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Abstract: Surface downward longwave radiatid(R) is a major component of the energy budget.
Although studies have reported the spatiotempaaahtions of SDLR in China, the spatiotemporal
coverage of the situ measurements used is alwaited. In this study, the gradient boosting regoess
tree (GBRT) was developed to reconstrdot R based on air temperature);Trelative humidity (RH),
and downward shortwave radiatioDSR). Ground measurements collected at the Baselima&u
Radiation Network (BSRN) and the Arid and Semi-aRdgion Collaborative Observation Project
(ASRCOP) were used to build and evaluate the GBR@eh The evaluation results showed that the
daily SDLR estimates are correlated well with tBBLR in situ, with an overall root mean square errors
(RMSE) of 16.5 Wit and a correlation coefficient (R) value of 0.9% tbe validation dataset.

Comparison with existingDLR products showed that accuracy and trends oBitdR estimates based
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on the GBRT method are reasonable. To obtain leng-8DLR data for spatiotemporal analysis over
China, densely distributed reconstruciR and ground measured dnd RH collected at 756 Chinese
Meteorological Administration (CMA) stations wersed as input to estimate tBBLR based on the
GBRT method over China during 1958-2015. The largat estimatedDLRs at the selected 563
stations showed th&DLR increased at an average rate of 1.3 ¥\ar decade over China from 1958
to 2015. The trend dBDLR is positively correlated with the trend in &nd water vapor pressure,
whereas negatively correlated with the tren@8R.
Key words: downward longwave radiation, GBRT, CMA, MK trendtte
1 Introduction

Surface downward longwave radiatid@D{R) is a fundamental component of the Earth’s
radiation budget (Iziomon et al. 2008)nderstanding ofDLR variation is vitally important
for weather prediction, energy budget evaluatiomsd numerous applications, such as
predicting evapotranspiration and temperature traria (Flerchinger et al. 2009§DLR is
mainly emitted by HO, CQ, Oz molecules and cloud water droplets in the atmasp(@uo et
al. 2019).SDLRis considered to be an important forcing on thelEasurface energy budget
that can produce surface warmif®yurt et al. 2016; Woods and Caballero 2016; Zeppetello et
al. 2019). Additionally, it is essential for undianrsding the impact of increasing €énd other
greenhouse gases on the climate (Stephens etodl).19

DLR is not conventionally measured, because it igadiff and expensive to measure
directly (Duarte et al. 2006; Enz et al. 1975; Sridhar and Elliott 2002; Wang and Liang 2009a).
Consequently, different parameterization schemes tmbe developed that take more readily

available meteorological values as input. The wanghfunction of SDLR peaks near the
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surface, and correctly calculating the air tempegatlose to the surface is critical fDLR
estimation (Gupta et al. 2004). Previous studiesvsidl that under clear sky conditions, the
distributions of air temperature {Tand humidity are most important f8DLR estimation
(Cheng et al. 2017).a.and surface water vapor pressure measured cldise gyound are used
for LR estimation in the parameterization schemes urldar sky conditiongBrunt 1932;
Brutsaert 1975; Idso 1981; Swinbank 1963). However, the coefficients for the parameterizatio
schemes are often specific for a limited rangeliofiate regions and atmosphere conditions
under which they were calibrated and validated. Paeameterization scheme should be
redefined or calibrated before it is used in offlaces (Bilbao and De Miguel 2007). Retrievals
of Ta and relative humidity (RH) profiles from satellitservations are also employed to
estimateSDLR (Ellingson 1995). Radiative transfer models (EQWTRAN or MODTRAN),
named physical based methods, have been useddidbéethe actual emission and absorption
processes in the atmosphere and to estigakdr (Duarte et al. 2006). Darnell et al. (1983)
estimatedSDLR based on Television and Infrared Observation BatéTIROS) Operational
Vertical Sounder (TOVS) data obtained from the odlai Oceanic and Atmospheric
Administration (NOAA). Although these physical bdseethods have explicit physical basis,
the accuracy of the input parameters may direé¢tgctathe estimation accuracy. It is also very
difficult to obtain temperature and humidity prefl of the lower atmosphere at stations with
the accuracy required f@DLR estimation(Duarte et al. 2006; Ellingson 1995; Wang and
Dickinson 2013; Wang and Liang 2009a). Moreover, the physical based methods may not be
suitable for cloudy sky conditions since cloudsalveays impenetrable in the thermal infrared

spectrum as pointed by Wang and Liang (2009a) ekkample, most passive satellite sensors
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can only provide observations of the cloud top, 8DLR is more closely related to the
parameters of cloud base (Ellingson 1995).

Most existing parameterization schemes use clowgercdraction to quantify the
contribution of clouds t&DLR, which is proportional to the total cloudinessgébsarboledas
1993; Bilbao and De Miguel 2007; Ellingson 1995; Niemela et al. 2001). Meteorological
observations and satellite cloud detection prodaoats provide reliable cloud cover fraction
measurements (Ackerman et al. 2008). For examplek @t al. (2000) proposed a
parameterization foBDLR estimation under cloudy sky conditions, in whihk tloud product
collected from the Geostationary Operational Envinent Satellite (GOES) was used to
guantify the influence of clouds. This parametditmamethod showed an overall root mean
square error (RMSE) value of 20 Wnagainst the ground measurements. The cloud cover
fraction can alternatively be represented by the af the measured horizontal global solar
radiation to the horizontal global solar radianceler clear sky conditions (Crawford and
Duchon 1999). Downward shortwave radiati@8R) can reflect the contribution of cloud to
the DLR. Crawford and Duchon (1999) proposed an improwa@mpeterization scheme for
calculatingSDLR based orDSR measurements. Yang et al. (2010) estimated®iHdR based
on calculating the cloud cover fraction usibpR estimated from a hybrid model. The
evaluation analysis showed that the error of fdun€se Meteorological Administration (CMA)
stations in the Tibetan Plateau (TP) was less 8aWnT2. Most of the parameterization
schemes under cloudy sky conditions strongly dementhe calibration data and do not fully
consider the impact of cloud characteristics, sashhe cloud base. Thus, it may also have

larger biases outside the parameter range ofltical calibration (Wang and Dickinson 2013).
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Besides these physical based methods, machineriganethods are alternative ways to
estimate surface radiatiaiWang et al. 2017; Wei et al. 2019; Yang et al. 2018). Machine
learning methods provide techniques that can autoatly construct the relationship between
input parameters and surface radiation by procgssia available data and maximizing a
problem dependent performance criterion. Wei et(2019) estimated thBSR using four
machine learning methods based on Advanced Very Rigsolution Radiometer (AVHRR)
data. The evaluation results with ground measur&nexhibited that the gradient boosting
regression tree (GBRT) method was the most accWalée other machine learning methods,
the GBRT method can automatically find nonlinedeiaction via decision tree learning and
achieve more accurate predictions (Johnson andgzZBai4). However, few studies have
directly applied the GBRT method to estim8d_R based on ground measurements, especially
over China.

Many studies have been reported for estimat8ij R over China, including the
parameterization method@¥u et al. 2011; Yu et al. 2018), hybrid method¢Tang and Li 2008;
Wang et al. 2014; Wang and Liang 2009b) and artificial neural networks (ANN) based methods
(Wang et al. 2018; Wang et al. 2012). For example, Yu et al. (2011) compared twelve eigtit
parameterizations methods under clear and clougycskditions over Heihe River Basin in
China, respectively. It showed that the estim&@dRs based on the proposed schemes by Idso
(1981) and Dilley and O'Brien (1998), and Maykutl &hurch (1973) performed best for the
clear and cloudy sky conditions, respectively. Wanhal. (2014) developed an improved hybrid
method to estimateSDLR over the TP using the Moderate-resolution Imaging

Spectroradiometer (MODIS) observations under cégr conditions. The estimatéfDLRs

5

This article is protected by copyright. All rights reserved.



based on the proposed hybrid method have an oWRIVHHE value of 25.9 Wrhand 25.7 Wm

2 for the MODIS observations from Terra and Aquapeztively. ThéANN-based model was
used to estimat@DLR over the TP by Wang et al. (2012). The model mgarable with or
even better than existing algorithms, with an oN&®SE value of 20.1 Wm and a bias value
of -8.8 Wm?. Although much effort has been conducted on theravements of the methods
for DDLR estimation, studies on reconstructing the longH8DLR datasets over China is still
rare. Chang and Zhang (2019) reconstru8®HtR datasets at 351 stations over China. He et
al. (2020) developed the China Meteorological Fayddataset (CMFD) based on the ground
measurements at 753 CMA stations from 1979 to thegmt. TheSDLR forcing dataset was
estimated based on the semi-empirical method peapby Crawford and Duchon (1999),
which calculated the atmospheric emissivity asafion of cloud amount and. TThe temporal
coverage of the estimateédDLR by the released methods is limited and the spgatiporal
analysis ofSDLR over China is not well discussed. To improve marstanding of the climate
change, it is still necessary to reconstruct a ceimgnsively spatiotemporal extendsdlLR
dataset over China and computed spatiotemporaysiadlased on this dataset.

The physical relationship between thg RH, DSR and SDLR is fairly well known. In
particular, Cheng et al. (2017) and Zeppetellolef2919) have shown that near surface air
temperature is the prominent driver of both cleat all-sky downward longwave radiation in
observations and climate models respectively. &dative kernels presented by Previdi (2010)
and Pendergrass et al. (2018) also present cleaicah explanations for the relationship
betweenSDLR and meteorological variables, including and RH.SDLR estimation under

cloudy sky conditions depends strongly on clouddaion. DSR can be used to quantify the
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contribution of clouds t8DLR under cloudy sky conditiori€rawford and Duchon 1999; Yang

et al. 2010). Crawford and Duchon (1999) calculaiedd fraction fronrDSR under clear and
cloudy conditions. Thus,aJRH, andDSR measurements are selected as input variableg of th
GBRT method in this study.

There are a total of 756 CMA meteorological statiovhere T, RH and other surface
meteorological parameters are measured, and aktldata are available to the public.
Compared with 756 routine meteorological statiomsly 122 have global solar radiation
measurements. Among 122 radiation observationosgtionly 48 have relatively complete
record from 1970 to 2015 through statistics. licisar that the current existing radiation
observation stations have relatively low spatialerage and representativeness for long-term
analysis. Therefore, the objectives of this study: d) to estimateSDLR using ground
measurements. Ground measurements collected &abeline Surface Radiation Network
(BSRN) and the Arid and Semi-arid Region Collabwsa©bservation Project (ASRCOP) were
used to build and evaluate the GBRT modgbhdctively; and 2) to analyze the spatial pattern
and temporal variations of tf#DLR over China. To obtain long-term and densely disted
PDLRdata over China for subsequent spatiotemporaysisathe reconstructed long-teB&R
(Hou et al. ,2019), and the ground measurgdnid RH collected at 756 CMA stations from
1958 to 2015 were used as inputtbé proposed GBRT method@he accuracy and trend
evaluation results of thEDLR estimates based on the GBRT method are also cothpaife
existingSDLR products.

This paper is organized as follows: In Sectiorh2,dground measurement data used in this

paper are described. The machine learning methddtrand test method are described in
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Section 3. The results are presented in Sectidm &ection 5, we discuss the correlation
between the trends of estimat8dLRs and other variables (such as Ta). The conclusaoas
given in Section 6.

2 Data

2.1 Ground Measurements

The data records at BSRN stations have been reftorsiow a higher level of data quality
(Liang et al. 2010). The ground measurements delieat the BSRN were used to build the
model, including dailypSR (W m?), SDLR (W m2), air temperature (Ta; C) at 2 meters
height, Relative Humidity at 2 meters height (RH), ®nd elevation (m). Since ttf#9LR
ground measurements are not provided at the CM#osta the ground measure&iDLR
collected at the ASRCOP stations was used to ualitie robustness and accuracy of the model.
Ground measurements collected at the CMA from 185815 were used to derive tHOLR
estimates over China in this study.

1) BSRN: The BSRN was initiated by the World ClimatesRarch Programme (WCRP)
to provide validation material for satellite radietry and climate models. The BSRN operation
started in 1992 at nine stations and currently istm®f more than 60 operational stations
(Ohmura et al. 1998). Recent reports have indicttatithe BSRN measurements have the
highest possible accuracy and a high temporal wésal in various climate zones and with
uncertainties of approximately:5 Wm? (Liang et al. 2010). Data extracted at 25 stations,
which provide bottDSR andSDLR records from 2000 to 2015, were used to trainrbedel in

this study. The spatial distribution of the datahewn in Fig. 1.
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2) ASRCOP: The ASRCOP provides pyranometer datan fi@ China meteorological
stations in the summers of 2008 and/or 2009. TisemiedSDLR and meteorological data at
the ASRCORP stations were recorded with a tempesallution of 10 or 30 minutes (Cheng and
Liang 2016; Huang et al. 2013). Data collected from nine stations were used tluate the
accuracy of the estimation model. Fig. 2 and Tabdbow the spatial distribution and detailed
information of these stations.

3) CMA: There are a total of 756 CMA meteorologistdtions where dailya] the RH
and other surface meteorological parameters arsuned, and all these data are available to
the public. Among these stations, only 122 havédlsolar radiation measurements. Fig. 2
shows the spatial distribution of these routine enridlogical and radiation stations. Solar
radiation measurements at the CMA stations startetB57. Since 1994, only 96 stations
continued to measure solar radiation as the measunts at various stations stopped over the
years (Tang et al. 2013). It is noted that thereeviwo different types of radiometers equipped
at the CMA stations before 1994 and afterwardsaiSaldiation measurements are more prone
to errors and often encounter more problems, sadiechnical failures and operation-related
problems, than other meteorological variable mesments (Mradi 2009; Tang et al. 2010).
Therefore, data quality control is indispensablenfiany applications. In this study, the quality
control procedure proposed by Zhang et al. (2015 performed.

2.2  Existing SDLR products

Existing SDLR products are used for comparison with 8H R estimates based on the
GBRT method. Considering the time series and acyusadifferentSDLR products, CERES-

SYN SDLR product were used to compare accuracy on ASRC@#rss, the ERA5 and
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GEWEX-SRB DLR products were used for comparison of long-terrmdreThe brief
introduction of threéDLR products are as follows:

1) GEWEX-SRB: The latest version of GEWEX-SRB (y3®applied in this study. The
GEWEX-SRBSDLR data can be available from July 1983 to Decembéi7 2t a 3-hourly
resolution, which are then averaged into daily, thiynvalues. The data set is produced on a 1°
x 1° global grid using satellite-derived cloud paeters and ozone fields, reanalysis
meteorology, and a few other ancillary data set (€ al. 2006). Based on their official Web
site, the overall daily mean bias for GEWEX-SRBIiS Wm? and the RMSE is 21.8 Wn
compared to BSRN measurements from 1992 througi.Zltese values are -0.1Wnand
11.2Wn7? at the monthly time scale.

2) CERES-SYN: CERES (Clouds and the Earadiant Energy System) SYN (Synoptic
Radiation Fluxes and Clouds) product sponsored [afioNal Aeronautics and Space
Administration (NASA) were designed to study thetlga top-of-atmosphere (TOA), on
surface and within the atmosphere radiation bud@eislling et al. 2013; Ohmura et al. 1998).
Data used in this study for comparison with 81 R estimates based on the GBRT method
are available from March 2000 to present with diapaesolution of 1° x1° and a daily temporal
resolution.

3) ERA5: ERA5 data on single levels is the fifthngeation ECMWF atmospheric
reanalysis of the global climate, covering the @efrom 1979 to present (Hersbach and Dee
2016; Naseef and Kumar 2008). The data can be available on the time resolufdrourly and

monthly with the spatial resolution of 0.25°x0.28Reanalysis combines model data with
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observations from across the world into a globabtiynplete and consistent dataset using the
laws of physics.

2.3 ReconstructedDSR dataset over China

The reconstruction dataset of long-tdd@R over China from Hou et al. (2019) was used
as input to obtain long-term and densely distrid LR data over China. This dataset was
generated based on the random forest (RF) algoting the ground measurB&R data and
the routine meteorological station data collect¢d7s CMA stations. This dataset was
available from 1958 to 2015 with a daily time regmn. TheDSR estimates are validated using
the ground measurements with a correlation coefiic{R) value of 0.99, a bias value of 0.01
Wm?, and an RMSE value of 8.88 WanThe reconstructeBSR dataset is also reasonably
accurate compared to the existing reconstructeakdat
3  Method

3.1 Gradient Boosting Regression Tree

The GBRT algorithm can be considered as an impreeesion of boosting that is based
on iteratively constructing multiple individual dsion trees. Boosting is an ensemble learning
algorithm which combined a series of weak classfiato a strong classifier according to
different weights. The basic idea of GBRT algoritlsno establish a new regression model in
the direction of gradient reduction, and to formegression tree model through continuous
iterations. The main advantage of the GBRT algaoriththat it can automatically find nonlinear
interactions via decision tree learning, and it tedatively few tuning parameters as a nonlinear

learning scheme (Johnson and Zhang 2014).
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Assuming thak; is a set of predictor variableg,is a set of response variables, ahds
the number of training samples. The GBRT methodtantsM different individual decision
treesh(x;a1), h(x;a2),..., h(x;am), thenki(x;am) can be used as the basic function to express the

approximation functiori(x) as follows (Ding et al. 2016):

(09=3" 1,00= B hxa,) (

| = Optherwise 1)

jm?

J
h(x;a,) =Y ¥l (XOR,,)),where | =1if xOR,
=1

wherefm andam represent the weight and classifier parameteadt eecision tree, respectively.
The loss functiorL(y, f(x)) is used to describe the accuracy@fandam . Each tree partitions
the input space intdregionsRim, Rem, ..., Rm, and eaclijm predicts the constapin. The main
flowchart of the GBRT method is shown in Fig. 3. tlms study, the GBRT method is
implemented using the scikit-learn toolbox on tly¢ghBn platform (Pedregosa et al. 2012). The
main flowchart of this study is shown in Fig. 4.

3.2 Mann-Kendall (MK) Trend Test

The non-parametric MK statistical téstendall 1938; Mann 1945) has been employed to
detect trends in different hydrological and metémgiwal time series. Compared to linear
regression trend analysis, the MK trend test isamsoiitable for cases where the trend may be
assumed as a monotonic and normal distribution #i@l. 2018). The test statis8ds given

by (Gocic and Trajkovic 2013):

n-1 n
S=> > sgnf —x ) (@)
i=1 j=i+1
+1,if X; =% >0
sgn, —x )=4 0if x,-x =0 3)

-1,if X;=%<0
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wheren, x;, X; represent the number of data points, data vatutreeitime seriesandj (j>i) ,
respectively.
The variance is computed as:

n(n-1)(2n+5)-Dt ¢ - 1)( + 5)

18

(4)

Var(S) =

wheren andm are the number of data points and tied grouppes/ely, and; denotes the
number of ties of exterit A tied group is a set of sample data with theesamlue. In cases
where the sample sizens> 10, the standard normal test statiZtds expressed as (Zhou et al.

2018):

~S71 it ss0

ar(S)
Zs=10, if S> 0 (5)
S+1

War (S)

In a two-tailed test, the null hypothesis of nontteshould be accepted at a specific

,Jif S<0

significance level fotZ, ,,<7s<Z,,,,, whereZ _,,is the standard score of the standard
normal distribution with a cumulative probability q_, ,. Otherwise, the null hypothesis of no
trend is rejected, and a monotonic trend is idedtifit significance levelr . Positive values
of Zsindicate increasing trends, while negaigwalues indicate decreasing trends. In this study,
a=0.05 was taken to identify a significant trend ethmeans thatZ,_,,,=+1.96.

In this study, we used the Sen's slope to desthibateepness of the trend in long time

series, which is computed as (Sen 1968):

Q :X{"k‘k fori=1,..N (6)
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Q[(N+1)/2], ifN is odd

Sope =1 Qi Qe (7)

,if N is even

whereN is the number of data pairs, and xx are the data values at timpsndk (j>k),
respectively. Th&\ values ofQ; are ranked from smallest to largest.

3.3 Model Construction

The GBRT model can be constructed in three steps.

(1) Preparation of the training datasets. Fouraldeis extracted at the BSRN stations were
used as predictor variables, including elevatiailydl,, daily RH, and daifDSR. The daily
DLR measurements were used as target variables.

(2) Configuration of the model coefficients. We dilee k-fold cross validation method to
determine the optimal parameters. Each parametievisrsed in range of parameter threshold,
as shown in Table 2. The error of predicted regslsvaluated against ground measurements
and parameters providing the highest average Reiraining dataset were selected as optimal
parameters. The GBRT model is influenced by thelmemof iterations, learning rate, depth of
the tree, and sampling rate. The learning ratenpater limits the contribution of each tree. A
small learning rate parameter can reduce oveitélarger iteration number parameter means
more boosting stages to perform and usually previdgter performance for the training dataset.
The iteration number parameter should be carefdtyto avoid overfitting. Moreover, there is
a trade-off between the learning rate and iteratimmber. The model complexity and
computational cost increase with increasing iterathumber and decreasing learning rate,
leading to a poor prediction performance. The thejgth represents the maximum depth of the

individual regression estimators which can limé ttumber of nodes in the tree. The sampling
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rate parameter represents the fraction of trairdagiples used for fitting. A subsample
parameter smaller than 1.0 can prevent overfittamgl reduce the variance. Successive
performance testing showed that a GBRT model witlleaaning rate parameter of 0.1, a
sampling rate of 1, a tree depth of 5, and antitaranumber of 250 was optimal to estimate the
DLR

(3) Application of the GBRT method. After deternmgi the optimal parameters, the
performance of the trained model for tS®LR estimation was evaluated using ground
measurements collected from the ASRCOP stations.
4 Results and Analysis

4.1 Validation Against Ground Measurements

4.1.1 Validation of the SDLR estimates

Ground measurements collected at 25 BSRN stati@ns used as the training dataset to
determine the optimal parameters. Then, d&il.R measurements collected at nine ASRCOP
stations in the summers of 2008 and/or 2009 weed as the validation dataset to evaluate the
performance of the GBRT method for tBBLR estimation. The selected BSRN stations are
mainly concentrated in South America, North Amerigad Europe. Using ASRCOP data in
China as the validation dataset can validate tleeracy of the GBRT method without local
correction, i.e., validate the robustness of thelehoThree statistical measures were used to
evaluate the estimates against ground measurenmaitsling overall RMSE, R, and bias.

The performance of the GBRT method for the estiomatif dailySDLR are evaluated on
BSRN training dataset and ASRCOP validation datasspectively. The evaluation results are

shown in Fig. 5. The dail§DLR estimates for the BSRN training dataset have anadhRMSE
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value of 13.22 W, a bias value of 0 Wi and an R value of 0.99, whereas these values are
16.5 Wm?, 3.82 Wnv and 0.91 for the ASRCOP validation dataset, resgeyg. The validation
results for each ASRCOP station was further ingastid to study the stability of the GBRT
method, as shown in Fig. 6. The daBPLR estimates correlate well with the ground
measurements at most ASRCOP stations, with thdlRsaanging from 0.76 to 0.96, the bias
values ranging from —9.56 W#to 22.78 Wn?, and overall RMSE values ranging from 10.06
Wm~2 to 26.11 Wnt. Note that the R value is greater than 0.85 atit80b9 stations and the
absolute value of the bias is less than 10 %\4n7 out of 9 stations. The estimatLRs at
Dongsu correlate best with the ground measuremeriis,an overall RMSE value of 10.06
Wm=2, a bias value of -0.14 W and an R value of 0.96. These evaluation resuither
indicate that th&DLR estimates derived from the GBRT method correlat with the ground
measured@DLRs.
4.1.2 Validation of the reconstructedDSR dataset

In order to ensure the accuracy of the input védembf the machine learning method, the
reconstructed long-ter@SR dataset over China from 1958 to 2015 was validatedeDSR
ground measures collected at 122 CMA radiationisstat As shown in Fig. 7, thBSR
estimates from reconstructed dataset have an R dl0.95, a bias value of 1.34 Wrand
an RMSE value of 27.01 W#y at a daily time scale. These values are 0.9B51%8/m? and
1.34 Wm?, respectively, at a monthly time scale. Thus, tbeonstructedDSR dataset is

reasonably accurate against @R ground measures.
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4.2 Comparison with Existing SDLR Products

The CERES-SYNSDLR product was used to compare the evaluation restil8OLR
estimates based on the GBRT method against groeadurements at ASRCOP stations in the
summers of 2008 and/or 2009. As shown in Fig. 8 IDLR estimates based on the GBRT
method correlate better with the ground measuresn&vith an overall RMSE value of 16.5
Wm2, a bias value of 3.82 Wif) and an R value of 0.91. The CERES-SYN and ERBER
products all show lower accuracy. The CERES-SYNR product has an overall RMSE value
of 23.93 Wm?, a bias value of 7.95 Wif) and an R value of 0.84. These values were 28.38
Wm™2, -7.29 Wm?, and 0.74, respectively, for the ERABLR product.

To further testify theDLR estimates based on the GBRT method on 563 CM#Aosiat
the RMSE and bias between daily SDLR estimatesEd5 SDLR product are calculate at
each CMA station from 1979 to 2015, as shown irsF@gand 10. The RMSE and bias range
from 11.61 to 80.94 W rhand -77.56 to 40.58 W fnrespectively. There are 292 and 278 sites
whose RMSE and bias values range from 20 to 253%mal -10 to 0 W m, respectively; these
are followed by 102 and 90 sites whose RMSE ansl \méues range from 25 to 30 W?rand
-20 to -10 W ¥, respectively. The lower RMSE values are mainlynibin the Northeast and
SouthChina; while the higher RMSE values are mainly distributed in the Tibet Plateau and
west of Southwest China, which may be due to tbh hititude and harsh environment leading
to large ground observation errors. There are 2010563 sites whose biases are more than 30
W m?, which may be due to the DSR estimates with nedatig uncertainties at some stations.
Moreover, the replacement of the CMA radiationrimstents may also be a source of errors. It

is worth to note that the spatial scaling issueldite another potential error sources for SLDR
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evaluation. We also compare the long-term trenthefSDLR estimates based on the GBRT
method on 563 CMA stations with those from GEWEXBS&d ERAS5 products. The time
period is set to 1984-2007 when all th@&# R datasets can be available. Fig. 11 shows that
the long-term trend o8DLR estimates based on the GBRT method (2.334er decade,
significant at 95% confidence) was similar to tfram GEWEX-SRB (2.1 W per decade,
significant at 95% confidence), higher than thatfrERA5 (1 Wn¥ per decade, significant at
95% confidence). Through the comparison of longatéend with existingDLR products, it

is obvious that th&DLR estimates based on the GBRT showed a similar tbendlifferent
change magnitudes to existiBQLR products. Thus the temporal variationsSBLR based on
the GBRT method on CMA stations are reasonable.

4.3 Spatial and Temporal Analysis ofSDLR over China

The GBRT method used in this study performed wéhaeut a local correlation and only
required surface meteorological and solar radiadiata. Thus, we applied the GBRT method
to obtain long-term and densely distribuf#l R data over China.

Meteorological measurements and reconstrubtgRldataset were used to estim8H_R
based on the proposed GBRT method. The input Vagalf the GBRT method were, TRH
measurements, elevation of the stations and racmmst DSR values at 756 CMA stations
from 1958 to 2015. MonthIgDLR estimates were obtained by averaging the dailyesbver
the month. If there were more than ten missingyddilLR estimates in a month at a station,
the data for this month at this station were delelénen, if there was less than one missing
monthly SDLR estimate at one station in a year, the missingesivere obtained by piecewise

cubic Hermit interpolation to calculate annual wuMeanwhile, if there were less than two
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missing annual values for the time period at d@tathe missing annual values at this station
were also obtained by piecewise cubic Hermit irdakxfon. Otherwise, this station would be
eliminated to study the long-term trendsSBiLR. Therefore, 563 stations were used to analyze
the spatial pattern and temporal variationsSDLR based on the completeness of the data
records.
4.3.1 Comparison with the SDLR estimates based oDSR ground measures

The DLR estimates based on the reconstru@&R dataset was compared with which
based ofDSR ground measures at 122 CMA radiation stations ft8%8 to 2015 to ensure the
feasibility of spatiotemporal analysis. As showrFilg. 12, theSDLR estimates based on the
reconstructedSR dataset correlate well with which based on theigdomeasures, with an R
value of 1, a bias value of -0.42 Wirand an RMSE value of 6.65 Wimat a daily time scale.
These values are 1, -0.42 Wrand 5.17 Wi, respectively, at a monthly time scale. Thus the
error of the reconstructed dataset has little eifecthe accuracy @DLR estimates based on
the GBRT method. We also compare the long-terndtbeEiween th€DLR estimates based on
the reconstructed and ground measib&Rs. Regarding the completeness of &R ground
measures, the time series is determined to be 20T6-for comparison. 48 and 563 CMA
stations were used for long-term trend analysisfi®70 to 2015 based on the reconstructed
and ground measurddSRs, respectively. As shown in Fig. 13, tBBLR estimates at CMA
stations based on the reconstructed and groundumseH3SRs show consistent trends from
1970 to 2015. The difference between anomalousammaanSDLR estimates based on two
DSR datasets was range from -0.02 Wio 3.09 Wn?, and the absolute values were within 1

Wm2 in most years. ThEDLR estimates used tH2SR ground measurements as input showed
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significant increasing trends at a rate of 0.98 ¥per decade from 1970 to 2015, while the
value was 1.25 Wraiper decade for th@DLR estimates based on the reconstrubteg dataset.
Thus, theSDLR estimates using reconstructB@R dataset as input can be used to perform
spatiotemporal analysis 8DLR over China.
4.3.2 Spatial distribution and seasonal variations ofSDLR

According to the classification method of climaiypes in China proposed by Zhou et al.
(2018) and Liu et al. (2018), this study dividedimend China into six regions to compute
spatiotemporal analysis, including East China (B@yth China (NC), Northeast China (NE),
Southwest China (SW), South China (SC), and th@f@spatial distribution and annual mean
DLR estimates of each region are presented in FigThd.different sizes and colors of the
stations indicate the magnitude of the annual n88drR estimates at 563 CMA stations during
1958-2015. As it is shown in the figure, the anmaabnSDLR estimates shows a pronounced
latitudinal dependency except over the TP, witgdawvalues at low latitudes and smaller values
at high latitudes. This may be due to the low vsloeaerosol optical thickness and atmospheric
water vapor content over the TP. Table 3 showsatiraial mearsDLR estimates over China
and six climate regions. EC, SC and SW show highaual mea®DLR than the other regions
in China. The maximum annual me@DLR estimates occur in SC, whereas the minimum value
occurs in TP. The difference between the annuahr$Bd.R estimates in SC and TP is up to

100 WmZ.

Figs. 15-16 show the monthly and seasonal n8EdrR estimates over mainland China
and six sub-regions during 1958-2015, respectivEtye monthlySDLR estimates gradually

increase from January to July and then gradualtyedese from July to December over both
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mainland China and six sub-regions. The highess@®d mearnSLR typically occurs in
summer, with areal averag&LR estimates of 379.20 Wn Following the same logic, the
minimum SDLR occurs in winter, with values of 255.60 WmThe SDLR estimates show
similar seasonal variation trends in all six supiwas. The maximum seasonal differences
occur in NE (147.7 W), while smaller values occur in SC and SW (66.9%md 68.3 Wm

2, respectively).

4.3.3 Long-term Trends

Fig. 17 demonstrates the trends of 84_R estimates at 563 CMA stations during 1958-
2015. The size of each triangle represents the magnof the trend, and the red and green
triangles indicate increasing and decreasing treredpectively. Stations with a circle indicate
that the trend detected by the MK test is signiftcat a 95% confidence level. TIS®®LR
estimates at stations in central and northern Calhshowed increasing trends from 1958 to
2015, whereas tHEDLR estimates at some stations in southern China gshdeereasing trends.
549 out of 563 CMA stations show positive trendsj 476 stations increasing significantly
during 19582015; 14 stations show negative trends, with one stations decreasing significantly.
The stations with negativeDLR trends were mainly concentrated in SC and SW.

Fig. 18 shows the anomalous annual meahR estimates averaged over mainland China
and the six sub-regions from 1958-2015. A line fitéed to the anomalous annual mea.R
estimates using linear regression. In mainland &hime maximum values occurred in 1998,
and the minimum values occurred in 1969. A 1.04%\frar decade increasing linear trend of

DLR is observed during the period of 1958-2015. Tlkeads in EC, NC, NE, SW and TP
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regions are similar to those over mainland ChinaSC, the trend is insignificant but exhibits
large interannual variations during the period 3-2015.

Since the MK test is more statistically rigorouartithe regression method (Mann 1945),
the MK test is used to further analyze the longatérend. The annual me&@DLR estimates
over mainland China show significant increasingidie at a rate of 1.02 W#nper decade
detected by the MK test. The increasing trendscameparable to those from previous studies
(Prata 2008; Wang and Liang 2009a). CC; is another dominant emitter 8OLR, hence the
effect of CQ on LR should be considered. The global atmospherie @Dcentration has
increased by an average of 1.5 ppm per year fros8 1® 2015, which was calculated based
on globally averaged marine surface data from treiodal Oceanic and Atmospheric
Administration (NOAA) Earth System Research Labona{ESRL) flask network (Laboratory
2019). The C@concentration increase in China approximatelpatsiame rate as that of global
(Administration 2018). Increasing G@oncentration amount by 10% causes ~0.2% (~0.6Wm
2) increase irB8DLR (Prata 2008). If the CQconcentration in the atmosphere increases aea rat
of 1.5 ppm y#, it will result in a corresponding increaseSDLR of 0.28 Wn¥ per decade.
Therefore, the increasing trend of tBBLR estimates would be 1.3 Winper decade
considering the variability of C{£xoncentration over China. Table 3 also shows tbaitipe
values are dominated in most regions. The annuahi@eLR estimates in EC, NC, NE, SW
and TP show significant increasing trends at a oate.07 Wn? per decade, 1.30 Wtnper
decade, 1.31 Wraper decade, 0.60 W#per decade, and 1.18 Wiper decade, respectively.

SC shows insignificant increasing trends from 1858015, at a rate of 0.61 Whper decade.
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It can be seen that most regions over China sha@ggnificant increasing trend from 1958 to
2015, except in SC and SW.

Given the long-term variability i®DLR, characterizing various time periods separately
may be more useful than linearly fitting the entinee period. Pinker et al. (2005) claimed that
theDSRshowed a decrease until about 1990 and thenaisedtincrease. Therefore, the annual
mean DLR estimates series was divided, with break at 1290.59 W m? per decade
insignificant increasing between 1958 to 1990, diokd by a 0.59 W m per decade
insignificant increasing from 1991 to 2015, wasrdun anomalous annual me&DLR
estimates over mainland China. Annual m&BhR estimates in EC, NC, NE, SC and TP had
very similar trends to mainland China in the spedifthree time periods, but with different
magnitudes. The corresponding values were 0.44°\&nal 0.73 Wn? for EC, 0.51Wn? and
0.57 Wm? for NC, 0.41 Wt and 0.94 Wn# for NE, 0.53 Wn¥ and 0.1 Wn# for SC, 0.62
Wm2 and 0.25 Wn# for TP. The trends in SW were different from othegions. In SW, there
were a 0.43 Wnit per decade insignificant increasing over 1958-129@ a 0.68 Wnd per
decade insignificant decreasing over 1991-201501ef 990, the anomalous annual mean
DLRwas negative in most years, but mostly posititerdf990. Therefore, the trends in these
two time periods over all sub-regions are insigaifit.

Table 4 summarizes the trends of the seasonal Si2iaR estimates over mainland China
detected by the MK test from 1958 to 2015. The n&#ErR estimates exhibits a positive trend
in the four seasons, with the highest rising rateinter and lowest in summer. The seasonal
meanSDLR in four season all show insignificant increasingntls from 1958 to 2015, with

rates of 0.36 Wm, 0.38 Wn¥, 0.45 W per decade, and 0.99 Wiper decade, respectively.
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We also divided the time period with break at 198e seasonal me&@DLR estimates in four
seasons all showed insignificant increasing oveé¥81P990 and significant decreasing over
1991-2015. In spring, there were a 0.13 Wiper decade increasing over 1958-1990, and a
3.13 Wnr?per decade decreasing over 1991-2015. The corrdsgpumalues were 0 Wrhand
3.97 Wm? for summer, 0.9 WrA and 1.45 Wn# for autumn, 1.15 Wrh and 3.75 Wn# for
winter.
5 Discussion

Previous studies suggest that long-té8DLR variation is often determined by, &nd
atmospheric water vapor concentration (Wang andd-#009a). In this session, we investigate
the correlation between the long-term variatioSOER and other parameters over China. Near
surface temperature and water vapor are useddolaESDLR based on the Stefan-Boltzmann
equation:

DLR=¢&(T,,e)0T, (8)

wheregis the Stefan-Boltzmann constaft§7x 10 Wm2K-4). sis the atmospheric effective
emissivity under clear sky conditioran be modeled as a function @f Water vapor pressure
(e). RH is the ratio of water vapor pressure aridration water vapor pressure, which can be
calculated by Tusing the following equations. We choose wateovapessure rather than RH
to investigate the correlation between the trerDbR. Under cloudy sky conditions, the cloud
cover fraction can also be estimated by the ratithe measured horizontal global solar
radiation to the horizontal global solar radianoéler clear sky conditions. Thus, B8R can
be used to reflect cloud conditions. Next, the elation between the trend 8DLR and the

trend in T, water vapor pressurBSR over China from 1958 to 2015 are further explored.
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e*

RH =—*100%, (9)
&
e =6.1lex 1 _1 )
s p% ?3 Ta (10)

wheree andes are water vapor pressure and saturation watermryapesure, respectively.

Fig. 19 shows the time series of anomalous annwesdnBDLR estimates, measured, T
calculated water vapor pressure and measbfRifrom 1958 to 2015 over China. It is shown
that the trend oEDLR is generally consistent with the trend ofdnd water vapor pressure,
whereas the trend 8DLR is opposite to the trend BISR. To fully assess the causes of changes
in SDLR, we further quantitatively investigated the caatin between th&DLR and other
variables. Fig. 20 is the scatterplots of the tren8DLR estimates detected by the MK test as
a function of the trends ingTwater vapor pressure, abR at the 563 CMA stations. One
point in the figure represents one station. Thedref SDLR is positively correlated with the
trends in & and water vapor pressure, and the R values bet®BER with Ta and vapor
pressure are 0.62 and 0.60, respectively. The wéSDLR is negatively correlated with the
trend iNDSR, with an R value of -0.1&DLR s not strongly correlated witbSR over mainland
China during the period of 1958-2015.

In order to study the characteristics of parame#gdnigh controlling the long-term variation of
DLRin different regions over China, the correlatidriree trends irBDLR with the trends in
Ta water vapor pressure aiBR over the six regions is also shown in Fig. 21. Treed of
DLR is positively correlated with the trend in, &nd water vapor pressure, whereas it is
negatively correlated with the trendx&R in all sub-regions. In EC and TP, the trend@df.R

is highly correlated with the trend of, with R values of 0.65. In EC, NE, SC, SW andthRB,
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trend of SDLR is highly correlated with the trend of water vapoessure, with an R value of
0.63,0.72,0.70, 0.75, and 0.69, respectively.RAnthe trend oBDLR exhibits a relatively high
negative correlation with the trend DER, with R values of -0.57. The trend 8DLR has no
significant correlation with the trend of, Twater vapor pressure ab@R in NC. These results
suggest that the primary controlling factors of 814 R long-term variation for six climatic
zones were different: the increases in water vapessure results to the rising trend over most
sub-regions, the rising trend over TP mainly resfihm both increases in.@nd water vapor
pressure and decreasesDBR, the rising trend over NC has no significant clatien with
those of other three variables. It is noted thatrtmber of samples over each region is quite
limited based on the completeness of the datadecand the points are scattered and uneven,
which may lead to errors in the results.
6 Conclusions

DLRis a major component of the energy budget in #ghEs climate system. However,
DLRis not conventionally observed due to the high aod difficulty of a direct measurement.
It has great significance to generate a comprehelysspatiotemporal extend@DLR dataset
over China based on more readily available data Ihathis study, we reconstruct&DLR
based on the GBRT method using RH andDSR. Daily ground measurements collected at
the BSRN and ASRCOP stations were used to buildrahdiate the GBRT model, respectively.
The evaluation results showed that the estim@D#Rs using the GBRT method correlate well
with the DLR in situ, with an overall RMSE of 16.5 Whrand an R value of 0.91 at a daily
time scale. Thus, applying the GBRT method to estEn®DLR provides reasonable and

realistic radiation quantity and its variation vatht a local correlation.
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To obtain long-termSDLR data for subsequent spatiotemporal analysis basethe
proposed method over China, the densely distribrgednstructe@®SR and ground measured
Taand RH collected at 756 CMA stations were used@s to estimate th8DLR based on the
GBRT method over China from 1958 to 2015. We afsdyzed the spatial pattern and temporal
variations of the estimate8DLRs at 563 CMA stations over China where the data were
relatively complete during the period of 1958-20IHhe maximum annual meafDLR
occurred in SC, whereas the minimum value occurnr@é®. The seasonal me8DLR estimates
were highest in summer and lowest in winter. Thegtigpdistribution of the estimatefDLRs
in each season was similar to that in the whole.ykavas found thatSDLR increased
significantly at an average rate of 1.3 Wimper decade from 1958 to 2015 as detected by the
MK test. The long-term trends in most regions wawasistent with those in the whole China
area, except for SC. In SC, the annual m8abR exhibited insignificant increasing trends at
a rate of 0.61 WrA per decade. We also compared the accuracy andsteintheSDLR
estimates based on the GBRT method between those éxisting SDLR products. The
comparison result showed that accuracy and trefideeoestimatedSDLRs of the GBRT
method are reasonable.

The primary controlling factors of th8DLR long-term variation was investigated in
mainland China by analyzing the correlation betwdentrend ofSDLR and the trends ofa]
water vapor pressure, aiBR at the 563 CMA stations. The trend SDLR was generally
positively correlated with the trend in, &nd water vapor pressure, negatively correlated wi
the trend iINDSR. The primary controlling factors of th@DLR long-term variation for six

climatic zones were different.

27

This article is protected by copyright. All rights reserved.



Although the GBRT method are robust to outliersuput space, and has been efficient
and practical for many research applications, tB&RG method also has some disadvantages.
First, the GBRT method has poor scalability dugheoorder nature of its promotion. Second,
the training procedure is sensitive to the choit@arameters. There is a trade-off between
overfitting and computational cost. The step sikéearning rate parameter may need to be
small to avoid overfitting. However, the small le@ug rate parameter may imply a high
computational cost of applications. Thus other nrexhearning methods or deep learning
methods can be further explored to improve accuaaclefficiency oSDLR estimation.

The density of th€DLR measurements is sparser than that of the metgoral@andDSR
measurements. TISDLR can be estimated and easily extended to moremssaind over longer
time periods using the GBRT method without a lamatelation. This study only applies the
GBRT method at stations using ground measuremeéfusever, the number and spatial
distribution of the training samples may have iaflue orSDLR estimation. We plan to extend
the GBRT method foEDLR estimation from stations to surface, using reaislgata and/or
retrievals from satellite observations.
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Table Captions:

TABLE 1. Basic summary of the ASRCOP stations usedhlidate the model.

TABLE 2. Parameters setting to determine the optppaegameters for the GBRT method.

TABLE 3. The trends in annual me8BLR estimates over mainland China and six regionsctieby MK test.
TABLE 4. The trends in seasonal me@DLR estimates of each season over mainland Chinatddtby MK test.
Figure Captions:

FIG.1. Spatial distribution of the radiation statigrovided by the BSRN.

FIG.2. Spatial distribution of the radiation stagrovided by the ASRCOP and CMA.

FIG.3. The main flowchart of the GBRT method.

FIG.4. The main flowchart of this study.

FIG.5. Evaluation results of the (a) BSRN trainantd (b) ASRCOP validation dataset's deéSlyLR estimates based on the

GBRT method against ground measurements. N istthibar of total data points.
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FIG.6. Evaluation results of dailgDLR estimates on each ASRCOP station based on the GB&Rfiod against ground
measurements.

FIG.7. Evaluation results of the reconstructed skttaf long-ternDSR over China based on the RF method at (a) daily(land
monthly time scales.

FIG.8. Evaluation results of daiSDLR estimates from (a) CERES-SYN and (b) ER&H_R products on each ASRCOP
station against ground measurements.

FIG.9. The RMSE between daily SDLR estimates anAERDLR products at 563 CMA stations from 1979 @4.2.

FIG.10. The Bias between daily SDLR estimates dRAESDLR products at 563 CMA stations from 1972®d.5.

FIG.11. The comparison of anomalous annual nB2R estimates (unit: W) averaged over mainland China from
GBRT-based estimates, GEWEX-SRB and EFSB&R products during 1984 -2007.

FIG.12. Evaluation results of tIBOLR estimates based on the reconstruEt8g dataset and which based on B8R measure
at (a) daily and (b) monthly time scales.

FIG.13. Comparison between the anomalous annuah 828R estimates (unit: W) based on th®SR estimates and the
DSR ground measures during 1970 -2015.

FIG.14. The annual me@DLR estimates (unit: W/m2) at 563 CMA stations durli§$8-2015.

FIG.15. Monthly mearsDLR estimates (unit: Wrf) over the six regions and mainland China during8L.2015.

FIG.16. Seasonal me&DLR estimates (unit: Wn#) over the six regions and mainland China duringgL2015..

FIG.17. Long-term trends @DLR estimates detected by MK test at 563 CMA statiover 1958-2015. Upward-pointing
triangles (red) denote an increasing trendSDLR estimates, whereas downward pointing trianglesefy represent a
decreasing trend iBDLR estimates. Stations with a circle mean that thediis significant at the 95% confidence level.
FIG.18. The anomalous annual m& R estimates (unit: Wrf) averaged over each region and mainland Chinagld958

-2015.
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FIG.19. Anomalous annual me&DLR estimates, measured, Talculated water vapor pressure and measD&Riduring
1958-2015 over China.

FIG.20. The scatterplots of trendsSBLR (unit: W/n#/yr) as a function of trends in (a) Tb) water vapor pressure and (c)
DSR at the stations.

FIG.21. The scatterplots of trends3DLR as a function of trends in,Twater vapor pressure ab$R over six regions.

Tables

TABLE 1. Basic summary of the ASRCOP stations usedhlidate the model.

Station Latitude(®)  Longitude(°)  Elevation (m) Land cover Time period
Arou 38.04 100.46 3033 Desert/grassland 2008-2009
Dongsu 44.09 113.57 970 Desert/grassland 2008-2009
Jinzhou 41.18 148.48 22 Farmland 2008-2009
Maqu 33.89 102.14 3423 Wetlands 2008
Miyun 40.63 117.32 350 Farmland 2008-2009
Tongyu grass 44.58 122.92 184 Grassland 2008-2009
Tongyu farmlad 44.59 122.93 184 Farmland 2008-2009
Yingke 38.86 100.41 1519 Farmland/oasis 2008-2009
Yuzhong 35.95 104.13 1965 Desert/grassland 2008-200

TABLE 2. Parameters setting to determine the oftpaeameters for the GBRT method.

Parameters Threshold Intervals

learning rate 0.1-0.9 0.1
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subsample 0.2-1 1

max depth 4-9 5

n-estimators 50-350 250

TABLE 3. The trends in annual me8BLR estimates over mainland China and six regionsctiEdeby MK test.

Region Annual mearSDLR (Wm?) 1958-2015  1958-1990 1991-2015

China 316.14 1.02* 0.59 0.59
EC 336.74 1.07* 0.44 0.73
NC 277.06 1.30* 0.51 0.57
NE 278.31 1.31* 0.41 0.94
SC 384.22 0.61 0.53 0.10
Sw 347.74 0.60* 0.43 -0.68
TP 271.55 1.18* 0.62 0.25

*Trend at the 5% significant level (p < .05);

TABLE 4. The trends in seasonal me@DLR estimates of each season over mainland Chinatddtbg MK test.

Season Seasonal mea®DLR (Wm?)  1958-2015 1958-1990 1991-2015

Spring 309.38 0.36 0.13 -3.13*

Summer 379.20 0.38 0 -3.97*

Autumn 320.52 0.45 0.90 -1.45
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Winter 255.60 0.99 1.15 -3.75*

*Trend at the 5% significant level (p < .05);
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FIG.1. Spatial distribution of the radiation stations provided by the BSRN.
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End;

Fit a regression tregx; a ) to predict the targe&mfrom covariatesX; for all training data
Compute a gradient descent step sizgas= arg min, Zi”:lL v . fo & Foh& @, )

Update the model as_(x) = f,_,(x) + p,h(x;a,,)

End;

Output the final model fM )

FIG.3. The main flowchart of the GBRT method.
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FIG.7. Evaluation results of the reconstructed skttaf long-ternDSR over China based on the RF method at (a) daily(land

monthly time scales.
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FIG.21. The scatterplots of trends in SDLR as a function of trends in Ta, water vapor pressure and DSR over six regions.
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