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A Stepwise Downscaling Method for Generating
High-Resolution Land Surface Temperature From

AMSR-E Data
Quan Zhang, Ninglian Wang, Jie Cheng , Senior Member, IEEE, and Shuo Xu

Abstract—A stepwise downscaling method is proposed for gen-
erating high-resolution land surface temperature (LST) from ad-
vanced microwave scanning radiometer for the Earth observing
system (AMSR-E) data to benefit the fusion of thermal infrared and
microwave data for high-quality all-weather LST. This method sets
a series of intermediate resolution levels between the initial (0.25°)
and target (0.01°) resolutions, then downscales AMSR-E LST from
one resolution to the next one step at a time, starting from 0.25° and
ending with 0.01°. The geographically weighted regression model is
adopted in each step to construct the relationship between LST and
environmental variables, including normalized differential vegeta-
tion index, elevation, and slope. The stepwise method is verified
over three regions in China that represent different characteristics
of landscape heterogeneity varying from the highest to the lowest:
the Yunnan-Guizhou Plateau (YGP), the border of Shanxi Province
and Henan Province (BSH), and the central part of Inner Mongolia
(CIM). Verified using the emulated AMSR-E LST resampled from
reference MODIS LST available in 2010, the results show that the
proportions of dates when the stepwise method is better are 100%,
78.1%, and 51.5% in the YGP, BSH, and CIM regions, respectively,
which means the stepwise method has an advantage over the direct
method in the regions with high heterogeneity. For real AMSR-E
LST, the downscaled LST exhibits a similar spatial pattern to that
of emulated data but suffers from reduced accuracy and contrast,
which is caused by the smooth spatial pattern and low accuracy of
the real AMSR-E LST.

Index Terms—Downscaling, geographically weighted regression,
land surface temperature (LST), microwave, scale effect.
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I. INTRODUCTION

LAND surface temperature (LST) is one of the critical indi-
cators that gauge the energy balance and material exchange

near the Earth’s surface, which is extensively applied in the fields
such as evapotranspiration estimation, crop yield estimation,
urban heat island research, hydrologic cycle research, vegetation
monitoring, and disaster prediction [1]–[7]. Remote sensing is
a unique means for obtaining LST over large spatial scales.
The satellite LST retrieval methods can be divided into thermal
infrared (TIR) and microwave (MW) algorithms in view of the
spectral range. TIR algorithms are recognized as much more
developed, and the retrieved LST has a relatively high spatial
resolution and accuracy [8]–[10]. However, the TIR signal is
sensitive to the atmosphere and cannot penetrate clouds, which
prevents onboard sensors from capturing information from the
land surface and leads to serious missing data problems in the
LST products [11], [12]. In contrast, MW signals can penetrate
clouds and compensate the defect of spatial integrity in TIR data.
However, the resolution and accuracy of MW LST are generally
lower than those of TIR [13]. The respective drawbacks of
TIR and MW data hinder the single-source LST product from
meeting the higher quality requirement in various fields [14],
[15]; therefore, it is urgent to develop methods that can obtain
LST data with high spatial resolution and high accuracy under
all-weather condition simultaneously.

Research on the fusion of TIR and MW LSTs to generate high
quality all-weather LST has drawn much attention in recent years
[16]–[21]. Current studies show that the fusion of TIR and MW
LSTs combines the advantages of these two data types, making
it possible to obtain high quality all-weather LST. However,
although the fusion methods have basically achieved all-weather
coverage, the accuracy of the data filling in the cloudy area is still
lower than that obtained under clear sky conditions. The major
cause of this deficiency is that there is a large gap of accuracy
and spatial scale between the filling source (i.e. MW LST) and
TIR LST. Many studies have focused on the development of MW
LST retrieval algorithms and the accuracy of retrieved MW LST
has obviously improved [22]–[29]; however, few studies have
paid attention to its spatial scale difference with TIR LST.

LST downscaling is an effective way to reduce the scale
difference by enhancing low-resolution LST using spatially
distributed auxiliary data that are statistically correlated to LST
[30]. The auxiliary data are commonly called scaling factors
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[31]. The downscaling of LST in most studies is realized by
constructing the regression relationship between LST and the
scaling factors. Although this relationship necessarily varies
across scales, and the larger the scale difference, the greater the
scale effect of the relationship [32], it is well accepted that ap-
plying regression models to small scale differences can weaken
the impact of scale effect on LST downscaling. The current
downscaling methods are all based on the assumption that this
relationship is unchanged across the scales due to the complexity
of scale effect and the relatively small difference of resolutions
before and after downscaling. The basic framework of most
downscaling methods are the same: construct the regression
model between LST and scaling factors at the initial resolution
(i.e., the resolution of the original LST data), and then apply
the model to the scaling factors at the target resolution (i.e., the
resolution of the downscaled LST) to estimate the downscaled
LST. Scaling factor, regression model, and spatial resolution are
the key elements in LST downscaling, so that the relevant studies
are concentrated on these three elements.

The vegetation-related parameters, including the normalized
differential vegetation index (NDVI) and fractional vegetation
cover (FVC), are the earliest and most widely adopted scal-
ing factors [33], [34]; however, this type of parameter cannot
satisfy all the environmental conditions due to the complexity
of landscapes. The LST downscaling methods designed for
different landscapes have therefore been proposed [31], [35]–
[38]. Scaling factors including emissivity [39], albedo [40],
land cover type [41], digital elevation model (DEM) [42]–
[44], soil-adjusted vegetation index (SAVI), normalized multi-
band drought index (NMDI), normalized difference water index
(NDWI), and normalized difference build-up index (NDBI) [38]
are fed into the regression models in different combinations.

The regression models can be divided into simple ones and
complex ones. The simple models primarily include univariate
or multivariate regressions, and linear, nonlinear, or piecewise
linear regressions [32]–[34], [45]. These kinds of methods are
generally suitable for the cases of fewer scaling factors or
more homogeneous surface environments. For the situation with
more scaling factors, Zakšek and Oštir [36] proposed a method,
“downscaling,” based on principal component analysis (PCA) to
reduce the information redundancy among the scaling factors.
The complex models primarily include the cokriging interpola-
tion model [46], [47], the geographically weighted regression
(GWR) model [42], the random forest (RF) model [44], and the
artificial neural network (ANN) model [48], [49]. These kinds of
models allow for the fact that the relationship between LST and
scaling factors changes spatially, and they use local regression
or classification strategies to achieve the LST downscaling.

To date, the current downscaling models are primarily aimed
at TIR LST data from moderate to high resolution because of
their more extensive applications, and relatively small difference
between initial and target resolutions, commonly ranging from
2 to 10 times. Examples are the downscaling of the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) LST from 5
km to 1 km [36], the MODIS LST from 1 km to 250 m or
90 m [32], [42], [43], and the Thematic Mapper (TM) LST
from 120 m or 60 m to 30 m [34]. In contrast, except for

some downscaling processes of MW brightness temperatures in
retrieving soil moisture [50], [51], there are few special studies
on the downscaling of MW LST due to its lower resolution
compared with TIR LST. The development of fusion methods
for TIR and MW LSTs has increased the demand for MW LST
downscaling. At present, a few cases of MW LST downscaling
processes are integrated in the study of TIR and MW LSTs fusion
methods [18], [19], but these processes are simplistic or not
specifically designed for MW LST. Generally, the study of MW
LST downscaling is in an early stage of development.

The main difference in downscaling between MW and TIR
LSTs is their initial and target resolutions. For example, to fuse
with MODIS LST, advanced microwave scanning radiometer for
the Earth observing system (AMSR-E) LST should be down-
scaled from 0.25° (approximately 25 km) to 0.01° (approxi-
mately 1 km). These two resolutions differ by about 25 times,
which is obviously larger than that in TIR LST downscaling.
The scale effect would significantly impact the accuracy of
downscaled MW LST if the regression relationship is applied
under such a large scale difference. To weaken the scale effect
in MW LST downscaling, this study proposes a stepwise down-
scaling method for AMSR-E LST. First, a resolution series was
defined by incorporating two intermediate resolutions (0.08°,
0.03°) between the initial (0.25°) and target (0.01°) resolutions;
then GWR was taken as the regression model and NDVI and
DEM were taken as the scaling factors to downscale AMSR-E
LST from 0.25° to 0.01° passing through the intermediate res-
olutions. The introduction of intermediate resolutions ensures
the regression model is used in a relatively small resolution
difference before and after each stepwise downscaling process
of MW LST, which is similar to that in TIR LST downscaling.
The stepwise method was expected to obtain a higher accuracy
of downscaled MW LST and enhance the performance of TIR
and MW LSTs fusion procedures.

II. STUDY AREA AND DATA

A. Study Area

Three experimental regions in China are selected in this study
(see Fig. 1): the eastern part of the Yunnan-Guizhou Plateau
(YGP), the border of Shanxi Province and Henan Province
(BSH), and the central part of Inner Mongolia (CIM). These
regions pertain to different climatic zones and are characterized
by different types of land cover and topography. Thus, the study
areas are suitable for verifying the performance of the proposed
downscaling method in different environmental conditions.

The YGP region is in the range of latitude 26.8°–28.7°N
and longitude 108°–110.7°E, which belongs to the subtropical
monsoon climate with a land cover dominated by mixed forests
and woody savannas. The topography is undulating and occupied
mainly by hills to moderate mountains, with an average slope
of 13.5°. The BSH region is in the range of latitude 34°–36°N
and longitude 110.8°–113.4°E, which belongs to the temperate
monsoon climate with the land cover dominated by cropland
and mixed forests. The topography is moderately undulating
and mainly occupied by plains and hills, with an average slope
of 8.5°. The CIM region is in the range of latitude 41.3°–43°N
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Fig. 1. Study areas. YGP, BSH, and CIM are the abbreviations for Yunnan-
Guizhou Plateau, the border of Shanxi Province and Henan Province, and the
central part of Inner Mongolia, respectively.

and longitude 110.8°–113.5°E, which belongs to the temperate
continental climate with the land cover dominated by grassland
and barren land. The topography is relatively flat and occupied
mainly by plains and gentle hills, with an average slope of 2.0°.

B. Data

The datasets used for developing and assessing the MW
LST downscaling method include AMSR-E LST, MODIS LST,
NDVI, and shuttle radar topography mission (SRTM) elevation.
Among them, the MODIS NDVI and SRTM elevation datasets
serve as the scaling factors, whereas the MODIS LST dataset
serves as the reference for validating the performance of the
proposed method. Information describing these datasets are
listed in Table I.

1) Advanced Microwave Scanning Radiometer for the Earth
Observing System LAND Surface Temperature: The AMSR-E
MW sensor is onboard the satellite Aqua, which functioned
properly from 2002 to 2011. AMSR-E observed the Earth at
approximately 1:30 A.M. and 1:30 P.M. local time. The sensor
contains 12 channels centered on six frequencies (i.e., 6.9, 10.7,
18.7, 23.8, 36.5, and 89 GHz) with two polarization states
(horizontal and vertical). The AMSR-E brightness temperature
(BT) dataset [52] used to retrieve the LST belongs to the level 3
product (NISDC-0302) with a resolution of 0.25°. This product
is derived from the level 2A product by spatial registration and
resampling, in which the resolution of different frequencies
ranges from 5.4 to 56 km in the reversed sequence of the
frequencies mentioned above.

TABLE I
BASIC INFORMATION OF THE DATA USED IN THIS STUDY

Note: The datasets are originally provided in different types of coordinate systems (geo-
graphic coordinate system and projected coordinate system), so their spatial resolutions
are presented in two forms for the convenience of comparison. The first values are
the resolutions under the original coordinates and the values in the brackets are the
transformed approximate resolutions in the other coordinate system.

The MW LST data used for developing the downscaling
method were retrieved from the AMSR-E BT dataset using
the algorithm proposed by Zhang and Cheng [53]. This algo-
rithm was developed for the landmass of China considering
the comprehensive effects of environmental variables, i.e., the
spatiotemporal variations in land cover types, topography, and
air conditions near the surface. All the 12 channels of AMSR-E
data are employed to construct the empirical regression model
considering the complex near-surface environment in China.
Meanwhile, the stepwise regression, which automatically con-
ducts the significance test and removes the redundant prediction
terms, is adopted because the best retrieval under different envi-
ronmental conditions may not always be achieved using all the
12 channels. This algorithm achieves an acceptable accuracy of
LST retrieval with an RMSE in the range of 2.65–3.48 K during
the daytime and 2.15–2.94 K at night in China, compared with
the reference MODIS LST in the years of 2005, 2009, 2010, and
2011. This algorithm is one of the most accurate developed over
China in recent years.

2) MODIS LST and NDVI: MODIS is onboard the satel-
lites Terra and Aqua. The datasets derived from MODIS/Aqua
are adopted because this sensor is on the same platform as
AMSR-E. They share the same orbital geometry and transit
time, so there is no need to consider the data acquisition time
difference. The MODIS land surface parameters used in this
study include the LST dataset (MYD11A1) [54] and the NDVI
dataset (MYD13A2) [55]. MYD11A1 is the level 3 LST standard
product with the resolution of 1 km, which consists of daily
daytime LST, nighttime LST, and other ancillary data. The
accuracy of MODIS LST is better than 1 K over homogeneous
surfaces under clear sky conditions [56]. MYD13A2 is the level 3
standard product of the vegetation index with the resolution of 1
km, which provides NDVI and enhanced vegetation index every
16 days. The MODIS NDVI dataset is constructed by selecting
the pixels with the lowest cloud cover, the lowest viewing angle,
and the highest NDVI value within 16 days.

3) SRTM Elevation and Slope: SRTM dataset was collected
by the radar onboard the space shuttle Endeavour in February
2000, which recorded the surface elevation over the continents
between 60°N and 56°S, accounting for 80% of the area of the
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Earth’s surface. Due to its high accuracy and spatial resolution
compared with contemporaneous elevation datasets, the SRTM
elevation dataset has been used in many fields since its release
[57], [58]. SRTM dataset has two types of spatial resolution,
namely, 1“(second of arc) and 3”. Zhang et al. [59] indicated that
the bias of the 3′′ SRTM elevation data in China is −0.35 m, and
the 90% error (an index designed by the SRTM, i.e., the average
absolute error for 90% of the area) is 7.4 m, which is better
than the designed objective of 16 m. In this study, the SRTM
elevation dataset at 3′′ resolution is adopted due to its more
extensive applications, from which the slope, which serves as a
scaling factor, is also derived.

III. METHODOLOGY

A. Principle of Stepwise Downscaling

The stepwise downscaling method proposed in this study
first sets a series of intermediate resolutions between the initial
and the target resolutions, and downscales the LST from one
resolution to the next in the series one step at a time, starting
from the initial resolution and ending with the target resolution.
In each step, the method applicable for TIR data that directly
downscales LST from the initial resolution to the target reso-
lution is repeatedly adopted, and the downscaled LST in the
current step is treated as the one to be downscaled in the next
step. In addition to the selection of scaling factor and regression
model that are also involved in the direct downscaling method for
TIR LST, the determination of the resolution series is a specific
problem that should be focused on in stepwise downscaling.

Theoretically, the intermediate resolutions could be any num-
ber between the initial and target resolutions; however, the
difference between two adjacent resolution levels in a proper res-
olution series should not be too large or small in order to weaken
the scale effect and avoid redundant computation. According to
tests of different intermediate resolution combinations including
(0.05°), (0.08°, 0.03°), and (0.03°, 0.06°, 0.12°) in the three
experimental regions, the series of 0.25°, 0.08°, 0.03°, and 0.01°
was finally adopted taking the downscaling accuracy as the
indicator. The adjacent resolution levels in this series differ from
each other by about three times, which satisfies the requirement
that the regression relationship is used in a relatively small scale
difference.

Although various scaling factors have been introduced into
different downscaling methods, in view of the complexity of
environmental conditions, vegetation and topography are two
fundamental factors applied in most downscaling methods.
Therefore, the most widely used scaling factors NDVI, elevation,
and slope are selected, considering that the stepwise process is
the main concern of this study. The basic frameworks of most
current TIR LST downscaling methods are the same but the
regression models differ. In this study, the GWR model is used
to implement the downscaling of AMSR-E LST due to its high
performance when applied to TIR LST [42].

B. Geographically Weighted Regression Model

GWR is a local spatial regression method, which differs from
global regression methods (e.g., least square method) in terms

of the sample structure adopted by the regression model. GWR
uses only the samples near the estimated point to construct
the regression model, whereas global regression uses all the
samples over the area of interest. Each estimated point in GWR
corresponds to a unique regression model, whereas all the points
in global regression share a universal regression model. Global
regression assumes that the relationship between the dependent
variable and independent variables is spatially constant, whereas
the GWR model considers this relationship to vary in space.
Because spatial heterogeneity is the natural attribute of envi-
ronmental variables that leads to their relationships changing
in space, the GWR model conforms to reality more closely
than the global regression model. Although their applications
are different, the GWR model can be regarded as an extension
of the global regression model. If the global regression model is
expressed as

yi = β0 +

m∑
k=1

βkxik + εi (1)

where yi and xik are the dependent variable and the kth ex-
planatory variable at location i, respectively; m is the number
of explanatory variables; β0 and βk are the constant term and
the coefficient of the kth explanatory variable, respectively; εi
is the residual at location i, which is defined as the difference
between the original values and the estimated values at the
sample location and can be used to correct the error of regression
model, then GWR model can be expressed as

yi = β0 (μi, νi) +

m∑
k=1

βk (μi, νi)xik + εi (2)

where μi and νi together represent the coordinate of location i;
β0(μi, νi) and βk(μi, νi) are the constant term and the coeffi-
cient of kth explanatory variable at location i, respectively. The
meanings of other parameters in (2) are the same as those in
(1). The estimated point can be anywhere besides the sample
locations. Under extreme conditions, when the coefficients in
different locations are the same, a GWR model can be trans-
formed into a global regression model. Despite acknowledg-
ing the spatial heterogeneity of environmental variables, GWR
considers the relationship between dependent and explanatory
variables to remain consistent over the local spatial extent; then
the coefficients at location i can be regressed with the nearby
samples using (1). For another location i+1, the coefficients can
be obtained from its own nearby samples.

A critical step in GWR is to determine the size of the spa-
tial extent in local regression. According to the First Law of
Geography [60], [61], closer samples have higher contributions
to the modeling of coefficients at the center location i, whereas
the samples outside the spatial extent have no contribution. The
coefficients at location i can therefore be derived using the least
squares method integrated with weighted distance. The distance
weighted least square method can be expressed as

β̂ (μi, νi) =
(
XTW (μi, νi)X

)−1
XTW (μi, νi)Y (3)

whereμi and νi have the same meanings with those in (1), and
β̂(μi, νi) is the coefficient matrix at location i composed of
β0(μi, νi) and βk(μi, νi); X and Y are the matrixes of dependent
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and explanatory variables, respectively; W (i) is the matrix of
weighted distance that can be expressed as

W (i) =

∣∣∣∣∣∣∣∣∣

wi1 0 · · · 0
0 wi2 · · · 0
...

...
. . .

...
0 0 · · · wij

∣∣∣∣∣∣∣∣∣
(4)

where wij is the weight for each estimated point related to the
distance between the samples and the location i. Several methods
can be used to determine wij [62]. The one adopted in this study
is

wij =

{
exp

(−d2ij/h
2
i

)
, dij ≤ hi

0, dij > hi
(5)

where dij is the distance between the sample location j and
the estimated location i; hi is the farthest distance between the
samples and location i, and is named kernel bandwidth. There are
also several methods that can be used to determine hi [62]. The
corrected Akaike information criterion (AICc) with the widest
applicability and good performance can be expressed as

AICc = 2nloge (σ̂) + nloge (2π) + n

{
n+ tr (S)

n− 2− tr (S)

}

(6)
where n is the number of samples; σ̂ is the estimated standard
deviation of the error term; tr(S) is the trace of the hat matrix S,
and S maps the model estimates ŷ onto the sample values y in
the following manner:

ŷ = Sy (7)

where each row of S, ri is given by

ri = Xi

(
XTW (μi, νi)X

)−1
XTW (μi, νi) (8)

where hi determines W (μi, νi) as (5) shows; Xi is the vector of
explanatory variables at each sample point. In addition, n and σ̂
can also be obtained given hi. Therefore, AICc is a function of
hi. The optimal hi is determined by searching the neighborhood
range of location i when the minimized AICc score is reached.

After getting the parameter hi, the weighted distance matrix
and further the β̂(μi, νi) can be obtained, then the estimated LST
value at each sample location can be derived from β0(μi, νi) and
βk(μi, νi) using (2). Detailed information on GWR can be found
in Fotheringham et al. [62]. In this study, the AMSR-E LST
downscaling process is achieved by the GWR tool in ArcGIS
software.

C. Design of the Experiment for AMSR-E LST Downscaling

Fig. 2 shows the flow chart for the stepwise downscaling of
AMSR-E LST, which can be divided into four steps.

1) Produce the scaling factors (NDVI, elevation, and slope)
in the resolution series by projecting and resampling.

2) Establish the GWR model using AMSR-E LST and scal-
ing factors starting from the initial resolution and derive
the residual and coefficients at the next resolution level.
At this level, the residual, used to calibrate the downscaled
LST data, is derived from the residual of the sample points
at the prior resolution level by kriging interpolation.

Fig. 2. Flowchart of AMSR-E LST downscaling.

3) Input the coefficients and residual derived from step 2 and
the corresponding scaling factors at the same resolution
into the regression model, to estimate the downscaled LST
at the next resolution level.

4) Judge the next resolution level to be the target resolution
or not, and if it is, end the downscaling process. Other-
wise, treat the estimated LST derived from step 3 and the
corresponding scaling factors as the input parameters, and
repeat steps 2 and 3, to downscale the LST until the target
resolution is reached.

The experiment takes the daytime data in 2010 as an example.
The necessary data preprocessing includes data quality control,
data filtering, data projecting and resampling, and date matching.
For data quality control, the MODIS LST dataset (MYD11A1)
provides a pixel-by-pixel quality control data layer for screening.
Only the LST pixels marked with “good quality” and “average
emissivity error < 0.02” are retained to ensure the accuracy
of the regression model. For data filtering, the MODIS LST
free from cloud contamination are selected because they are
used to emulate all-weather AMSR-E LST by resampling in
the downscaling experiment and to validate the downscaling
result. Although the physical meanings of MW and TIR LSTs
are different due to the thermal sampling depth (TSD, the depth
that the electromagnetic wave penetrates the land surface), and
the AMSR-E usually underestimates the actual LST compared
with MODIS [28], [53], this emulation is feasible because the
absolute accuracy of LST data is inessential in the experiment.
However, completely cloud-free MODIS LST images in experi-
mental regions are rare. To balance the spatial completeness and
temporal availability of MODIS LST, the images in these three
experimental regions with over 90% of the pixels available are
selected. In addition, there are orbit gaps in the AMSR-E LST
dataset, so the AMSR-E LST images with missing values are
also excluded. Finally, the numbers of available images are 12,
32, and 33 in the YGP, BSH, and CIM regions, respectively. The
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different levels of MODIS LST and NDVI, SRTM elevation
and slope in the resolution series are derived by projection
transformation and resampling, using the bilinear interpolation
method. NDVI dataset (MYD13A2) have a temporal resolution
of 16 days and are unable to match the daily MODIS LST
and AMSR-E LST datasets. In this study, we assume that the
variation in vegetation within 16 days can be ignored, and the
NDVI from the date closest to the AMSR-E LST are therefore
used as the scaling factor for downscaling. For the scaling
factors of elevation and slope, we assume that the topography is
invariable over the long term in the experimental regions.

Although the retrieved AMSR-E LST in this study is one of
the most accurate in recent years, its accuracy is still lower than
that of MODIS LST. To avoid the impact of data accuracy on
the assessment of the applicability of the stepwise downscaling
method, the MODIS LST is first resampled to the resolution
of 0.25° to emulate the AMSR-E LST and substituted into the
stepwise downscaling method. Then the downscaled LST is
compared with the reference MODIS LST. Afterward, the real
AMSR-E LST is applied in the stepwise downscaling method
to evaluate its performance on the low-accuracy MW LST, in
which the MODIS LST remains the reference. Moreover, the
direct downscaling method is also included in the downscaling
of AMSR-E LST for comparison.

Moran’s I is an index that measures the spatial autocorrelation
of environmental variables, which usually ranges between −1
and 1. When Moran’s I approaches 0, the variable is randomly
distributed with low spatial autocorrelation, when Moran’s I
gets closer to −1 or 1, the variable exhibits highly negative or
positive spatial autocorrelation. Highly positive autocorrelation
means that similar values are spatially aggregated, whereas
highly negative autocorrelation means that nearby values are
significantly of opposite sign. These two types of autocorrelation
suggest a highly regular relationship among the variable values,
and therefore indicate a weak spatial heterogeneity, whereas
low spatial autocorrelation suggests an uncertain relationship
among the randomly distributed values and indicates a high
spatial heterogeneity. The spatial heterogeneity of a landscape,
which could affect the performance of downscaling methods, is
therefore quantified using Moran’s I index of each scaling fac-
tor and their combination forms so-called total autocorrelation
(TA). TA, used to indicate the general spatial heterogeneity of a
landscape, is defined as

TA =

√
(MNDVI)

2+(MElevation)
2+(MSlope)

2 (9)

where MNDVI, MElevation, and MSlope are Moran’s I of
NDVI, elevation, and slope in the experimental region, respec-
tively. Note that a small TA value indicates strong general
heterogeneity.

In the experiment of AMSR-E LST downscaling, we found
that the accuracy of downscaled LST derived by the regression
model involving both elevation and slope was lower than that
involving only one of these two topographic parameters. Duan
and Li [42] found a similar phenomenon in downscaling the TIR
LST using the GWR model, i.e., the addition of unnecessary
scaling factors decreased the accuracy of downscaling. Another

Fig. 3. Stepwise and direct downscaled LSTs from 0.25° MODIS LSTs in
the YGP region. (a) 0.25° MODIS LST. (b) Original MODIS LST. (c) Stepwise
downscaled LST. (d) Direct downscaled LST. (e) MODIS NDVI. (f) SRTM
elevation.

phenomenon is that slope can achieve more accurate downscal-
ing results in the regions with flat terrain, whereas elevation
works better in the regions with steep terrain. This phenomenon
is related to the spatial autocorrelation of the scaling factors [62]:
Elevation over flat terrain has high autocorrelation (i.e., similar
elevation values over space yield aggregation effects), leading
to a poor estimate in the GWR model, as is the case for the slope
in some areas with steep terrain. Therefore, the combination of
both elevation and slope could not improve the accuracy of the
downscaling. According to the characteristics of the landscape
in the three regions, NDVI and elevation are applied in the YGP
and BSH regions, whereas NDVI and slope are applied in the
CIM region.

IV. RESULTS

A. Comparison Between the Stepwise and the Direct
Downscaling Method Using the Emulated Data

Taking January 3 in the YGP region, November 19 in the BSH
region, and October 4 in the CIM region as the examples, Figs. 3–
5 show the images of the 0.25° MODIS LST (emulated AMSR-E
LST), the original MODIS LST, the downscaled LST derived by
the stepwise and direct methods, and the scaling factors in the
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Fig. 4. Stepwise and direct downscaled LSTs from 0.25° MODIS LSTs in
the BSH region. (a) 0.25° MODIS LST. (b) Original MODIS LST. (c) Stepwise
downscaled LST. (d) Direct downscaled LST. (e) MODIS NDVI. (f) SRTM
elevation.

three regions. Although a few missing values in the original
MODIS LST could result in some missing values in the 0.25°
MODIS LST (see Fig. 4), they do not affect the completeness of
the downscaled LST because GWR can establish a regression
model for any location within the extent of the samples.

From the images in the three experimental regions, the down-
scaled LSTs derived from the stepwise and direct methods can
both reflect the general trend of LST, but the details are different.
The black circles in the LST images of the three regions are the
examples used to explain the differences. In the YGP and BSH
regions, the spatial patterns of the downscaled LSTs from the
stepwise method are more similar to the original MODIS LSTs
in the black circles, whereas the direct method results in lower
LST values in the YGP region and higher LST values in the
BSH region. In the CIM region, although the downscaled LST
derived using the stepwise method has more detailed information
in terms of the spatial patterns than that derived using the direct
method in the black circle, this information does not exist in the
original MODIS LST. Therefore, for the black circles alone, the
stepwise method performs better in the YGP and BSH regions
but worse in the CIM region. In most other parts of these three

Fig. 5. Stepwise and direct downscaled LSTs from0.25° MODIS LSTs in the
CIM region. (a) 0.25° MODIS LST. (b) Original MODIS LST. (c) Stepwise
downscaled LST. (d) Direct downscaled LST. (e) MODIS NDVI. (f) SRTM
slope.

regions, a similar phenomenon can be found in the downscaled
LST images.

Fig. 6 shows the scatter plots between the original MODIS
LST and the downscaled LST derived from the 0.25° MODIS
LST using stepwise and direct methods in the three regions.
The scatter data from the two downscaling methods in these
three regions are generally concentrated around the 1:1 line
but differ in detail. Specifically, in the YGP region, the direct
method underestimates the LST in the lower range of LST
compared with the stepwise method. Some part of the scatter
data of these underestimated LSTs correspond to the pixels in
the black circle. The RMSE of the stepwise method in this region
is 0.13 K (12.9%) smaller than that of the direct method. In
the BSH region, the scatter data from the stepwise method are
more concentrated around the 1:1 line with an RMSE that is
0.12 K (7.0%) smaller than that of the direct method. However,
the scatter plots of the two methods show some abnormalities
in the upper left part, indicating that these two methods both
overestimate the LST. These abnormalities mainly result from
the Yellow River passing through the BSH region from west to
east and some scattered urban areas in this region. NDVI and
topography cannot capture the correct variation in temperature
over these land cover types. In the CIM region, the scatter plot
from the direct method is more concentrated around the 1:1 line
with fewer outliers. The RMSE of the stepwise method in this
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Fig. 6. Scatter plots between the original MODIS LST and the stepwise and
direct downscaled LSTs from the 0.25° MODIS LST in the experimental regions.
The black dash line is the 1:1 line, while the red line is the linear regression line
of the scatter data.

region is 0.38 K (28.5%) larger than that of the direct method.
The R2 of the scatter data increases in the sequence of YGP,
BSH, and CIM for both downscaling methods, and the R2 of
the stepwise method is higher than that of the direct method in
the YGP and BSH regions, but smaller than that of the direct
method in the CIM region. The liner regression line (red) of the
downscaled LST versus MODIS LST shows different slopes, in
which the slope for the regression line in the CIM region is much
closer to the 1:1 line whereas the slope for the regression line in
the YGP region is much more distant from the 1:1 line.

To explore a more general relationship between the stepwise
and the direct downscaling results, the RMSEs between the
original MODIS LST and the downscaled 0.25° MODIS LSTs
from these two methods on the available dates for the three
regions are shown in Fig. 7. The dates are sorted in a decreasing
manner according to the RMSE difference between the direct
and the stepwise downscaled LSTs. In the YGP region, the
RMSEs of the stepwise downscaled LST on all dates are smaller
than those of the direct downscaled LST, which means that the
stepwise method can achieve better downscaling results in the
regions similar to the YGP. The mean difference of the RMSE
between the two methods is 0.14 K, meaning the stepwise
method improved the accuracy by 10.3% on average. In the
BSH region, the RMSEs of the stepwise downscaled LST are
smaller than those of the direct downscaled LST for 25 days,
accounting for 78.1% of the available dates. This result confirms
that the stepwise method can achieve better results with high

Fig. 7. RMSE between the original MODIS LST and the downscaled LST
from the stepwise and direct downscaling methods in the three regions. The
x-axis indicates the number of images on different dates, and the dates are sorted
in a decreasing manner according to the difference of RMSE between the direct
and the stepwise downscaled LSTs.

probability in the regions similar to the BSH. On the days when
the stepwise method is better, the mean difference of the RMSE
between two methods is 0.07 K, meaning the stepwise method
improved the accuracy by 3.5% on average; whereas on the days
when the direct method is better, the mean difference of the
RMSE between the two methods is 0.08 K, meaning the direct
method achieves higher accuracy by 3.5% on average. In the
CIM region, the RMSEs of the stepwise downscaled LST are
smaller than those of the direct downscaled LST for 17 days,
accounting for 51.5% of the available dates. This means that
the stepwise and direct methods can achieve better downscaled
results with similar probability in regions like the CIM. On the
days that the stepwise method is better, the mean difference of
the RMSE between the two methods is 0.11 K, meaning the
stepwise method improved the accuracy by 4.7% on average;
whereas on the days that the direct method is better, the mean
difference of the RMSE between the two methods is 0.14 K,
meaning the direct method achieved higher accuracy by 7.0%
on average.

B. Downscaling of the Real AMSR-E LST

Fig. 8 shows the images of downscaled LST derived from
the real AMSR-E LST in the three regions. The dates for these
images are the same as those in Section IV-A. According to the
performance of the two downscaling methods in the landscapes
with different characteristics, the stepwise method is applied in
the YGP and BSH regions, whereas the direct method is applied
in the CIM region. The scaling factors for the real AMSR-E LST
in each region are also consistent with those in Section IV-A.
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Fig. 8. Downscaled LST from the real AMSR-E LST in the three regions.
(a) Real AMSR-E LST in the YGP region. (b) Stepwise downscaled LST in the
YGP region. (c) Real AMSR-E LST in the BSH region. (d) Stepwise downscaled
LST in the BSH region. (e) Real AMSR-E LST in the CIM region. (f) Direct
downscaled LST in the CIM region.

From the spatial patterns, although the general spatial trend
of the downscaled LST from the real AMSR-E LST (see Fig. 8)
is similar to that from the 0.25° MODIS LST (see Figs. 3–5),
some of the detailed information in the LST image is missing
in each region, especially in the YGP and BSH regions. In the
YGP region, the downscaled LST from the real AMSR-E LST
shows the correct trend, i.e., the LST values in the eastern part are
higher than those in the west part; however, the more localized
high values in the western part and the local low values in the
eastern part have been lost. A similar phenomenon appears in
the BSH region as well, although more detailed information is
presented. For example, in the northern and western parts of
the BSH region, the downscaled LST from the real AMSR-E
LST has weakened the contrast of the LST pattern. In the CIM
region, the downscaled LST from the real AMSR-E LST is very
similar to that from the 0.25° MODIS LST. Both reflect the trend
and detailed information that the LST decreases from the north-
western part to the southeastern part. The correlation coefficients
between the downscaled LSTs from the 0.25° MODIS LST and
the real AMSR-E LST are 0.74, 0.93, and 0.96 in the YGP, BSH,
and CIM regions, respectively, indicating that the similarity of
the downscaled LSTs from two types of AMSR-E LST datasets
is relatively small in the YGP region, relatively large in the CIM
region, and moderate in the BSH region.

Fig. 9. Scatter plots between the reference MODIS LST and the downscaled
LST from the real AMSR-E LST in the three regions. The black dash line is the
1:1 line, while the red line is the linear regression line of the scatter data.

Further comparisons reveal that the performance of down-
scaling methods is related to the quality of the original AMSR-E
LST. From the spatial patterns, the 0.25° MODIS LSTs in the
three regions possess more detailed information, and the down-
scaled LSTs inherit these features (see Figs. 3–5). In contrast, the
real AMSR-E LSTs in the three regions are relatively smooth
in the pattern, leading to less information in the downscaled
LST (see Fig. 8). The correlation coefficients between the 0.25°
MODIS LST and the real AMSR-E LST are 0.62, 0.88, and 0.97
in the YGP, BSH, and CIM regions, respectively. This order is
consistent with that of the downscaled LST derived from these
two types of AMSR-E LST datasets. That is, the downscaled
LST inherits the spatial pattern of the original AMSR-E LST
before downscaling.

Fig. 9 shows the scatter plots between the reference MODIS
LST and the downscaled LST from real AMSR-E LST in the
three regions. The value range of the downscaled LST in each re-
gion is narrowed to a certain extent compared with the reference
MODIS LST values, especially in the YGP and BSH regions.
In addition, synthesizing the information from Figs. 6 and 9, the
RMSE between the reference MODIS LST and the downscaled
real AMSR-E LST in the three regions has increased to different
extents compared with the RMSE from the 0.25° MODIS LST,
using the same downscaling methods. This result verifies that the
accuracy of downscaled LST from the real LST dataset generally
cannot reach that from the 0.25° MODIS LST. The R2 and the
slope of the regression line of real AMSR-E LST show a similar
trend with that of 0.25° MODIS LST.

V. DISCUSSION

The performance of the stepwise downscaling method is
assessed using the 0.25° MODIS LST (emulated AMSR-E LST)
in three experimental regions that represent different character-
istics of topography and vegetation. Table II shows the Moran’s
I of each scaling factor and TA in the three regions. Both the
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TABLE II
MORAN’S I OF THE SCALING FACTORS AND THE TA IN EACH

EXPERIMENTAL REGION

Note: Moran’s I values of NDVI, elevation, and slope in the three regions pass the
significance testing with a P-value of 0.

TABLE III
OPTIMAL BANDWIDTH FOR EACH STEP OF DOWNSCALING IN THE THREE

REGIONS IN THE EXAMPLE DATES

Note: The unit of bandwidth hi value is km.

NDVI and elevation of these regions show increasing trends
in the order of YGP, BSH, and CIM, which means the spatial
heterogeneity of these two scaling factors is strongest in the
YGP region, moderate in the BSH region, and weakest in the
CIM region. The trend of slope is not straightforward, which is
reflected in the fact that the weakest heterogeneity is in the BSH
region where the topography is moderately undulating, but not
in the CIM region where the topography is relatively flat. The
reason for this finding is the slope over some steeper terrains has
an aggregation effect due to the long straight slope surface, but
the slope over plains may be disordered due to the up-and-down
land covers, even if the slopes have similar values. Nevertheless,
the general heterogeneity is still strongest in the YGP region and
weakest in the CIM region.

The GWR model selects the nearby sample points with a
strong correlation to establish the local regression relation-
ship; therefore, the optimal bandwidth hi in (5) is small when
the spatial heterogeneity of environmental variables is strong,
whereas the optimal hi is large when the spatial heterogeneity
of environmental variables is weak. The optimal hi for each step
of downscaling in the three regions in the example dates have
been extracted. The statistics of hi are list in Table III.

For each step, the optimal hi increases as the spatial hetero-
geneity of region gets weaker. For each region, the optimal hi
decreases as the resolution gets higher. The relationship between
hi and resolution actually related to the heterogeneity as well.
The coarse resolution of LST and scaling factors data smooth
the variation of environmental variables, leading to an underes-
timation of the spatial heterogeneity of a region. Therefore, the
statistics of hi in these cases conform to the mechanism of GWR
very well.

The verification results show that the stepwise method is more
advantageous in downscaling the AMSR-E LST in the region

with strong spatial heterogeneity than is the direct method. This
advantage is weakened when the vegetation becomes sparser
and more uniform and the terrain becomes flatter, namely, in
more spatially homogeneous areas. The scale effect is strong in
regions with high heterogeneity, but weak in regions with low
heterogeneity. The capability of the stepwise method to weaken
the scale effect is prominent when the spatial heterogeneity is
high. This capability is due to the multiple residual corrections
made during the stepwise downscaling process. Although the
stepwise method is better than the direct method in the regions
with high heterogeneity, the goodness of fit of the two down-
scaling methods is higher in the regions with low heterogeneity,
as reflected in the R2 and slope of the regression line.

The initial and target resolutions in the stepwise method are
identical to those in the direct method, but the former includes
more scaling processes. Hence, the scale differences among
these processes during stepwise downscaling are smaller than
those before and after the direct downscaling process. The un-
certainty in the introduction of resolution series in the stepwise
downscaling process is mainly caused by error propagation when
constructing the regression relationship from the GWR model
estimated LST; however, this uncertainty could be corrected by
introducing the residual term. The residual correction in each
step of the stepwise downscaling process greatly weakens the
error propagation. Although the residual term is also included
in the direct downscaling method, its accuracy cannot compete
with that in each step of the stepwise downscaling process. In the
direct downscaling process, the residual term obtained by spatial
interpolation directly from the initial resolution to the target
resolution has lower accuracy due to the large scale differences
between these two resolutions. In the stepwise downscaling
process, however, the scale difference between the two adjacent
resolution levels is relatively small, so the residual term at
each resolution level obtained by the spatial interpolation is
more accurate. By applying the GWR model without residual
correction, the advantage of the stepwise method compared to
the direct method is weakened to different extents in the three
regions. The proportion of dates when the stepwise method was
better decreased by 58.3%, 15.6%, and 12.1% in the YGP, BSH,
and CIM regions, respectively. This result indicates that the
multiple residual correction is the key reason why the stepwise
method is better than the direct method and multiple residual
correction can improve the accuracy of the downscaled LST
more efficiently in the regions with high heterogeneity. When
the spatial heterogeneity is weak, the small scale difference leads
to the accuracy of the interpolated residual term in the direct
method being comparable to that in the stepwise mothed, so
there is little difference between the stepwise method and the
direct method in downscaling the AMSR-E LST.

The comparison of the downscaling process between the
0.25° MODIS LST and real AMSR-E LSTs indicates that the
spatial patterns of the downscaled LST inherits the patterns
before downscaling, and the accuracy of the downscaled LST
from real LST dataset generally cannot reach the accuracy of
the 0.25° MODIS LST. Other studies on LST downscaling
found similar phenomena: the downscaled LST from real LST
exhibited smooth spatial patterns, whereas the downscaled LST
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from 0.25° MODIS LST was more realistic [44], [63]. Compared
with the 0.25° MODIS LST, the real AMSR-E LST usually has
relatively low accuracy due to low resolution, penetration depth,
and complex emission mechanisms of MW and the limitations
of MW LST retrieval algorithm. Nevertheless, the detailed in-
formation of the spatial variation of the downscaled LST derived
from the real AMSR-E LST is still much richer than that before
downscaling and is generally similar to the reference MODIS
LST in patterns.

VI. CONCLUSION

In this study, a stepwise downscaling method is developed
for generating high-resolution LST from an AMSR-E dataset
to promote the fusion of TIR and MW LSTs. This method
is based on the GWR model, in which NDVI, elevation, and
slope are selected as the scaling factors. In the three regions
that represent different landscape characteristics, the stepwise
method is compared to the traditional direct downscaling method
that was originally designed for TIR LST.

During the assessment of the applicability of stepwise method
using the emulated AMSR-E LST (0.25° MODIS LST) data,
although the downscaling results derived from the stepwise
and direct methods could both reflect the correct LST spatial
patterns, the results of the former method were generally closer
to the reference MODIS LST in detail, especially in the regions
with high heterogeneity. On the example days, the RMSEs of
the stepwise method were 0.13 K (12.9%) and 0.12 K (7.0%)
smaller than those of the direct method in the YGP and BSH
regions. On the available days in 2010, the proportion of dates
when the stepwise method was better than the direct method was
100%, 78.1%, and 51.5% in the YGP, BSH, and CIM regions,
respectively. The advantage of the stepwise method is closely
related to the heterogeneity of the landscape. The scale effect is
significant in the region with high heterogeneity, but weak in the
region with low heterogeneity. The stepwise method can reduce
the impact of scale effect on the downscaling result to some
extent, and its advantage is prominent when the scale effect is
significant. The mechanism for this advantage is that the step-
wise method contains multiple residual correction processes.

The experiment on real AMSR-LST downscaling indicates
that accurate AMSR-E LST guarantees better downscaling re-
sults because the downscaled LST inherits the spatial patterns of
the original AMSR-E LST before downscaling. The real AMSR-
E LST, which usually exhibits a smoother pattern and lower
accuracy, inevitably results in lower contrast and accuracy of the
downscaled LST, as shown in the YGP and BSH regions. Due to
the importance of accurate original MW LST in spatial down-
scaling, as done by many studies on LST downscaling, including
this study, the verification of the downscaling method always
starts with emulated LST. Although the AMSR-E LST retrieval
algorithm has been improved greatly in recent years, the accu-
racy of the retrieved LST still cannot reach that of TIR LST over
most landscapes. Nevertheless, the downscaling process has en-
riched the detailed information in the real AMSR-E LST dataset.

Using 0.25° MODIS LST, the stepwise downscaling method
especially proposed for MW LST performed better compared
with the traditional direct downscaling method, especially in

the relatively heterogeneous regions. The downscaled LST from
real AMSR-E LST using the stepwise method was also more
beneficial to the fusion of AMSR-E and MODIS LSTs than the
direct method used in the previous studies.

The selection of scaling factors is one of the key elements
affecting the quality of the LST downscaling model. In this
study, only the commonly used parameters NDVI, elevation, and
slope were adopted because the major concern is the stepwise
process in AMSR-E LST downscaling. This restriction leads to
some errors in the downscaling results over land cover types
such as water and urban areas. According to the studies of
scaling factors in TIR LST downscaling, it is expected that the
addition of other scaling factors related to the variation of LST
could further improve the accuracy of the stepwise downscaling
method. The stepwise downscaling method proposed in this
study is based on the GWR model; however, a number of
other regression models have been used to develop the TIR
LST downscaling methods. Theoretically, these models could
be incorporated into the MW LST stepwise downscaling method
as well. The determination of intermediate resolution series, a
new parameter in stepwise downscaling process compared with
the direct downscaling method, should also be considered when
facing different MW LST datasets. Further research is expected
to obtain more accurate downscaled MW LST by improving the
stepwise downscaling method, so as to enhance the quality of
MW and TIR LST data fusion and benefit the application of LST
products in remote sensing community.
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