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Abstract:  Surface downward longwave radiation (SDLR) is a major component of the energy budget. 

Although studies have reported the spatiotemporal variations of SDLR in China, the spatiotemporal 

coverage of the situ measurements used is always limited. In this study, the gradient boosting regression 

tree (GBRT) was developed to reconstruct SDLR based on air temperature (Ta), relative humidity (RH), 

and downward shortwave radiation (DSR). Ground measurements collected at the Baseline Surface 

Radiation Network (BSRN) and the Arid and Semi-arid Region Collaborative Observation Project 

(ASRCOP) were used to build and evaluate the GBRT model. The evaluation results showed that the 

daily SDLR estimates are correlated well with the SDLR in situ, with an overall root mean square errors 

(RMSE) of 16.5 Wm-2 and a correlation coefficient (R) value of 0.91 for the validation dataset. 

Comparison with existing SDLR products showed that accuracy and trends of the SDLR estimates based A
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on the GBRT method are reasonable. To obtain long-term SDLR data for spatiotemporal analysis over 

China, densely distributed reconstructed DSR and ground measured Ta and RH collected at 756 Chinese 

Meteorological Administration (CMA) stations were used as input to estimate the SDLR based on the 

GBRT method over China during 1958-2015. The long-term estimated SDLRs at the selected 563 

stations showed that SDLR increased at an average rate of 1.3 Wm-2 per decade over China from 1958 

to 2015. The trend of SDLR is positively correlated with the trend in Ta and water vapor pressure, 

whereas negatively correlated with the trend in DSR. 

Key words: downward longwave radiation, GBRT, CMA, MK trend test 

1 Introduction 

Surface downward longwave radiation (SDLR) is a fundamental component of the Earth’s 

radiation budget (Iziomon et al. 2003). Understanding of SDLR variation is vitally important 

for weather prediction, energy budget evaluations, and numerous applications, such as 

predicting evapotranspiration and temperature variations (Flerchinger et al. 2009). SDLR is 

mainly emitted by H2O, CO2, O3 molecules and cloud water droplets in the atmosphere (Guo et 

al. 2019). SDLR is considered to be an important forcing on the Earth’s surface energy budget 

that can produce surface warming (Burt et al. 2016; Woods and Caballero 2016; Zeppetello et 

al. 2019). Additionally, it is essential for understanding the impact of increasing CO2 and other 

greenhouse gases on the climate (Stephens et al. 1994).  

SDLR is not conventionally measured, because it is difficult and expensive to measure 

directly (Duarte et al. 2006; Enz et al. 1975; Sridhar and Elliott 2002; Wang and Liang 2009a). 

Consequently, different parameterization schemes have to be developed that take more readily 

available meteorological values as input. The weighting function of SDLR peaks near the 
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surface, and correctly calculating the air temperature close to the surface is critical for SDLR 

estimation (Gupta et al. 2004). Previous studies showed that under clear sky conditions, the 

distributions of air temperature (Ta) and humidity are most important for SDLR estimation 

(Cheng et al. 2017). Ta and surface water vapor pressure measured close to the ground are used 

for SDLR estimation in the parameterization schemes under clear sky conditions (Brunt 1932; 

Brutsaert 1975; Idso 1981; Swinbank 1963). However, the coefficients for the parameterization 

schemes are often specific for a limited range of climate regions and atmosphere conditions 

under which they were calibrated and validated. The parameterization scheme should be 

redefined or calibrated before it is used in other places (Bilbao and De Miguel 2007). Retrievals 

of Ta and relative humidity (RH) profiles from satellite observations are also employed to 

estimate SDLR (Ellingson 1995). Radiative transfer models (e.g. LOWTRAN or MODTRAN), 

named physical based methods, have been used to describe the actual emission and absorption 

processes in the atmosphere and to estimate SDLR (Duarte et al. 2006). Darnell et al. (1983) 

estimated SDLR based on Television and Infrared Observation Satellite (TIROS) Operational 

Vertical Sounder (TOVS) data obtained from the National Oceanic and Atmospheric 

Administration (NOAA). Although these physical based methods have explicit physical basis, 

the accuracy of the input parameters may directly affect the estimation accuracy. It is also very 

difficult to obtain temperature and humidity profiles of the lower atmosphere at stations with 

the accuracy required for SDLR estimation (Duarte et al. 2006; Ellingson 1995; Wang and 

Dickinson 2013; Wang and Liang 2009a). Moreover, the physical based methods may not be 

suitable for cloudy sky conditions since clouds are always impenetrable in the thermal infrared 

spectrum as pointed by Wang and Liang (2009a). For example, most passive satellite sensors 
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can only provide observations of the cloud top, but SDLR is more closely related to the 

parameters of cloud base (Ellingson 1995). 

Most existing parameterization schemes use cloud cover fraction to quantify the 

contribution of clouds to SDLR, which is proportional to the total cloudiness (Aladosarboledas 

1993; Bilbao and De Miguel 2007; Ellingson 1995; Niemela et al. 2001). Meteorological 

observations and satellite cloud detection products can provide reliable cloud cover fraction 

measurements (Ackerman et al. 2008). For example, Diak et al. (2000) proposed a 

parameterization for SDLR estimation under cloudy sky conditions, in which the cloud product 

collected from the Geostationary Operational Environment Satellite (GOES) was used to 

quantify the influence of clouds. This parameterization method showed an overall root mean 

square error (RMSE) value of 20 Wm-2 against the ground measurements. The cloud cover 

fraction can alternatively be represented by the ratio of the measured horizontal global solar 

radiation to the horizontal global solar radiance under clear sky conditions (Crawford and 

Duchon 1999). Downward shortwave radiation (DSR) can reflect the contribution of cloud to 

the SDLR. Crawford and Duchon (1999) proposed an improved parameterization scheme for 

calculating SDLR based on DSR measurements. Yang et al. (2010) estimated the SDLR based 

on calculating the cloud cover fraction using DSR estimated from a hybrid model. The 

evaluation analysis showed that the error of four Chinese Meteorological Administration (CMA) 

stations in the Tibetan Plateau (TP) was less than 30 Wm-2. Most of the parameterization 

schemes under cloudy sky conditions strongly depend on the calibration data and do not fully 

consider the impact of cloud characteristics, such as the cloud base. Thus, it may also have 

larger biases outside the parameter range of their local calibration (Wang and Dickinson 2013).  
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Besides these physical based methods, machine learning methods are alternative ways to 

estimate surface radiation (Wang et al. 2017; Wei et al. 2019; Yang et al. 2018). Machine 

learning methods provide techniques that can automatically construct the relationship between 

input parameters and surface radiation by processing the available data and maximizing a 

problem dependent performance criterion. Wei et al. (2019) estimated the DSR using four 

machine learning methods based on Advanced Very High Resolution Radiometer (AVHRR) 

data. The evaluation results with ground measurements exhibited that the gradient boosting 

regression tree (GBRT) method was the most accurate. Unlike other machine learning methods, 

the GBRT method can automatically find nonlinear interaction via decision tree learning and 

achieve more accurate predictions (Johnson and Zhang 2014). However, few studies have 

directly applied the GBRT method to estimate SDLR based on ground measurements, especially 

over China. 

Many studies have been reported for estimating SDLR over China, including the 

parameterization methods (Yu et al. 2011; Yu et al. 2018), hybrid methods (Tang and Li 2008; 

Wang et al. 2014; Wang and Liang 2009b) and artificial neural networks (ANN) based methods 

(Wang et al. 2018; Wang et al. 2012). For example, Yu et al. (2011) compared twelve and eight 

parameterizations methods under clear and cloudy sky conditions over Heihe River Basin in 

China, respectively. It showed that the estimated SDLRs based on the proposed schemes by Idso 

(1981) and Dilley and O'Brien (1998), and Maykut and Church (1973) performed best for the 

clear and cloudy sky conditions, respectively. Wang et al. (2014) developed an improved hybrid 

method to estimate SDLR over the TP using the Moderate-resolution Imaging 

Spectroradiometer (MODIS) observations under clear sky conditions. The estimated SDLRs 
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based on the proposed hybrid method have an overall RMSE value of 25.9 Wm-2 and 25.7 Wm-

2 for the MODIS observations from Terra and Aqua, respectively. The ANN-based model was 

used to estimate SDLR over the TP by Wang et al. (2012). The model is comparable with or 

even better than existing algorithms, with an overall RMSE value of 20.1 Wm-2 and a bias value 

of -8.8 Wm-2. Although much effort has been conducted on the improvements of the methods 

for SDLR estimation, studies on reconstructing the long-term SDLR datasets over China is still 

rare. Chang and Zhang (2019) reconstructed SDLR datasets at 351 stations over China. He et 

al. (2020) developed the China Meteorological Forcing Dataset (CMFD) based on the ground 

measurements at 753 CMA stations from 1979 to the present. The SDLR forcing dataset was 

estimated based on the semi-empirical method proposed by Crawford and Duchon (1999), 

which calculated the atmospheric emissivity as a function of cloud amount and Ta. The temporal 

coverage of the estimated SDLR by the released methods is limited and the spatiotemporal 

analysis of SDLR over China is not well discussed. To improve our understanding of the climate 

change, it is still necessary to reconstruct a comprehensively spatiotemporal extended SDLR 

dataset over China and computed spatiotemporal analysis based on this dataset. 

The physical relationship between the Ta, RH, DSR and SDLR is fairly well known. In 

particular, Cheng et al. (2017) and Zeppetello et al. (2019) have shown that near surface air 

temperature is the prominent driver of both clear and all-sky downward longwave radiation in 

observations and climate models respectively. The radiative kernels presented by Previdi (2010) 

and Pendergrass et al. (2018) also present clear physical explanations for the relationship 

between SDLR and meteorological variables, including Ta and RH. SDLR estimation under 

cloudy sky conditions depends strongly on cloud condition. DSR can be used to quantify the 
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contribution of clouds to SDLR under cloudy sky conditions (Crawford and Duchon 1999; Yang 

et al. 2010). Crawford and Duchon (1999) calculated cloud fraction from DSR under clear and 

cloudy conditions. Thus, Ta, RH, and DSR measurements are selected as input variables of the 

GBRT method in this study. 

There are a total of 756 CMA meteorological stations where Ta, RH and other surface 

meteorological parameters are measured, and all these data are available to the public. 

Compared with 756 routine meteorological stations, only 122 have global solar radiation 

measurements. Among 122 radiation observation stations, only 48 have relatively complete 

record from 1970 to 2015 through statistics. It is clear that the current existing radiation 

observation stations have relatively low spatial coverage and representativeness for long-term 

analysis. Therefore, the objectives of this study are: 1) to estimate SDLR using ground 

measurements. Ground measurements collected at the Baseline Surface Radiation Network 

(BSRN) and the Arid and Semi-arid Region Collaborative Observation Project (ASRCOP) were 

used to build and evaluate the GBRT model, respectively; and 2) to analyze the spatial pattern 

and temporal variations of the SDLR over China. To obtain long-term and densely distributed 

SDLR data over China for subsequent spatiotemporal analysis, the reconstructed long-term DSR 

(Hou et al. ,2019), and the ground measured Ta and RH collected at 756 CMA stations from 

1958 to 2015 were used as input of the proposed GBRT method. The accuracy and trend 

evaluation results of the SDLR estimates based on the GBRT method are also compared with 

existing SDLR products. 

This paper is organized as follows: In Section 2, the ground measurement data used in this 

paper are described. The machine learning method and trend test method are described in 
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Section 3. The results are presented in Section 4. In Section 5, we discuss the correlation 

between the trends of estimated SDLRs and other variables (such as Ta). The conclusions are 

given in Section 6. 

2 Data 

2.1 Ground Measurements 

The data records at BSRN stations have been reported to show a higher level of data quality 

(Liang et al. 2010). The ground measurements collected at the BSRN were used to build the 

model, including daily DSR (W m-2), SDLR (W m-2), air temperature (Ta, °C) at 2 meters 

height, Relative Humidity at 2 meters height (RH, %), and elevation (m). Since the SDLR 

ground measurements are not provided at the CMA stations, the ground measured SDLR 

collected at the ASRCOP stations was used to validate the robustness and accuracy of the model. 

Ground measurements collected at the CMA from 1958 to 2015 were used to derive the SDLR 

estimates over China in this study. 

1) BSRN: The BSRN was initiated by the World Climate Research Programme (WCRP) 

to provide validation material for satellite radiometry and climate models. The BSRN operation 

started in 1992 at nine stations and currently consists of more than 60 operational stations 

(Ohmura et al. 1998). Recent reports have indicated that the BSRN measurements have the 

highest possible accuracy and a high temporal resolution in various climate zones and with 

uncertainties of approximately ±  5 Wm-2 (Liang et al. 2010). Data extracted at 25 stations, 

which provide both DSR and SDLR records from 2000 to 2015, were used to train the model in 

this study. The spatial distribution of the data is shown in Fig. 1. 
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2) ASRCOP: The ASRCOP provides pyranometer data from 18 China meteorological 

stations in the summers of 2008 and/or 2009. The observed SDLR and meteorological data at 

the ASRCOP stations were recorded with a temporal resolution of 10 or 30 minutes (Cheng and 

Liang 2016; Huang et al. 2013). Data collected from nine stations were used to evaluate the 

accuracy of the estimation model. Fig. 2 and Table 1 show the spatial distribution and detailed 

information of these stations. 

3) CMA: There are a total of 756 CMA meteorological stations where daily Ta, the RH 

and other surface meteorological parameters are measured, and all these data are available to 

the public. Among these stations, only 122 have global solar radiation measurements. Fig. 2 

shows the spatial distribution of these routine meteorological and radiation stations. Solar 

radiation measurements at the CMA stations started in 1957. Since 1994, only 96 stations 

continued to measure solar radiation as the measurements at various stations stopped over the 

years (Tang et al. 2013). It is noted that there were two different types of radiometers equipped 

at the CMA stations before 1994 and afterwards. Solar radiation measurements are more prone 

to errors and often encounter more problems, such as technical failures and operation-related 

problems, than other meteorological variable measurements (Moradi 2009; Tang et al. 2010). 

Therefore, data quality control is indispensable for many applications. In this study, the quality 

control procedure proposed by Zhang et al. (2015) was performed. 

2.2  Existing SDLR products 

Existing SDLR products are used for comparison with the SDLR estimates based on the 

GBRT method. Considering the time series and accuracy of different SDLR products, CERES-

SYN SDLR product were used to compare accuracy on ASRCOP stations, the ERA5 and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 10

GEWEX-SRB SDLR products were used for comparison of long-term trend. The brief 

introduction of three SDLR products are as follows: 

1) GEWEX-SRB: The latest version of GEWEX-SRB (v3.0) is applied in this study. The 

GEWEX-SRB SDLR data can be available from July 1983 to December 2007 at a 3-hourly 

resolution, which are then averaged into daily, monthly values. The data set is produced on a 1º 

× 1º global grid using satellite-derived cloud parameters and ozone fields, reanalysis 

meteorology, and a few other ancillary data sets (Cox et al. 2006). Based on their official Web 

site, the overall daily mean bias for GEWEX-SRB is 0.5 Wm-2 and the RMSE is 21.8 Wm-2 

compared to BSRN measurements from 1992 through 2007. These values are -0.1Wm-2 and 

11.2Wm-2 at the monthly time scale.  

2) CERES-SYN: CERES (Clouds and the Earth′s Radiant Energy System) SYN (Synoptic 

Radiation Fluxes and Clouds) product sponsored by National Aeronautics and Space 

Administration (NASA) were designed to study the earth's top-of-atmosphere (TOA), on 

surface and within the atmosphere radiation budgets (Doelling et al. 2013; Ohmura et al. 1998). 

Data used in this study for comparison with the SDLR estimates based on the GBRT method 

are available from March 2000 to present with a spatial resolution of 1º ×1º and a daily temporal 

resolution.  

3) ERA5: ERA5 data on single levels is the fifth generation ECMWF atmospheric 

reanalysis of the global climate, covering the period from 1979 to present (Hersbach and Dee 

2016; Naseef and Kumar 2008). The data can be available on the time resolution of hourly and 

monthly with the spatial resolution of 0.25°×0.25°. Reanalysis combines model data with 
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observations from across the world into a globally complete and consistent dataset using the 

laws of physics.  

2.3  Reconstructed DSR dataset over China 

The reconstruction dataset of long-term DSR over China from Hou et al. (2019) was used 

as input to obtain long-term and densely distributed SDLR data over China. This dataset was 

generated based on the random forest (RF) algorithm using the ground measured DSR data and 

the routine meteorological station data collected at 756 CMA stations. This dataset was 

available from 1958 to 2015 with a daily time resolution. The DSR estimates are validated using 

the ground measurements with a correlation coefficient (R) value of 0.99, a bias value of 0.01 

Wm-2, and an RMSE value of 8.88 Wm-2. The reconstructed DSR dataset is also reasonably 

accurate compared to the existing reconstructed dataset.  

3  Method 

3.1 Gradient Boosting Regression Tree 

The GBRT algorithm can be considered as an improved version of boosting that is based 

on iteratively constructing multiple individual decision trees. Boosting is an ensemble learning 

algorithm which combined a series of weak classifiers into a strong classifier according to 

different weights. The basic idea of GBRT algorithm is to establish a new regression model in 

the direction of gradient reduction, and to form a regression tree model through continuous 

iterations. The main advantage of the GBRT algorithm is that it can automatically find nonlinear 

interactions via decision tree learning, and it has relatively few tuning parameters as a nonlinear 

learning scheme (Johnson and Zhang 2014). 
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Assuming that xi is a set of predictor variables, yi is a set of response variables, and N is 

the number of training samples. The GBRT method constructs M different individual decision 

trees h(x;a1), h(x;a2),…, h(x;aM),  then h(x;am) can be used as the basic function to express the 

approximation function f(x) as follows (Ding et al. 2016): 

1 1

1

( ) ( ) ( ; )

,

( ; ) ( ),  1  ;  0,

M M

m m m
m m

J

m jm jm jm
j

f x f x h x a

h x a I x R where I if x R I otherwise

β

γ

= =

=

 = =


 = ∈ = ∈ =


 


 

(

1) 

where βm and αm represent the weight and classifier parameter of each decision tree, respectively. 

The loss function L(y, f(x)) is used to describe the accuracy of βm and αm . Each tree partitions 

the input space into J regions R1m, R2m ,…, Rjm, and each Rjm predicts the constant γjm. The main 

flowchart of the GBRT method is shown in Fig. 3. In this study, the GBRT method is 

implemented using the scikit-learn toolbox on the Python platform (Pedregosa et al. 2012). The 

main flowchart of this study is shown in Fig. 4. 

3.2 Mann-Kendall (MK) Trend Test 

The non-parametric MK statistical test (Kendall 1938; Mann 1945) has been employed to 

detect trends in different hydrological and meteorological time series. Compared to linear 

regression trend analysis, the MK trend test is more suitable for cases where the trend may be 

assumed as a monotonic and normal distribution (Zhou et al. 2018). The test statistic S is given 

by (Gocic and Trajkovic 2013): 

1

1 1

sgn( )
n n

j i
i j i

S x x
−

= = +

= −  ， (2) 

1,  0

sgn( ) 0,  0

1,  0

j i

j i j i

j i

if x x

x x if x x

if x x

+ − >
− = − =
− − <

， (3) 
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where n, xi, xj represent the number of data points, data values in the time series i and j（j>i）, 

respectively.  

The variance is computed as: 

1

( 1)(2 5) ( 1)(2 5)
Var( )

18

m

i i i
i

n n n t t t
S =

− + − − +
=


， 

(4) 

where n and m are the number of data points and tied groups, respectively, and ti denotes the 

number of ties of extent i. A tied group is a set of sample data with the same value. In cases 

where the sample size is n > 10, the standard normal test statistic ZS is expressed as (Zhou et al. 

2018): 

1
,  0

( )

Z 0,             0

1
,  0

( )

S
if S

Var S

s if S

S
if S

Var S

− >
= >
 +
 <


， (5) 

In a two-tailed test, the null hypothesis of no trend should be accepted at a specific 

significance level for 1- /2 1- /2-Z Zs Zα α≤ ≤  , where 1- /2Z α  is the standard score of the standard 

normal distribution with a cumulative probability of 1- /2α . Otherwise, the null hypothesis of no 

trend is rejected, and a monotonic trend is identified at significance level α . Positive values 

of ZS indicate increasing trends, while negative ZS values indicate decreasing trends. In this study, 

a=0.05 was taken to identify a significant trend which means that 1- /2= 1.96Z α ± . 

In this study, we used the Sen's slope to describe the steepness of the trend in long time 

series, which is computed as (Sen 1968): 

iQ  for 1,..., ,j kx x
i N

j k

−
= =

−
 (6) 
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where N is the number of data pairs, xj and xk are the data values at times j and k (j>k), 

respectively. The N values of Qi are ranked from smallest to largest.  

3.3 Model Construction 

The GBRT model can be constructed in three steps. 

(1) Preparation of the training datasets. Four variables extracted at the BSRN stations were 

used as predictor variables, including elevation, daily Ta, daily RH, and daily DSR. The daily 

SDLR measurements were used as target variables. 

(2) Configuration of the model coefficients. We used the k-fold cross validation method to 

determine the optimal parameters. Each parameter is traversed in range of parameter threshold, 

as shown in Table 2. The error of predicted results is evaluated against ground measurements 

and parameters providing the highest average R in the training dataset were selected as optimal 

parameters. The GBRT model is influenced by the number of iterations, learning rate, depth of 

the tree, and sampling rate. The learning rate parameter limits the contribution of each tree. A 

small learning rate parameter can reduce overfitting. A larger iteration number parameter means 

more boosting stages to perform and usually provides better performance for the training dataset. 

The iteration number parameter should be carefully set to avoid overfitting. Moreover, there is 

a trade-off between the learning rate and iteration number. The model complexity and 

computational cost increase with increasing iteration number and decreasing learning rate, 

leading to a poor prediction performance. The tree depth represents the maximum depth of the 

individual regression estimators which can limit the number of nodes in the tree. The sampling 

[( +1)/2]

[( ) /2] [( +1) /2]

           if  is odd

+
, if  is even

2

N

N N

Q N

Slope Q Q
N


= 



，

， (7) 
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rate parameter represents the fraction of training samples used for fitting. A subsample 

parameter smaller than 1.0 can prevent overfitting and reduce the variance. Successive 

performance testing showed that a GBRT model with a learning rate parameter of 0.1, a 

sampling rate of 1, a tree depth of 5, and an iteration number of 250 was optimal to estimate the 

SDLR. 

(3) Application of the GBRT method. After determining the optimal parameters, the 

performance of the trained model for the SDLR estimation was evaluated using ground 

measurements collected from the ASRCOP stations. 

4 Results and Analysis 

4.1 Validation Against Ground Measurements 

4.1.1 Validation of the SDLR estimates 

Ground measurements collected at 25 BSRN stations were used as the training dataset to 

determine the optimal parameters. Then, daily SDLR measurements collected at nine ASRCOP 

stations in the summers of 2008 and/or 2009 were used as the validation dataset to evaluate the 

performance of the GBRT method for the SDLR estimation. The selected BSRN stations are 

mainly concentrated in South America, North America, and Europe. Using ASRCOP data in 

China as the validation dataset can validate the accuracy of the GBRT method without local 

correction, i.e., validate the robustness of the model. Three statistical measures were used to 

evaluate the estimates against ground measurements, including overall RMSE, R, and bias. 

The performance of the GBRT method for the estimation of daily SDLR are evaluated on 

BSRN training dataset and ASRCOP validation dataset, respectively. The evaluation results are 

shown in Fig. 5. The daily SDLR estimates for the BSRN training dataset have an overall RMSE 
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value of 13.22 Wm-2, a bias value of 0 Wm-2, and an R value of 0.99, whereas these values are 

16.5 Wm-2, 3.82 Wm-2 and 0.91 for the ASRCOP validation dataset, respectively. The validation 

results for each ASRCOP station was further investigated to study the stability of the GBRT 

method, as shown in Fig. 6. The daily SDLR estimates correlate well with the ground 

measurements at most ASRCOP stations, with the R values ranging from 0.76 to 0.96, the bias 

values ranging from −9.56 Wm-2 to 22.78 Wm-2, and overall RMSE values ranging from 10.06 

Wm-2 to 26.11 Wm-2. Note that the R value is greater than 0.85 at 8 out of 9 stations and the 

absolute value of the bias is less than 10 Wm-2 at 7 out of 9 stations. The estimated SDLRs at 

Dongsu correlate best with the ground measurements, with an overall RMSE value of 10.06 

Wm-2, a bias value of -0.14 Wm-2, and an R value of 0.96. These evaluation results further 

indicate that the SDLR estimates derived from the GBRT method correlate well with the ground 

measured SDLRs.  

4.1.2 Validation of the reconstructed DSR dataset 

In order to ensure the accuracy of the input variables of the machine learning method, the 

reconstructed long-term DSR dataset over China from 1958 to 2015 was validated at the DSR 

ground measures collected at 122 CMA radiation stations. As shown in Fig. 7, the DSR 

estimates from reconstructed dataset have an R value of 0.95, a bias value of 1.34 Wm-2, and 

an RMSE value of 27.01 Wm-2, at a daily time scale. These values are 0.97, 15.95 Wm-2 and 

1.34 Wm-2, respectively, at a monthly time scale. Thus, the reconstructed DSR dataset is 

reasonably accurate against the DSR ground measures. 
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4.2 Comparison with Existing SDLR Products  

The CERES-SYN SDLR product was used to compare the evaluation results of SDLR 

estimates based on the GBRT method against ground measurements at ASRCOP stations in the 

summers of 2008 and/or 2009. As shown in Fig. 8, the SDLR estimates based on the GBRT 

method correlate better with the ground measurements, with an overall RMSE value of 16.5 

Wm−2, a bias value of 3.82 Wm−2, and an R value of 0.91. The CERES-SYN and ERA5 SDLR 

products all show lower accuracy. The CERES-SYN SDLR product has an overall RMSE value 

of 23.93 Wm−2, a bias value of 7.95 Wm−2, and an R value of 0.84. These values were 28.38 

Wm−2, -7.29 Wm−2, and 0.74, respectively, for the ERA5 SDLR product. 

To further testify the SDLR estimates based on the GBRT method on 563 CMA stations, 

the RMSE and bias between daily SDLR estimates and ERA5 SDLR product are calculate at 

each CMA station from 1979 to 2015, as shown in Figs. 9 and 10. The RMSE and bias range 

from 11.61 to 80.94 W m-2 and -77.56 to 40.58 W m-2, respectively. There are 292 and 278 sites 

whose RMSE and bias values range from 20 to 25 W m-2 and -10 to 0 W m-2, respectively; these 

are followed by 102 and 90 sites whose RMSE and bias values range from 25 to 30 W m-2 and 

-20 to -10 W m-2, respectively. The lower RMSE values are mainly found in the Northeast and 

South China; while the higher RMSE values are mainly distributed in the Tibet Plateau and 

west of Southwest China, which may be due to the high altitude and harsh environment leading 

to large ground observation errors. There are 27 out of 563 sites whose biases are more than 30 

W m-2, which may be due to the DSR estimates with relative big uncertainties at some stations. 

Moreover, the replacement of the CMA radiation instruments may also be a source of errors. It 

is worth to note that the spatial scaling issue would be another potential error sources for SLDR 
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evaluation. We also compare the long-term trend of the SDLR estimates based on the GBRT 

method on 563 CMA stations with those from GEWEX-SRB and ERA5 products. The time 

period is set to 1984-2007 when all three SDLR datasets can be available. Fig. 11 shows that 

the long-term trend of SDLR estimates based on the GBRT method (2.33 Wm-2 per decade, 

significant at 95% confidence) was similar to that from GEWEX-SRB (2.1 Wm-2 per decade, 

significant at 95% confidence), higher than that from ERA5 (1 Wm-2 per decade, significant at 

95% confidence). Through the comparison of long-term trend with existing SDLR products, it 

is obvious that the SDLR estimates based on the GBRT showed a similar trend but different 

change magnitudes to existing SDLR products. Thus the temporal variations of SDLR based on 

the GBRT method on CMA stations are reasonable. 

4.3 Spatial and Temporal Analysis of SDLR over China 

The GBRT method used in this study performed well without a local correlation and only 

required surface meteorological and solar radiation data. Thus, we applied the GBRT method 

to obtain long-term and densely distributed SDLR data over China. 

Meteorological measurements and reconstructed DSR dataset were used to estimate SDLR 

based on the proposed GBRT method. The input variables of the GBRT method were Ta, RH 

measurements, elevation of the stations and reconstructed DSR values at 756 CMA stations 

from 1958 to 2015. Monthly SDLR estimates were obtained by averaging the daily values over 

the month. If there were more than ten missing daily SDLR estimates in a month at a station, 

the data for this month at this station were deleted. Then, if there was less than one missing 

monthly SDLR estimate at one station in a year, the missing values were obtained by piecewise 

cubic Hermit interpolation to calculate annual values. Meanwhile, if there were less than two 
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missing annual values for the time period at a station, the missing annual values at this station 

were also obtained by piecewise cubic Hermit interpolation. Otherwise, this station would be 

eliminated to study the long-term trends of SDLR. Therefore, 563 stations were used to analyze 

the spatial pattern and temporal variations of SDLR based on the completeness of the data 

records. 

4.3.1 Comparison with the SDLR estimates based on DSR ground measures 

The SDLR estimates based on the reconstructed DSR dataset was compared with which 

based on DSR ground measures at 122 CMA radiation stations from 1958 to 2015 to ensure the 

feasibility of spatiotemporal analysis. As shown in Fig. 12, the SDLR estimates based on the 

reconstructed DSR dataset correlate well with which based on the ground measures, with an R 

value of 1, a bias value of -0.42 Wm-2, and an RMSE value of 6.65 Wm-2, at a daily time scale. 

These values are 1, -0.42 Wm-2 and 5.17 Wm-2, respectively, at a monthly time scale. Thus the 

error of the reconstructed dataset has little effect on the accuracy of SDLR estimates based on 

the GBRT method. We also compare the long-term trend between the SDLR estimates based on 

the reconstructed and ground measured DSRs. Regarding the completeness of the DSR ground 

measures, the time series is determined to be 1970-2015 for comparison. 48 and 563 CMA 

stations were used for long-term trend analysis from 1970 to 2015 based on the reconstructed 

and ground measured DSRs, respectively. As shown in Fig. 13, the SDLR estimates at CMA 

stations based on the reconstructed and ground measured DSRs show consistent trends from 

1970 to 2015. The difference between anomalous annual mean SDLR estimates based on two 

DSR datasets was range from -0.02 Wm-2 to 3.09 Wm-2, and the absolute values were within 1 

Wm-2 in most years. The SDLR estimates used the DSR ground measurements as input showed 
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significant increasing trends at a rate of 0.98 Wm-2 per decade from 1970 to 2015, while the 

value was 1.25 Wm-2 per decade for the SDLR estimates based on the reconstructed DSR dataset. 

Thus, the SDLR estimates using reconstructed DSR dataset as input can be used to perform 

spatiotemporal analysis of SDLR over China. 

4.3.2 Spatial distribution and seasonal variations of SDLR 

According to the classification method of climatic types in China proposed by Zhou et al. 

(2018) and Liu et al. (2018), this study divided mainland China into six regions to compute 

spatiotemporal analysis, including East China (EC), North China (NC), Northeast China (NE), 

Southwest China (SW), South China (SC), and the TP. The spatial distribution and annual mean 

SDLR estimates of each region are presented in Fig. 14. The different sizes and colors of the 

stations indicate the magnitude of the annual mean SDLR estimates at 563 CMA stations during 

1958-2015. As it is shown in the figure, the annual mean SDLR estimates shows a pronounced 

latitudinal dependency except over the TP, with larger values at low latitudes and smaller values 

at high latitudes. This may be due to the low values of aerosol optical thickness and atmospheric 

water vapor content over the TP. Table 3 shows the annual mean SDLR estimates over China 

and six climate regions. EC, SC and SW show higher annual mean SDLR than the other regions 

in China. The maximum annual mean SDLR estimates occur in SC, whereas the minimum value 

occurs in TP. The difference between the annual mean SDLR estimates in SC and TP is up to 

100 Wm-2. 

Figs. 15-16 show the monthly and seasonal mean SDLR estimates over mainland China 

and six sub-regions during 1958-2015, respectively. The monthly SDLR estimates gradually 

increase from January to July and then gradually decrease from July to December over both 
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mainland China and six sub-regions. The highest seasonal mean SDLR typically occurs in 

summer, with areal averaged SDLR estimates of 379.20 Wm-2. Following the same logic, the 

minimum SDLR occurs in winter, with values of 255.60 Wm-2. The SDLR estimates show 

similar seasonal variation trends in all six sub-regions. The maximum seasonal differences 

occur in NE (147.7 Wm-2), while smaller values occur in SC and SW (66.9 Wm-2 and 68.3 Wm-

2, respectively). 

 

4.3.3 Long-term Trends 

Fig. 17 demonstrates the trends of the SDLR estimates at 563 CMA stations during 1958-

2015. The size of each triangle represents the magnitude of the trend, and the red and green 

triangles indicate increasing and decreasing trends, respectively. Stations with a circle indicate 

that the trend detected by the MK test is significant at a 95% confidence level. The SDLR 

estimates at stations in central and northern China all showed increasing trends from 1958 to 

2015, whereas the SDLR estimates at some stations in southern China showed decreasing trends. 

549 out of 563 CMA stations show positive trends, and 476 stations increasing significantly 

during 1958-2015; 14 stations show negative trends, with one stations decreasing significantly. 

The stations with negative SDLR trends were mainly concentrated in SC and SW. 

Fig. 18 shows the anomalous annual mean SDLR estimates averaged over mainland China 

and the six sub-regions from 1958-2015. A line was fitted to the anomalous annual mean SDLR 

estimates using linear regression. In mainland China, the maximum values occurred in 1998, 

and the minimum values occurred in 1969. A 1.04 Wm-2 per decade increasing linear trend of 

SDLR is observed during the period of 1958-2015. The trends in EC, NC, NE, SW and TP 
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regions are similar to those over mainland China. In SC, the trend is insignificant but exhibits 

large interannual variations during the period of 1958-2015. 

Since the MK test is more statistically rigorous than the regression method (Mann 1945), 

the MK test is used to further analyze the long-term trend. The annual mean SDLR estimates 

over mainland China show significant increasing trends at a rate of 1.02 Wm-2 per decade 

detected by the MK test. The increasing trends are comparable to those from previous studies 

(Prata 2008; Wang and Liang 2009a). CO2 is another dominant emitter of SDLR, hence the 

effect of CO2 on SDLR should be considered. The global atmospheric CO2 concentration has 

increased by an average of 1.5 ppm per year from 1958 to 2015, which was calculated based 

on globally averaged marine surface data from the National Oceanic and Atmospheric 

Administration (NOAA) Earth System Research Laboratory (ESRL) flask network (Laboratory 

2019). The CO2 concentration increase in China approximately at the same rate as that of global 

(Administration 2018). Increasing CO2 concentration amount by 10% causes ~0.2% (~0.6Wm-

2) increase in SDLR (Prata 2008). If the CO2 concentration in the atmosphere increases at a rate 

of 1.5 ppm yr-1, it will result in a corresponding increase in SDLR of 0.28 Wm-2 per decade. 

Therefore, the increasing trend of the SDLR estimates would be 1.3 Wm-2 per decade 

considering the variability of CO2 concentration over China. Table 3 also shows that positive 

values are dominated in most regions. The annual mean SDLR estimates in EC, NC, NE, SW 

and TP show significant increasing trends at a rate of 1.07 Wm-2 per decade, 1.30 Wm-2 per 

decade, 1.31 Wm-2 per decade, 0.60 Wm-2 per decade, and 1.18 Wm-2 per decade, respectively. 

SC shows insignificant increasing trends from 1958 to 2015, at a rate of 0.61 Wm-2 per decade. 
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It can be seen that most regions over China showed a significant increasing trend from 1958 to 

2015, except in SC and SW. 

Given the long-term variability in SDLR, characterizing various time periods separately 

may be more useful than linearly fitting the entire time period. Pinker et al. (2005) claimed that 

the DSR showed a decrease until about 1990 and then a sustained increase. Therefore, the annual 

mean SDLR estimates series was divided, with break at 1990. A 0.59 W m−2 per decade 

insignificant increasing between 1958 to 1990, followed by a 0.59 W m−2 per decade 

insignificant increasing from 1991 to 2015, was found in anomalous annual mean SDLR 

estimates over mainland China. Annual mean SDLR estimates in EC, NC, NE, SC and TP had 

very similar trends to mainland China in the specified three time periods, but with different 

magnitudes. The corresponding values were 0.44 Wm-2 and 0.73 Wm-2 for EC, 0.51Wm-2 and 

0.57 Wm-2 for NC, 0.41 Wm-2 and 0.94 Wm-2 for NE, 0.53 Wm-2 and 0.1 Wm-2 for SC, 0.62 

Wm-2 and 0.25 Wm-2 for TP. The trends in SW were different from other regions. In SW, there 

were a 0.43 Wm−2 per decade insignificant increasing over 1958-1990, and a 0.68 Wm−2 per 

decade insignificant decreasing over 1991-2015. Before 1990, the anomalous annual mean 

SDLR was negative in most years, but mostly positive after 1990. Therefore, the trends in these 

two time periods over all sub-regions are insignificant. 

Table 4 summarizes the trends of the seasonal mean SDLR estimates over mainland China 

detected by the MK test from 1958 to 2015. The mean SDLR estimates exhibits a positive trend 

in the four seasons, with the highest rising rate in winter and lowest in summer. The seasonal 

mean SDLR in four season all show insignificant increasing trends from 1958 to 2015, with 

rates of 0.36 Wm-2, 0.38 Wm-2, 0.45 Wm-2 per decade, and 0.99 Wm-2 per decade, respectively. 
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We also divided the time period with break at 1990. The seasonal mean SDLR estimates in four 

seasons all showed insignificant increasing over 1958-1990 and significant decreasing over 

1991-2015. In spring, there were a 0.13 Wm−2 per decade increasing over 1958-1990, and a 

3.13 Wm−2 per decade decreasing over 1991-2015. The corresponding values were 0 Wm-2 and 

3.97 Wm-2 for summer, 0.9 Wm-2 and 1.45 Wm-2 for autumn, 1.15 Wm-2 and 3.75 Wm-2 for 

winter. 

5 Discussion 

Previous studies suggest that long-term SDLR variation is often determined by Ta and 

atmospheric water vapor concentration (Wang and Liang 2009a). In this session, we investigate 

the correlation between the long-term variation of SDLR and other parameters over China. Near 

surface temperature and water vapor are used to calculate SDLR based on the Stefan-Boltzmann 

equation: 

4( , )a aSDLR T e Tε σ=  (8) 

whereσ is the Stefan–Boltzmann constant ( -85.67 10× Wm-2K-4).ε is the atmospheric effective 

emissivity under clear sky conditions.ε can be modeled as a function of Ta, water vapor pressure 

(e). RH is the ratio of water vapor pressure and saturation water vapor pressure, which can be 

calculated by Ta using the following equations. We choose water vapor pressure rather than RH 

to investigate the correlation between the trend in SDLR. Under cloudy sky conditions, the cloud 

cover fraction can also be estimated by the ratio of the measured horizontal global solar 

radiation to the horizontal global solar radiance under clear sky conditions. Thus, the DSR can 

be used to reflect cloud conditions. Next, the correlation between the trend in SDLR and the 

trend in Ta, water vapor pressure, DSR over China from 1958 to 2015 are further explored. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

 25

e
*100%,

s

RH
e

=  (9) 

1 1
6.11exp( ( )),

273
v
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L
e

R Ta
= −  (10) 

where e and es are water vapor pressure and saturation water vapor pressure, respectively. 

Fig. 19 shows the time series of anomalous annual mean SDLR estimates, measured Ta, 

calculated water vapor pressure and measured DSR from 1958 to 2015 over China. It is shown 

that the trend of SDLR is generally consistent with the trend of Ta and water vapor pressure, 

whereas the trend of SDLR is opposite to the trend of DSR. To fully assess the causes of changes 

in SDLR, we further quantitatively investigated the correlation between the SDLR and other 

variables. Fig. 20 is the scatterplots of the trend in SDLR estimates detected by the MK test as 

a function of the trends in Ta, water vapor pressure, and DSR at the 563 CMA stations. One 

point in the figure represents one station. The trend of SDLR is positively correlated with the 

trends in Ta and water vapor pressure, and the R values between SDLR with Ta and vapor 

pressure are 0.62 and 0.60, respectively. The trend of SDLR is negatively correlated with the 

trend in DSR, with an R value of -0.16. SDLR is not strongly correlated with DSR over mainland 

China during the period of 1958-2015. 

In order to study the characteristics of parameters which controlling the long-term variation of 

SDLR in different regions over China, the correlation of the trends in SDLR with the trends in 

Ta, water vapor pressure and DSR over the six regions is also shown in Fig. 21. The trend of 

SDLR is positively correlated with the trend in Ta and water vapor pressure, whereas it is 

negatively correlated with the trend in DSR in all sub-regions. In EC and TP, the trend of SDLR 

is highly correlated with the trend of Ta, with R values of 0.65. In EC, NE, SC, SW and TP, the 
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trend of SDLR is highly correlated with the trend of water vapor pressure, with an R value of 

0.63, 0.72, 0.70, 0.75, and 0.69, respectively. In TP, the trend of SDLR exhibits a relatively high 

negative correlation with the trend of DSR, with R values of -0.57. The trend of SDLR has no 

significant correlation with the trend of Ta, water vapor pressure and DSR in NC. These results 

suggest that the primary controlling factors of the SDLR long-term variation for six climatic 

zones were different: the increases in water vapor pressure results to the rising trend over most 

sub-regions, the rising trend over TP mainly results from both increases in Ta and water vapor 

pressure and decreases in DSR, the rising trend over NC has no significant correlation with 

those of other three variables. It is noted that the number of samples over each region is quite 

limited based on the completeness of the data records, and the points are scattered and uneven, 

which may lead to errors in the results. 

6 Conclusions 

SDLR is a major component of the energy budget in the Earth’s climate system. However, 

SDLR is not conventionally observed due to the high cost and difficulty of a direct measurement. 

It has great significance to generate a comprehensively spatiotemporal extended SDLR dataset 

over China based on more readily available data has. In this study, we reconstructed SDLR 

based on the GBRT method using Ta, RH and DSR. Daily ground measurements collected at 

the BSRN and ASRCOP stations were used to build and validate the GBRT model, respectively. 

The evaluation results showed that the estimated SDLRs using the GBRT method correlate well 

with the SDLR in situ, with an overall RMSE of 16.5 Wm-2 and an R value of 0.91 at a daily 

time scale. Thus, applying the GBRT method to estimate SDLR provides reasonable and 

realistic radiation quantity and its variation without a local correlation. 
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To obtain long-term SDLR data for subsequent spatiotemporal analysis based on the 

proposed method over China, the densely distributed reconstructed DSR and ground measured 

Ta and RH collected at 756 CMA stations were used as input to estimate the SDLR based on the 

GBRT method over China from 1958 to 2015. We also analyzed the spatial pattern and temporal 

variations of the estimated SDLRs at 563 CMA stations over China where the data were 

relatively complete during the period of 1958–2015. The maximum annual mean SDLR 

occurred in SC, whereas the minimum value occurred in TP. The seasonal mean SDLR estimates 

were highest in summer and lowest in winter. The spatial distribution of the estimated SDLRs 

in each season was similar to that in the whole year. It was found that SDLR increased 

significantly at an average rate of 1.3 Wm-2 per decade from 1958 to 2015 as detected by the 

MK test. The long-term trends in most regions were consistent with those in the whole China 

area, except for SC. In SC, the annual mean SDLR exhibited insignificant increasing trends at 

a rate of 0.61 Wm-2 per decade. We also compared the accuracy and trends of the SDLR 

estimates based on the GBRT method between those from existing SDLR products. The 

comparison result showed that accuracy and trends of the estimated SDLRs of the GBRT 

method are reasonable. 

The primary controlling factors of the SDLR long-term variation was investigated in 

mainland China by analyzing the correlation between the trend of SDLR and the trends of Ta, 

water vapor pressure, and DSR at the 563 CMA stations. The trend of SDLR was generally 

positively correlated with the trend in Ta and water vapor pressure, negatively correlated with 

the trend in DSR. The primary controlling factors of the SDLR long-term variation for six 

climatic zones were different. 
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Although the GBRT method are robust to outliers in output space, and has been efficient 

and practical for many research applications, the GBRT method also has some disadvantages. 

First, the GBRT method has poor scalability due to the order nature of its promotion. Second, 

the training procedure is sensitive to the choice of parameters. There is a trade-off between 

overfitting and computational cost. The step size of learning rate parameter may need to be 

small to avoid overfitting. However, the small learning rate parameter may imply a high 

computational cost of applications. Thus other machine learning methods or deep learning 

methods can be further explored to improve accuracy and efficiency of SDLR estimation. 

The density of the SDLR measurements is sparser than that of the meteorological and DSR 

measurements. The SDLR can be estimated and easily extended to more stations and over longer 

time periods using the GBRT method without a local correlation. This study only applies the 

GBRT method at stations using ground measurements. However, the number and spatial 

distribution of the training samples may have influence on SDLR estimation. We plan to extend 

the GBRT method for SDLR estimation from stations to surface, using reanalysis data and/or 

retrievals from satellite observations. 
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Table Captions: 

TABLE 1. Basic summary of the ASRCOP stations used to validate the model. 

TABLE 2. Parameters setting to determine the optimal parameters for the GBRT method. 

TABLE 3. The trends in annual mean SDLR estimates over mainland China and six regions detected by MK test. 

TABLE 4. The trends in seasonal mean SDLR estimates of each season over mainland China detected by MK test. 

Figure Captions: 

FIG.1. Spatial distribution of the radiation stations provided by the BSRN. 

FIG.2. Spatial distribution of the radiation stations provided by the ASRCOP and CMA. 

FIG.3. The main flowchart of the GBRT method. 

FIG.4. The main flowchart of this study. 

FIG.5. Evaluation results of the (a) BSRN training and (b) ASRCOP validation dataset’s daily SDLR estimates based on the 

GBRT method against ground measurements. N is the number of total data points. 
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FIG.6. Evaluation results of daily SDLR estimates on each ASRCOP station based on the GBRT method against ground 

measurements. 

FIG.7. Evaluation results of the reconstructed dataset of long-term DSR over China based on the RF method at (a) daily and (b) 

monthly time scales. 

FIG.8. Evaluation results of daily SDLR estimates from (a) CERES-SYN and (b) ERA5 SDLR products on each ASRCOP 

station against ground measurements. 

FIG.9. The RMSE between daily SDLR estimates and ERA5 SDLR products at 563 CMA stations from 1979 to 2015. 

FIG.10. The Bias between daily SDLR estimates and ERA5 SDLR products at 563 CMA stations from 1979 to 2015. 

FIG.11. The comparison of anomalous annual mean SDLR estimates (unit: Wm-2) averaged over mainland China from 

GBRT-based estimates, GEWEX-SRB and ERA5 SDLR products during 1984 -2007. 

FIG.12. Evaluation results of the SDLR estimates based on the reconstructed DSR dataset and which based on the DSR measure 

at (a) daily and (b) monthly time scales. 

FIG.13. Comparison between the anomalous annual mean SDLR estimates (unit: Wm-2) based on the DSR estimates and the 

DSR ground measures during 1970 -2015. 

FIG.14. The annual mean SDLR estimates (unit: W/m2) at 563 CMA stations during 1958-2015. 

FIG.15. Monthly mean SDLR estimates (unit: Wm-2) over the six regions and mainland China during 1958 -2015. 

FIG.16. Seasonal mean SDLR estimates (unit: Wm -2) over the six regions and mainland China during 1958 -2015.. 

FIG.17. Long-term trends of SDLR estimates detected by MK test at 563 CMA stations over 1958-2015. Upward-pointing 

triangles (red) denote an increasing trend in SDLR estimates, whereas downward pointing triangles (green) represent a 

decreasing trend in SDLR estimates. Stations with a circle mean that the trend is significant at the 95% confidence level. 

FIG.18. The anomalous annual mean SDLR estimates (unit: Wm-2) averaged over each region and mainland China during 1958 

-2015. 
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FIG.19. Anomalous annual mean SDLR estimates, measured Ta, calculated water vapor pressure and measured DSR during 

1958-2015 over China. 

FIG.20. The scatterplots of trends in SDLR (unit: W/m2/yr) as a function of trends in (a) Ta, (b) water vapor pressure and (c) 

DSR at the stations. 

FIG.21. The scatterplots of trends in SDLR as a function of trends in Ta, water vapor pressure and DSR over six regions. 

 

Tables 

TABLE 1. Basic summary of the ASRCOP stations used to validate the model. 

Station Latitude(°) Longitude(°) Elevation（m） Land cover Time period 

Arou 38.04 100.46 3033 Desert/grassland 2008-2009 

Dongsu 44.09 113.57 970 Desert/grassland 2008-2009 

Jinzhou 41.18 148.48 22 Farmland 2008-2009 

Maqu 33.89 102.14 3423 Wetlands 2008 

Miyun 40.63 117.32 350 Farmland 2008-2009 

Tongyu grass 44.58 122.92 184 Grassland 2008-2009 

Tongyu farmlad 44.59 122.93 184 Farmland 2008-2009 

Yingke 38.86 100.41 1519 Farmland/oasis 2008-2009 

Yuzhong 35.95 104.13 1965 Desert/grassland 2008-2009 

TABLE 2. Parameters setting to determine the optimal parameters for the GBRT method. 

Parameters Threshold Intervals 

learning rate 0.1-0.9 0.1 
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subsample 0.2-1 1 

max depth 4-9 5 

n-estimators 50-350 250 

TABLE 3. The trends in annual mean SDLR estimates over mainland China and six regions detected by MK test. 

Region Annual mean SDLR (Wm-2) 1958-2015 1958-1990 1991-2015 

China 316.14 1.02* 0.59 0.59 

EC 336.74 1.07* 0.44 0.73 

NC 277.06 1.30* 0.51 0.57 

NE 278.31 1.31* 0.41 0.94 

SC 384.22 0.61 0.53 0.10 

SW 347.74 0.60* 0.43 -0.68 

TP 271.55 1.18* 0.62 0.25 

*Trend at the 5% significant level (p < .05); 

TABLE 4. The trends in seasonal mean SDLR estimates of each season over mainland China detected by MK test. 

Season  Seasonal mean SDLR (Wm-2) 1958-2015 1958-1990 1991-2015 

Spring 309.38 0.36 0.13 -3.13* 

Summer 379.20 0.38 0 -3.97* 

Autumn 320.52 0.45 0.90 -1.45 
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Winter 255.60 0.99 1.15 -3.75* 

*Trend at the 5% significant level (p < .05); 

Figures 

 

FIG.1. Spatial distribution of the radiation stations provided by the BSRN. 

 

FIG.2. Spatial distribution of the radiation stations provided by the ASRCOP and CMA . 
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FIG.3. The main flowchart of the GBRT method. 
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FIG. 4. The main flowchart of this study. 

  

FIG. 5.  Evaluation results of the (a) BSRN training and (b) ASRCOP validation dataset’s daily SDLR estimates based on 

the GBRT method against ground measurements. N is the number of total data points. 
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FIG. 6.  Evaluation results of daily SDLR estimates on each ASRCOP station based on the GBRT method against ground 

measurements 
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FIG.7. Evaluation results of the reconstructed dataset of long-term DSR over China based on the RF method at (a) daily and (b) 

monthly time scales.  

 
 

FIG.8. Evaluation results of daily SDLR estimates from (a) CERES-SYN and (b) ERA5 SDLR products on each ASRCOP 

station against ground measurements. 

 

FIG.9. The RMSE between daily SDLR estimates and ERA5 SDLR products at 563 CMA stations from 1979 to 2015. 
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FIG.10. The Bias between daily SDLR estimates and ERA5 SDLR products at 563 CMA stations from 1979 to 2015. 

 

FIG.11. The comparison of anomalous annual mean SDLR estimates (unit: Wm-2) averaged over mainland China from GBRT-

based estimates, GEWEX-SRB and ERA5 SDLR products during 1984 -2007. 
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FIG.12.  Evaluation results of the SDLR estimates based on the reconstructed DSR dataset and which based on the DSR 

measure at (a) daily and (b) monthly time scales. 

 

FIG.13. Comparison between the anomalous annual mean SDLR estimates (unit: Wm-2) based on the DSR estimates and the 

DSR ground measures during 1970 -2015. 
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FIG.14. The annual mean SDLR estimates (unit: Wm-2) at 563 CMA stations during 1958 -2015.  

 

FIG.15. Monthly mean SDLR estimates (unit: Wm-2) over the six regions and mainland China during 1958 -2015. 
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FIG.16. Seasonal mean SDLR estimates (unit: Wm-2) over the six regions and mainland China during 1958 -2015. 

 

FIG.17. Long-term trends of SDLR estimates detected by MK test at 563 CMA stations over 1958-2015. Upward-pointing 

triangles (red) denote an increasing trend in SDLR estimates, whereas downward pointing triangles (green) represent a 

decreasing trend in SDLR estimates. Stations with a circle mean that the trend is significant at the 95% confidence level. 
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FIG.18. The anomalous annual mean SDLR estimates (unit: Wm-2) averaged over each region and mainland China during 1958 

-2015. 
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FIG.19. Anomalous annual mean SDLR estimates, measured Ta, calculated water vapor pressure and measured DSR during 

1958 - 2015 over China. 

 

FIG.20. The scatterplots of trends in SDLR (unit: W/m2/yr) as a function of trends in (a) Ta, (b) water vapor pressure and 

(c) DSR at the stations.  
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FIG.21. The scatterplots of trends in SDLR as a function of trends in Ta, water vapor pressure and DSR over six regions. 


