODIS LST&E is first aggregated
to match the spatial resolution of the AHI. To reduce the
influences of LST heterogeneity and pixel mismatch on the
evaluation results, the following criteria are used to screen
the mismatching LSTs:

1) The overpass time difference between AHI and MODIS
must be less than five minutes.

2) The viewing zenith angle difference should meet the
condition of | cos θ1/ cos θ2 − 1| < 0.01, where θ1

and θ2 are the AHI and MODIS view zenith angles,
respectively.

3) The MODIS pixels in the 7 × 7 window are clear-sky
pixels, and the STD of the MODIS LST in the 3 × 3
window should be smaller than 2 K [5].

Fig. 15 shows the MODIS and AHI LSTs at 0445 UTC
on January 3, 2016. The MODIS LST was retrieved for the
northern region of Australia. The spatial distributions of the
two LST products are similar, and the difference between
the two LSTs is mostly smaller than 4 K. The bias and RMSE
of this case are −0.24 and 2.64 K, respectively, compared with
the MYD21 LST.

Fig. 14. Scatterplots of the AHI and MYD11L2 LSTs over the seven selected
large inland lakes.

Fig. 16 shows the MODIS and AHI LSTs at 0600 UTC
on January 25, 2016. The MODIS LST was retrieved for
the center of China. The spatial distributions of the two LST
products are similar, and the difference between the two LSTs
is mostly smaller than 3 K. The bias and RMSE of this case are
0.36 and 1.7 K, respectively, compared with the MYD21 LST.

Fig. 17 shows the MODIS and AHI LSTs at 0555 UTC
on July 28, 2016. The MODIS LST was retrieved for the
center of China. The spatial distributions of the two LST
products are similar, and the difference between the two LSTs
is mostly smaller than 4 K. The bias and RMSE of this
case are −0.57 and 2.36 K, respectively, compared with the
MYD21 LST.

According to the LST evaluation results mentioned above,
the AHI and MODIS LSTs are spatially consistent, and the
differences reach 4 K under most conditions. The LST RMSE
is 1.7 K in winter, while the value is 2.64 K in summer.
The AHI and MODIS LSTs are more consistent in winter
than in summer. There are two possible reasons for this
phenomenon. First, the solar radiation is more intense in
summer, which results in rapid surface heating in the daytime
and an increase in LST heterogeneity. Second, the atmospheric
moisture content is lower in winter, reducing the uncertainty
of atmospheric correction.
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Fig. 15. Comparison of the AHI (January 3, 2016, 0440 UTC) and MYD21 (January 3, 2016, 0445 UTC) LSTs in the northern region of Australia. (a) LST
spatial distribution of MODIS. (b) LST spatial distribution of the AHI. (c) Scatterplot of the AHI LST versus the MYD21 LST. (d) Histogram of the LST
differences.

E. LSE Evaluation

Fig. 18 shows the MYD21 L2 LSE (August 11,
2016, 0555 UTC) and the AHI LSE at 0600 UTC on
August 11, 2016. The AHI LSE was retrieved for Australia.
The spatial distributions of the two LSE products are similar,
and the difference between the two LSEs is mostly smaller
than 0.01. The bias and RMSE of this case are −0.005 and
0.014, respectively, for AHI band 11; 0.004 and 0.006, respec-
tively, for AHI band 14; and −0.004 and 0.006, respectively,
for AHI band 15 compared with the MYD21 LSE.

V. DISCUSSION

A. Effect of MMD Calibration

In Section III, we used the 4SAIL model to generate the
canopy directional emissivity spectra to incorporate the cavity
effect and calibrate the empirical relationship between εmin

and MMD for vegetated surfaces. The differences between the

calibrated and original empirical relationships in regard to the
TES algorithm over vegetated surfaces are further discussed
in this section.

Four built-in atmospheric profiles in MODTRAN (namely,
middle-latitude winter, US standard 1976, middle-latitude
summer, and tropical) are used to generate the atmospheric
downwelling radiation using MODTRAN 5.2. The LST–air
temperature ranges from −10 to 20 K with an interval of 5 K.
The emissivity spectra used are the same as those used in
Section II. Note that instrument noise and atmospheric down-
welling radiance errors are not considered here because we are
only focused on comparing the performance of the calibrated
empirical relationship. Finally, we obtain 3444 samples. The
calibrated and original empirical relationships are used to
retrieve the LSE and LST from the simulated data. The
results are shown in Figs. 19 and 20. Fig. 19 reveals that
the original empirical relationship underestimates the LSE by
nearly 0.004 compared to the calibrated empirical relationship.
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Fig. 16. Comparison of the AHI (January 25, 2016, 0600 UTC) and MODIS MYD21 (January 25, 2016, 0600 UTC) LSTs over China. (a) LST spatial
distribution of MODIS. (b) LST spatial distribution of the AHI. (c) Scatterplot of the AHI LST versus the MYD21 LST. (d) Histogram of the LST differences.

Regarding the LST, the LST bias and RMSE of the original
empirical relationship are 0.214 and 0.403 K, respectively,
whereas those of the calibrated empirical relationship are
0.049 and 0.302 K, respectively (Fig. 20). Clearly, the cali-
brated empirical relationship improves the accuracy of LST
retrieval. In summary, the calibrated empirical relationship
improved the LST and LSE retrieval accuracy by up to 0.165 K
and 0.004, respectively. Of course, only simulated data were
used in this study, and field measurements will be collected
in future studies to further verify the effect of the calibrated
empirical relationship.

B. Effect of the Modified WVS Algorithm

The WVS algorithm was first proposed by Tonooka [43]
in 2001. Initially, the WVS algorithm was only applicable
to graybody pixels, and the WVS factor of the nongraybody
pixels is interpolated by the scaling factor of the graybody
pixels (named the WVS_interp algorithm). A refined WVS

algorithm was proposed by Islam et al. [16], and the WVS
algorithm was extended to nongraybody pixels (named the
refined WVS algorithm). The modified WVS algorithm used in
this article is similar to that in [16]. Hulley et al. [42] discussed
the LST&E uncertainties in the TES algorithm under different
atmospheric conditions, as well as the role of WVS algorithms
in reducing uncertainties. Readers can refer to [42] for detailed
information. This section focuses on the differences between
the two WVS algorithms and the scope of their application.

To compare the performance of the WVS interpolation
algorithm and the modified WVS algorithm, MODTRAN 5.2
is used to generate simulated data. To ensure generalization of
the simulated data, representative atmospheric profiles at the
global scale and LSE spectra representing a wide variety of
surface types are used in the simulation. In addition, random
instrument noise and atmospheric profile errors are added to
the simulated data.

In total, 480 atmospheric profiles are randomly extracted
from SeeBor, with a wide range of TPWs evenly distributed
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Fig. 17. Comparison of the AHI (July 28, 2016, 0550 UTC) and MYD21 (July 28, 2016, 0555 UTC) LSTs over China. (a) LST spatial distribution of
MODIS. (b) LST spatial distribution of the AHI. (c) Scatterplot of the AHI LST versus the MYD21 LST. (d) Histogram of the LST differences.

over six subranges: [0,1], [1,2], [2,3], [3,4], [4,5], and
[5,7] g/cm2. To characterize the error of the atmospheric
profile, a 2-K error is added to the air temperature profile
above 700 hPa, and the error added to the layers below
700 hPa increases linearly from 2 K in the 700-hPa pressure
layer to 4 K in the surface layer. The water vapor profile
is scaled from 0.8 to 1.2. The LST is simulated using
the ground air temperature with a mean air temperature
of +3 K and an STD of 9 K. The emissivity spectra are
extracted from the MODIS and ASTER spectral libraries,
and similar spectra were removed by the spectral angle
method. In total, 56 emissivity spectra are obtained, including
vegetation, snow, ice, soil, and sand. The simulated data were
constructed for five viewing angles (0◦, 11.6◦, 26.1◦, 40.3◦,
and 53.7◦).

The modified WVS algorithm needs the emissivity back-
ground value to determine the EMC/WVD coefficient, while
the WVS interpolation algorithm needs graybody pixels to
calculate and interpolate the WVS factor. In consideration of

the above conditions, we need to simulate the TOA radiance
for various LST&E values first. In addition, the TOA radiance
of nearby graybody pixels and background LSE with an error
should be included when constructing the simulated data. The
simulated data are constructed as follows.

1) The atmospheric parameters τλ(θ), L↑
λ(θ), and L↓

λ are
calculated using atmospheric profiles without errors, and
Lλ(θ) is calculated using perfect atmospheric parameters
under various LST&E conditions.

2) The adjusted atmosphere parameters τ �
λ(θ), L↑

λ(θ)�, and
L↓�

λ are calculated using adjusted air temperature and
water vapor profiles.

3) Atmospheric parameters for scaled atmosphere profiles
as in (2), but with the water vapor profile adjusted by a
scaling factor (0.7), are calculated.

4) L↑
λ(θ) is calculated using the perfect atmospheric profile

for a graybody surface type, which can be used by
the WVS interpolation algorithm to calculate the WVS
factor.
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Fig. 18. Comparison of the AHI emissivity map (August 11, 2016, 0600 UTC) (a) AHI band 11 and the MYD21 LSE map (August 11, 2016, 0555 UTC)
in Australia and (b) MODIS band 29 and the corresponding histogram of the LSE differences for AHI bands (c) 11, (d) 14, and (e) 15.

Fig. 19. Comparison of the true LSE with the LSEs derived using the calibrated and original empirical relationships from the simulated data set. (Top)
Original empirical relationship. (Bottom) Calibrated empirical relationship. (a) and (e) Band 11. (b) and (f) Band 13. (c) and (g) Band 14. (d) and (h) Band 15.

5) An error of 0.01 is added to each band emissivity as
the background emissivity value for the modified WVS
algorithm. Finally, 0.2-K random noise is added to each
band of the simulated TOA radiance.

In total, 144 000 samples are created. These samples are
used to test the modified WVS and WVS_interp algorithms.
LSEs with a band emissivity lower than 0 or higher than 1 are
rejected because the TES algorithm cannot converge due to
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Fig. 20. Histogram of the LST differences between the TES retrievals and the validation data set. (Left) Original empirical relationship. (Right) Calibrated
empirical relationship.

Fig. 21. Uncertainty boxplots of the AHI LST derived with the modified WVS algorithm and WVS_interp algorithm. (a) Graybody (Modified WVS + TES).
(b) Graybody (WVSinterp + TES). (c) Nongraybody (Modified WVS + TES). (d) Nongraybody (WVSinterp + TES).

Fig. 22. Uncertainty boxplots of the AHI LSE derived with the modified WVS algorithm and WVS_interp algorithm. (a) and (c) Graybody (WVSinterp +
TES). (b) and (d) Nongraybody (WVSinterp + TES). (e) and (g) Graybody (Modified WVS + TES). (f) and (h) Nongraybody (Modified WVS + TES).

incomplete atmospheric correction. Finally, 112 561 samples
remain, and the results are summarized in Tables VII and VIII
and shown in Figs. 21 and 22. The accuracy of the LST
decreases with increasing water vapor for both the modified

WVS and WVS_interp algorithms. The RMSE increases from
0.82 (TPW < 1.5 g/cm2) to 1.94 K (TPW > 1.5 g/cm2) for
modified WVS algorithm, whereas the RMSE increases from
0.77 (TPW < 1.5 g/cm2) to 2.217 K (TPW > 1.5 g/cm2) for
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TABLE VII

ACCURACY OF THE AHI LST RETRIEVED FROM THE MODIFIED WVS ALGORITHM AND ORIGINAL WVS_INTERP
ALGORITHM UNDER DIFFERENT TPW CONDITIONS

TABLE VIII

ACCURACY OF THE AHI LSE RETRIEVED FROM THE MODIFIED WVS ALGORITHM AND ORIGINAL

WVS_INTERP ALGORITHM UNDER DIFFERENT TPW CONDITIONS

WVS_interp algorithm. Under the same water vapor condi-
tions, the overall accuracy of graybody pixels is higher than
that of nongraybody pixels for the modified WVS algorithm,
but the decrease in accuracy is not significant. This proves that
the modified WVS algorithm used in this article is effective
for both graybody and nongraybody pixels, and the accuracy
of the modified WVS algorithm is comparable to that of the
original WVS_interp algorithm.

Compared with the original WVS_interp algorithm, the
modified WVS algorithm expands the application scope of
the WVS algorithm, although there is no essential difference
between these two algorithms. For example, the modified
WVS algorithm can calculate the WVS factor for all pixels
without interpolation; however, the interpolation method can
also be included in the modified WVS algorithm when the
quality of the background emissivity cannot be guaranteed
and there are graybodies such as vegetation in the surrounding
pixels. In addition, for arid and semiarid areas without nearby
graybody pixels, the modified WVS is superior to the original
WVS_interp algorithm, especially under the condition of a
high water vapor content.

VI. CONCLUSION

The LST is a vital physical parameter that characterizes
the land surface processes and is a direct driving factor
for the surface–atmosphere energy exchange. Clearly, the AHI
does not provide an operational LST product. We devel-
oped an improved TES algorithm for estimating the LST&E
from Himawari-8/AHI data in this study. First, a modified
WVS algorithm is developed to improve the performance

of atmospheric correction. Then we recalibrate the empiri-
cal relationship over vegetated surfaces in the original TES
algorithm using the simulated directional emissivity spectra
generated by the canopy radiative transfer model (4SAIL),
in which the cavity effect is explicitly incorporated. According
to the simulation study, the recalibrated empirical relationship
improved the LST and LSE retrieval accuracies over vegetate
surfaces by up to 0.165 and 0.004 K, respectively.

The WVS algorithm was extended to nongraybody pixels by
fitting the coefficients of the EMC/WVD algorithm according
to the minimum emissivity of the AHI bands. Simulation
studies revealed that the accuracy of the modified WVS
algorithm is comparable to that of the original WVS algorithm
in deriving the LST and LSE. The merit of the modified WVS
algorithm is that the application scope of the WVS algorithm
is expanded.

Comprehensive validation and evaluation are conducted in
this study. The improved TES algorithm is then used to derive
LST and LSE from one-year-old AHI data in 2016. In situ
measurements collected from the HiWATER, BSRN, and
OzFlux networks are used for T-based validation. According to
the validation results, the bias and RMSE are 0.19 and 2.93 K,
respectively, in the daytime, and −0.43 and 1.95 K, respec-
tively, in the nighttime. The accuracy of the AHI is higher in
the nighttime than that in the daytime, due to the lower hetero-
geneity of the surface temperature in the nighttime. We also
conduct R-based LST validation. The bias and RMSE are
0.25 and 1.88 K, respectively. Additionally, the derived AHI
LST is evaluated using the MYD11 LST over homogeneous
large inland lakes, the bias and RMSE are 0.25 and 1.12 K,
respectively.
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The derived AHI LST and LSE are first evaluated by
MYD21 LST and LSE products, respectively. The spatial
distributions of the two LST products are quite similar, and
the difference between the two LSTs is mostly smaller than
4 K. The bias and RMSE of the LST differences (AHI minus
MODIS) range from −0.57 to 0.36 K, and from 1.7 to 2.64 K,
respectively. When compared to the MYD21 LSE product,
the biases and RMSEs are smaller than 0.005 and 0.014 for
the three AHI bands.

According to the validation and evaluation results, we can
conclude that the improved TES algorithm can be used to
accurately derive LST&E from AHI data. This study will
certainly facilitate the usage of AHI TIR data and benefit the
research of surface energy balance and climate change.
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